Index-Based Longevity Hedging: Calculating Capital Relief

Andrew Cairns

Joint work with Ghali El Boukfaoui (formerly Soc. Gen.)

Life Convention, Liverpool, November 2018
Proposed Approach for Calculating Capital Relief:

• Open up communication lines with the regulator
• Establish which method for calculating SCR (and RM)
• Discuss with the regulator
• Document fully all mortality forecasting models
• Discuss with the regulator
• Run the SCR calculations with and without hedge
• Sensitivity and other robustness tests
• Discuss with the regulator
• Agree capital relief for time 0 and times 1, 2,…
Calculating the SCR Capital Relief

- \(L = PV \) of the full runoff: own liabilities
 - \(S(t, x) = \) survivor index for cohort aged \(x \) at time 0

- \(\tilde{L} = PV \) of the full runoff: synthetic portfolio of liabilities; depends on:
 - \(q_G(t, x) = \) general population mortality rates
 - \(ER(0, t, x) = \) experience ratios hard coded at time 0
 - \(\tilde{S}(t, x) = \) synthetic survivor index

Experience ratios =>
- \(E[S(t, x)] \approx E[\tilde{S}(t, x)] \)
- \(E[L] \approx E[\tilde{L}] \)
Values

- $L(0) \rightarrow L(1) \rightarrow L(T) \rightarrow L(\infty) = L$
- E.g. $L(T)$ = liability value given mortality experience up to T (point estimate)
- $\tilde{L}(0) \rightarrow \tilde{L}(1) \rightarrow \tilde{L}(T)$
- Hedge payoff $H(T) = h(\tilde{L}(T))$
- AP = Attachment Point
- DP = Detachment Point (or Exhaustion Point, EP)
"UK" approach

- SCR = 99.5% one-year VaR; based on $L(1) - H(1)$

<table>
<thead>
<tr>
<th>Present Value at Time 0</th>
<th>Hedger’s liability</th>
<th>Synthetic liability</th>
<th>Hedge payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full runoff</td>
<td>L</td>
<td>\tilde{L}</td>
<td></td>
</tr>
<tr>
<td>Valued at Time T</td>
<td>$L(T)$</td>
<td>$\tilde{L}(T)$</td>
<td>$H(T)$</td>
</tr>
<tr>
<td>Valued at Time 1</td>
<td>$L(1)$</td>
<td>$\tilde{L}(1)$</td>
<td>$H(1)$</td>
</tr>
<tr>
<td>Valued at Time 0</td>
<td>$L(0)$</td>
<td>$\tilde{L}(0)$</td>
<td>$H(0)$</td>
</tr>
</tbody>
</table>
Original Dutch Approach (incl. Cairns and El Boukfaoui)

- SCR = 99.5% T-year VaR; based on $L(T) - H(T)$

<table>
<thead>
<tr>
<th>Present Value at Time 0</th>
<th>Hedger’s liability</th>
<th>Synthetic liability</th>
<th>Hedge payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full runoff</td>
<td>L</td>
<td>\tilde{L}</td>
<td></td>
</tr>
<tr>
<td>Valued at Time T</td>
<td>$L(T)$</td>
<td>$\tilde{L}(T)$</td>
<td>$H(T)$</td>
</tr>
<tr>
<td>Valued at Time 1</td>
<td>$L(1)$</td>
<td>$\tilde{L}(1)$</td>
<td>$H(1)$</td>
</tr>
<tr>
<td>Valued at Time 0</td>
<td>$L(0)$</td>
<td>$\tilde{L}(0)$</td>
<td>$H(0)$</td>
</tr>
</tbody>
</table>
Alternative

- 95% VaR instead of 99.5% (approximately (?) the same as 1-year 99.5% VaR) (needs regulator engagement!)

- Full runoff: \(L(\infty) - H(T) = L - H(T) \) instead of \(L(T) - H(T) \)

<table>
<thead>
<tr>
<th>Present Value at Time 0</th>
<th>Hedger’s liability</th>
<th>Synthetic liability</th>
<th>Hedge payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full runoff</td>
<td>(L = L(\infty))</td>
<td>(\tilde{L})</td>
<td></td>
</tr>
<tr>
<td>Valued at Time (T)</td>
<td>(L(T))</td>
<td>(\tilde{L}(T))</td>
<td>(H(T))</td>
</tr>
<tr>
<td>Valued at Time 1</td>
<td>(L(1))</td>
<td>(\tilde{L}(1))</td>
<td>(H(1))</td>
</tr>
<tr>
<td>Valued at Time 0</td>
<td>(L(0))</td>
<td>(\tilde{L}(0))</td>
<td>(H(0))</td>
</tr>
</tbody>
</table>
Three Types of Basis Risk

• Population basis risk
 – Hedger’s experience and synthetic index are not perfectly correlated

• Structural basis risk
 – Non-linear payoff ⇒ no risk reduction beyond DP or below AP

• Tail basis risk
 – Cashflows after maturity, T:
 • Depend on risk emerging before T and after T
 • Risks before T are (can be) hedged
 • Additional risks emerging after maturity, T, are not hedged
Three Types of Basis Risk: Stylised
Anatomy of a Hedging Calculation

Don’t try to read the small print!
Capital Relief Calculation Summary

• Simulated L(T), H(T) => hedged distribution => capital relief

• In advance, discuss and agree with the regulator the following:
 – Break down the process into a series of manageable steps
 – Document all of these steps carefully
 – Document clearly all of the models being used in each step
Simulated Impact of Hedge at Time T

- Dutch insured lives dataset versus Dutch national mortality data
- Portfolio = mixture of deferred and immediate annuities
- Hedge: 10-year bull spread
- Case 1
 - AP=60% quantile of the synthetic liability
 - DP=95% quantile
- Case 2
 - AP=65% quantile
 - DP=99.5% quantile
• “Liability” => not the excess over the best estimate
• Doesn’t account for the hedge price or the mean payoff
• Haircut = 1-
 Capital relief \textit{with} pop basis risk / Capital relief \textit{with no} pop basis risk

• Size of haircut is very dependent on the detachment point only

• DP near 99.5% gives poor results: haircut $>> 0$.
Further reading

• Paper:
 Basis Risk in Index Based Longevity Hedges: A Guide For Longevity Hedgers
 To appear in *North American Actuarial Journal*
 – Available at:
 • www.macs.hw.ac.uk/~andrewc/ARCresources
 • www.actuaries.org.uk/ARC