

Index-Based Longevity Hedging: Calculating Capital Relief

Andrew Cairns

Joint work with Ghali El Boukfaoui (formerly Soc. Gen.)

Life Convention, Liverpool, November 2018

13 November 2018

Proposed Approach for Calculating Capital Relief:

(Paper: Cairns and El Boukfaoui (2018) to appear in North American Actuarial Journal)

- Open up communication lines with the regulator
- Establish which method for calculating SCR (and RM)
- Discuss with the regulator
- Document fully all mortality forecasting models
- Discuss with the regulator
- Run the SCR calculations with and without hedge
- Sensitivity and other robustness tests
- Discuss with the regulator
- Agree capital relief for time 0 and times 1, 2,...

Calculating the SCR Capital Relief

- **L** = PV of the full runoff: own liabilities
 - S(t, x) = survivor index for cohort aged x at time 0
- $\tilde{L} = PV$ of the full runoff: synthetic portfolio of liabilities; depends on:
 - $q_G(t, x)$ = general population mortality rates
 - ER(0, t, x) = experience ratios hard coded at time 0
 - $\tilde{S}(t, x)$ = synthetic survivor index
- Experience ratios =>
 - $E[S(t,x)] \approx E[\tilde{S}(t,x)]$
 - $E[L] \approx E[\tilde{L}]$

Values

- $L(0) \rightarrow L(1) \rightarrow L(T) \rightarrow L(\infty) = L$
- E.g. L(T) = liability value given mortality experience up to T (point estimate)
- $\tilde{L}(0) \rightarrow \tilde{L}(1) \rightarrow \tilde{L}(T)$
- Hedge payoff $H(T) = h(\tilde{L}(T))$ • AP = Attachment Point • AP = Attachment Point • AP = Attachment Point • AP = Attachment Point
- DP = Detachment Point (or Exhaustion Point, EP)

"UK" approach

• SCR = 99.5% one-year VaR; based on L(1) - H(1)

Present Value at Time 0	Hedger's liability	Synthetic liability	Hedge payoff
Full runoff	L	\widetilde{L}	
Valued at Time T	L(T)	$\tilde{L}(T)$	H(T)
Valued at Time 1	<i>L</i> (1)	$\tilde{L}(1)$	H (1)
Valued at Time 0	<i>L</i> (0)	$\tilde{L}(0)$	H (0)

Original Dutch Approach (incl. Cairns and El Boukfaoui)

• SCR = 99.5% *T*-year VaR; based on L(T) - H(T)

Present Value at Time 0	Hedger's liability	Synthetic liability	Hedge payoff
Full runoff	L	$ ilde{L}$	
Valued at Time <i>T</i>	L(T)	$ ilde{L}(T)$	H(T)
Valued at Time 1	<i>L</i> (1)	$ ilde{L}(1)$	H(1)
Valued at Time 0	<i>L</i> (0)	$\widetilde{L}(0)$	H (0)
			and Faculty of Actuarie

Alternative

 95% VaR instead of 99.5% (approximately (?) the same as 1-year 99.5% VaR) (needs regulator engagement!)

• Full runoff: $L(\infty) - H(T) = L - H(T)$ instead of L(T) - H(T)

Present Value at Time 0	Hedger's liability	Synthetic liability	Hedge payoff
Full runoff	$L = L(\infty)$	\widetilde{L}	
Valued at Time T	L(T)	$\tilde{L}(T)$	H(T)
Valued at Time 1	<i>L</i> (1)	$ ilde{L}(1)$	H(1)
Valued at Time 0	<i>L</i> (0)	$ ilde{L}(0)$	H(0)
			225

Three Types of Basis Risk

- Population basis risk
 - Hedger's experience and synthetic index are not perfectly correlated
- Structural basis risk
 - Non-linear payoff => no risk reduction beyond DP or below AP
- Tail basis risk
 - Cashflows after maturity, *T*:
 - Depend on risk emerging before *T* and after *T*
 - Risks before *T* are (can be) hedged
 - Additional risks emerging after maturity, T, are not hedged

Three Types of Basis Risk: Stylised

Anatomy of a Hedging Calculation

11

lty ies

ılty ries

13

lty ies

ılty ries

(National) Population

Specific (Hedger's) Population

> lty ries 15 くきと くきと

16

lty ries

Capital Relief Calculation Summary

- Simulated L(T), H(T) => hedged distribution => capital relief
- In advance, discuss and agree with the regulator the following:
 - Break down the process into a series of manageable steps
 - Document all of these steps carefully
 - Document clearly all of the models being used in each step

Simulated Impact of Hedge at Time T

- Dutch insured lives dataset versus Dutch national mortality data
- Portfolio = mixture of deferred and immediate annuities
- Hedge: 10-year bull spread
- Case 1
 - AP=60% quantile of the synthetic liability
 - DP=95% quantile
- Case 2
 - AP=65% quantile
 - DP=99.5% quantile

AP = 60% Quantile; DP=95% Quantile

13 November 2018

- "Liability" => not the excess over the best estimate
- · Doesn't account for the hedge price or the mean payoff

Haircut as a Function of the Attachment and Exhaustion Quantiles


```
    Haircut = 1-
    Capital relief <u>with</u> pop basis risk /
Capital relief <u>with no</u> pop basis risk
```

• Size of haircut is very dependent on the detachment point only

0.20

0.15

0.10

0.05

0.00

 DP near 99.5% gives poor results: haircut >> 0.

Exhaustion Point Quantile

Further reading

- Paper:
 - Cairns, A.J.G., and El Boukfaoui, G. (2017)
 Basis Risk in Index Based Longevity Hedges: A Guide For Longevity Hedgers
 To appear in North American Actuarial Journal
 - <u>Available at:</u>
 - <u>www.macs.hw.ac.uk/~andrewc/ARCresources</u>
 - <u>www.actuaries.org.uk/ARC</u>

