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Abstract

In this study we aim to quantify the relationship between socio-economic status and
life expectancy and to identify combinations of socio-economic variables that are particu-
larly useful for explaining mortality differences between populations. We achieve this by
examining socio-economic variation in mortality experiences across small neighbourhoods
in England known as Lower Layer Super Output Areas (LSOAs). We then consider twelve
socio-economic variables that are known to have a strong association with mortality. We
estimate the relationship between socio-economic characteristics and mortality rates using
a random forest algorithm. Based on the resulting estimate we then create a new socio-
economic mortality index - the Longevity Index for England (LIFE). The index is con-
structed in a way that eliminates the impact of care homes that might artificially increase
mortality rates in LSOAs with care homes compared to LSOAs that do not contain a care
home. Using mortality data for different age groups we make the index age-dependent and
investigate the impact of specific socio-economic characteristics of the age-specific mortality
risk.

We compare the explanatory power of the LIFE index to the English Index of Multiple
Deprivation (IMD) as predictors of mortality. While we find that the IMD can explain
regional mortality differences to some extent, the LIFE index has significantly greater ex-
planatory power for mortality differences between regions.

Our empirical results also indicate that income deprivation amongst the elderly and em-
ployment deprivation are the most significant socio-economic factors for explaining mortality
variation across LSOAs in England.

Keywords: Socio-economics; Random forest; Mortality; Longevity; Lower Layer Super
Output Area

1 Introduction

It is well documented that there is a strong association between mortality and socio-economic
status. While this relationship has been known for many years the availability of more
granular data allows us to look more closely at the impact of socio-economic characteristics
on mortality. In recent years, there have been numerous studies on this relationship: Bennett
et al. (2015) discuss modelling life expectancies in different areas of England and Wales via
a Bayesian model with spatial effects; Raleigh & Kiri (1997) study trends in life expectancy
in relation to deprivation; Woods et al. (2005) describe mortality in England and Wales by
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deprivation and in each government office region (GOR) during 1998; Cairns et al. (2019)
identify different socio-economic groups in Denmark and model their mortality rates using
an affluence index; and Wen et al. (2021) explore mortality rates in populations identified by
deciles of the English Index of Multiple Deprivation (IMD). All of those studies documented
significant differences in mortality levels and mortality improvement rates between socio-
economic classes.

In this paper we develop a socio-economic mortality index that we call the Longevity
Index for England - LIFE. The LIFE index is designed to enable us to predict mortality
risk in small neighbourhoods across England relative to national mortality based on specific
socio-economic data for such neighbourhoods. In other words, the LIFE index models the
relative risk of dying within a small population in England as a function of certain socio-
economic variables. The index is created based on a regression analysis using a Random
Forest algorithm to estimate a non-parametric regression function.

We consider a total of twelve socio-economic factors that are known to be linked to
mortality. Many are domains or subdomains of the English indices of deprivation: in par-
ticular, the IMD – English Index of Multiple Deprivation. Those indices are constructed
and published by the Ministry of Housing, Communities & Local Government in the United
Kingdom. Others are derived from the 2011 national census. We are using the indices of
deprivation published in 2015, see Smith et al. (2015). The indices of deprivation provide
a score for small neighbourhoods, called LSOAs, in different domains of deprivation. An
LSOA is a Lower Layer Super Output Area - a small area in England with a population
of about 1,500 people. For the 2015 indices of deprivation, there were 32,844 LSOAs in
England.

Two of the twelve variables used to explain mortality in LSOAs are measuring the pro-
portion of an LSOA’s population that live in care homes. Since the existence of care homes
has the potential to artificially increase the mortality in an LSOA we adjust those variables
for the construction of the LIFE index.

In the empirical part of this paper we investigate the explanatory power of the LIFE index
in comparison to the English Index of Multiple Deprivation. We find that the LIFE index
is better able to explain regional differences in mortality than the IMD. This comparison
is based on the analysis of ADSMRs - age and deprivation standardised mortality rates.
We explain the construction of ADSMRs and show that large mortality differences between
regions remain unexplained when ADSMRs are based on the IMD. Applying LIFE-based
ADSMRs reduces those regional differences significantly indicating that the LIFE index
is better able to capture mortality related factors. We also study the impact of specific
predictors on LIFE scores. It turns out that old-age income deprivation is the most powerful
predictor of mortality amongst those considered.

As mentioned above the index is based on an application of the Random Forest algorithm
to estimate the non-parametric regression function linking mortality to the twelve predictors,
ses Breiman (2001) and James et al. (2013). This approach offers a high of flexibility, does
not require assumptions about the underlying relationship between predictive variables, and
we show that it is an effective tool for analysing large and complex mortality datasets.

The remainder of this paper is organised as follows. In Section 2 we describe the mortality
data and socio-economic data used in our study, and in Section 3 we introduce the LIFE
index. Section 4 provides an overview of the Random Forest method, and shows how it is
applied in the context of this paper. In this section we also study the performance of this
method for the data in our study. We then investigate the impact of different age groups on
the LIFE index ranks of LSOAs in Section 5 and compare the LIFE index to the IMD in
Section 6. We then apply the life index to study the distribution of low and high mortality
groups across urban and rural LSOAs in Section 7 and analyse the impact of individual
variables in Section 8. We return to a comparison of the LIFE index with the IMD in
Section 9 where we consider mortality rates in LIFE deciles and IMD deciles, and compare
ADSMRs based on the two indices. Our final conclusions are presented in Section 10.

2 Data

The data used in this paper are for England and have been sourced from the UK’s Office
for National Statistics (ONS). Further details can be found in Appendix A.1 and in Wen
(2022).

Socio-economic data and mortality data are available at a neighbourhood level called
Lower Layer Super Output Area (LSOA). An LSOA is a geographical unit that describes
a small neighbourhood with a population size of around 1, 600, and generally with a high
degree of socio-economic homogeneity within each LSOA. The number of LSOAs and their
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boundaries varies from time to time as populations change. This paper uses the revisions
based on the 2011 Census and there are N = 32, 844 LSOAs. The data described below are
available for each of the N LSOAs.

The specific data considered in our study are the following

• mid-year population estimates (exposure size) Eita by single LSOA i = 1, . . . , N , year
t and age a;

• death counts Dita by single LSOA i = 1, . . . , N , year t and age a;

• a vector of K predictive variables Xi = (Xi,1, . . . , Xi,K) for each LSOA i = 1, . . . , N .
These data are not year or age specific but describe socio-economic characteristics of
the entire population of an LSOA measured at a specific point in time. Details about
the predictive variables used in this study are provided in Section 2.2.

The mortality data, Eita and Dita, are available for calendar years 2001 to 2018 by single
year of age. As the total exposure in any individual LSOA is very small we will group ages
for the construction of the mortality index. In this study, we will focus on three age groups:
60-69, 70-79 and 80-89.

Note that the boundaries of some LSOAs have changed during our observation period
2001 to 2018. All data used in this study are based on LSOA boundaries used in the 2011
census.

2.1 Mortality data and relative risk

In this study, we model the relative mortality risk in an individual LSOA i ∈ {1, . . . , N}
compared to the average mortality in England. To define our measure of relative risk we
first define a baseline death rate mb

ta for year t and age a for the whole of England in the
usual way:

mb
ta =

∑N
i=1 Dita∑N
i=1 Eita

. (1)

The model will be fitted using data from years T and age range A. Without any addi-
tional information, the expected total number of deaths D̂0

i across all ages a ∈ A and years
t ∈ T in LSOA i is given by

D̂0
i =

∑
t∈T , a∈A

mb
taEita for all i = 1, . . . , N,

and we define the observed relative risk of death R0
i for an individual living in LSOA i as

the ratio of the actual number of deaths to the expected number of deaths in that LSOA,
that is,

R0
i =

∑
t∈T , a∈A Dita

D̂0
i

for all i = 1, . . . , N. (2)

With our definition, the realised relative risk R0 in any neighbourhood is a random
variable since the realised number of deaths is random. In the following we are interested in
modelling the conditional expectation of R0 given a vector of socio-economic characteristics.

Note that the relative risk R0
i is not age and year specific. However, as mentioned above,

we will calculate and model the relative risk using mortality data for different age ranges A
see Section 5 for details.

2.2 Socio-economic Characteristics

In Section 3 we will construct an index that explains differences in the mortality rates in
different LSOAs based on differences in their socio-economic characteristics. In Wen (2022)
a large universe of predictive variables for LSOA specific mortality rates were considered.
Based on findings there, we restrict our attention in this paper to twelve variables. They
are listed in Table 1. For further details including data sources, see appendix A.1.

The possible values of the first nine numerical variables x1, . . . , x9 in Table 1 are on very
different scales. For the purpose of visualisation, we standardise them to have mean zero
and variance one. Details of the standardisation procedure can be found in the appendix.

Variable x10 is a categorical variable representing the urban-rural class of an LSOA and
taking one of five values listed in Table 2.
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Predictive
Variable Description

x1 old age income deprivation
x2 employment deprivation (i.e. unemployment)
x3 proportion of the age-65+ population with no qualifications
x4 crime rate
x5 average number of bedrooms
x6 proportion of the population born in the UK
x7 wider barriers to housing (affordability, homelessness)
x8 employment/occupation: proportion in a management position
x9 proportion working more than 49h per week (ages 16-74)
x10 urban-rural classification
x11 proportion of population aged 60+ in a care home with nursing care
x12 proportion of population aged 60+ in a care home without nursing care

Table 1: Predictive variables used in our study to model the relative mortality risk, R0. Variables
x1, . . . , x9 are standardised using a N(0, 1) distribution function, x11 and x12 take values in [0, 1] and
x10 is a categorical variable taking one of five values explained in Table 2.

Urban/Rural (UR) class Definition

1 Urban conurbation (except London)
2 Urban city and town
3 Rural town and village
4 Rural hamlet and isolated dwellings
5 Urban conurbation (in London)

Table 2: Five categories for the urban-rural class (predictive variable X10).

In summary, the socio-economic characteristics of any neighbourhood are given as a
vector taking values in the K = 12 dimensional space

L0 = R9 × {1, . . . , 5} × [0, 1]2. (3)

Note, that our urban-rural class indicator x10 distinguishes between urban conurbation
in London and outside London. We have introduced that distinction as we found in previous
research that mortality rates in London are rather different from mortality rates in other
parts of England, see Cairns et al. (2021) and Wen (2022).

It is to be expected that the covariates in Table 1 are correlated. We report the empirical
correlations in table 3. We observe in Table 3 that there are some strong correlations, but

x1 x2 x3 x4 x5 x6 x7 x8 x9 x11 x12

x1 1 0.79 0.73 0.62 -0.7 -0.26 0.7 -0.69 -0.53 0.02 0.05
x2 0.79 1 0.77 0.57 -0.58 0.05 0.47 -0.8 -0.61 0 0.05
x3 0.73 0.77 1 0.47 -0.5 0.1 0.4 -0.83 -0.66 0.02 0.04
x4 0.62 0.57 0.47 1 -0.53 -0.34 0.61 -0.46 -0.38 -0.01 0.04
x5 -0.7 -0.58 -0.5 -0.53 1 0.21 -0.63 0.43 0.37 0 -0.03
x6 -0.26 0.05 0.1 -0.34 0.21 1 -0.59 -0.1 -0.01 -0.02 0.01
x7 0.7 0.47 0.4 0.61 -0.63 -0.59 1 -0.41 -0.28 0 0.01
x8 -0.69 -0.8 -0.83 -0.46 0.43 -0.1 -0.41 1 0.7 0.03 0
x9 -0.53 -0.61 -0.66 -0.38 0.37 -0.01 -0.28 0.7 1 0.02 0.02
x11 0.02 0 0.02 -0.01 0 -0.02 0 0.03 0.02 1 0.06
x12 0.05 0.05 0.04 0.04 -0.03 0.01 0.01 0 0.02 0.06 1

Table 3: Correlations between the covariates x1 to x11, see table 1 for details about the covariates.
Empirical correltions have been calculated using all LSOAs in England and Wales regardless of their
urban-rural classification. Note that x10 (urban-rural classification) is not included in the table.

we argue that none of the observed correlations is so strong that a variable should be
removed. We would also argue that there is no surprise in the correlation table: for example
x1 is positively correlated with x2, but negatively correlated with x5 and x8 meaning that
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the higher the level of income deprivation, the higher the level of employment deprivation
and the smaller are the houses, and the fewer are working in management positions. For
completeness we also report correlation tables for individual urban-rural classes in appendix
B. The general conclusions from those tables are similar to those obtained from correlations
across all LSOAs. However, correlations with the more-minor variables x3 to x9 do vary
more between different urban-rural classes.

3 The Longevity Index for England (LIFE)

As mentioned above, our aim is this paper is to construct an index that will explain the
expected relative mortality risk in any neighbourhood based on the socio-economic char-
acteristics of that neighbourhood. We call this index the Longevity Index for England,
hereafter, the “LIFE index”.

3.1 Modelling Relative Mortality Risk

As a starting point, we model the conditional expectation of the relative mortality risk R0

given characteristics x:
f(x) := E[R0|x] for any x ∈ L0 (4)

where x = (x1, . . . , xK) is the vector of predictive socio-economic variables taking values
in a K-dimensional space L0 of possible realisations of Xi. For the twelve variables in our
empirical study (see Table 1) L0 is the twelve dimensional space defined in (3).

To estimate the regression function f we will use a supervised machine learning algorithm
called a random forest, and we will denote this estimator of f by f̂RF. Details of the
estimation procedure are given in Section 4. Let us mention that other estimators for f
could be used. For example, Wen (2022) compares the random forest estimator with a local
linear regression estimator.

3.2 Care homes

When we construct the LIFE index as an estimator for the relative risk in any LSOA we
need to take into account that in our sample of LSOAs there are some with care homes and
some without care homes. Clearly, if a significant proportion of individuals in any LSOA
are living in a care home, then this will increase the mortality rate in that LSOA and,
therefore, increase the relative risk. However, this does not then properly reflect the main
socio-economic characteristics of the LSOA (x1, . . . , x10).

To offset this effect when constructing the LIFE index in the next section we will make
assumptions about the proportion of people living in a care home for any LSOA rather than
using the actual proportion of people living in care homes in that LSOA. In other words,
we are trying to answer the question: What would be the relative risk of dying in LSOA i
if we kept all socio-economic variables to the values observed in that LSOA, but changed
the proportion of people living in care homes to the average for the whole of England, or to
some other chosen value.

3.3 The LIFE index

Based on the discussion so far, we now define our Longevity Index for England as the value of
f for specific neighbourhoods using the socio-economic characteristics of this neighbourhood
but replacing the proportion of people living in care homes with the average for the whole
of England. More precisely, we define the LIFE index for LSOA i as

Ri = f(X̃i) with X̃i =
(
Xi,1, . . . , Xi,9, Xi,10, X̄11, X̄12

)
(5)

where X̄11 and X̄12 denote the average values of the proportion of an LSOA’s population
living in care homes with nursing and care homes without nursing, respectively. In replacing
the true with the mean values of X̄11 and X̄12 it is helpful to note from Table 3 that x11

and x12 have a very low correlation with other socio-economic variables. First, this implies
that care homes are not concentrated in neighbourhoods with particular socio-economic
characteristics. Second, the lack of correlation means that when we replace Xi,11 and Xi,12

with their mean values, we do not need to alter the values of other predictive variables to
compensate: that is, the presence of a care home does not artificially inflate or deflate an
LSOA’s other socio-economic, predictive variables.
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Note that the index could be constructed with other adjustments to the care home
variables. For example, we could choose to calculate the index based on setting Xi,10 =
Xi,11 = 0. That would also be a good choice to model the relative mortality risk of the
popoulation not living in care homes. However, we prefer the setting in (5) as we will use the
index to calculate life expectancies as a function of socio-economic characteristics. Setting
Xi,10 = Xi,11 = 0 would implicitly assume that no individuals will ever be in a care home,
which is, of course, not reasonable. Additionally, base mortality mb

ta incorporates excess
care home deaths, and so we prefer to reflect this also in the index values.

Let us mention that our index is based on the conditional expectation in (4) and therefore,
we can calculate the relative risk of dying for any values of the socio-economic variables, they
do not need to be those observed in a specific LSOA. In other words, we can calculate the
LIFE score for fictional neighbourhoods with specified socio-economic characteristics. This
allows us to investigate how sensitive the relative mortality risk is with respect to changes
in certain socio-economic variables. We will return to that point in Section 8.

From the construction of the LIFE index in (5) it is clear that the index is not explicitly
age specific. Instead, it is an index summarising the socio-economic characteristics of all
members of a small community regardless of their age. However, the LIFE index relies on
an estimate of the relative risk function f in (5) that links socio-economic characteristics to
death rates. The age range for death counts and exposures used to estimate the function f
will of course have an impact on the obtained LIFE index values. We will investigate this
further in Section 5.

4 Estimating the Relative Risk using the Random
Forest algorithm

As mentioned in Section 3 we can use a wide variety of nonparametric estimators for the
regression function f in (4). In this study we will use the random forest (RF) algorithm. As
this estimation step is at the heart of our index construction we will explain our approach
in detail.

4.1 Overview

Our RF algorithm consists of three stages. For each stage we use R (R Core Team (2021))
and the R package randomForest (Liaw & Wiener (2002)).

4.1.1 Stage 1

The purpose of the first stage is exclusively to choose certain hyperparameters - we provide
more details about the hyperparameters below. For this stage we split (randomly) our data
set, S = {1, . . . , N}, into two disjoint subsets:

• the training set, Strain ⊂ S contains LSOAs used to ”train” our model, that is, to
choose optimal parameters determining f̂RF, see below for details; and

• the validation set, Sval ⊂ S is the set of LSOAs used for model validation. In the
first stage, data in the validation set are used for selecting hyperparameters; again, we
explain details below.

Note that Strain ∩ Sval = ∅ and Strain ∪ Sval = S. The parameter optimisation for the
observations in the training set is repeated for each possible choice of hyperparameters. We
then select hyperparameters for which f̂RF produces the best fit for the observations in the
validation set, and those values are then fixed for the hyperparameters in the second stage.

4.1.2 Stage 2

In the second stage, we split our complete data set again into two subsets allocating LSOAs
randomly (and independent of the allocation in the first stage) to either:

• the training set, Strain ⊂ S containing LSOAs used to choose optimal parameters
determining f̂RF using the optimal hyperparameters determined in stage one; or

• the test set, Stest ⊂ S which is a subset of LSOAs that are only used for evaluating
how good our estimated function f̂RF (fitted to data in Strain) can predict the relative
risk in out of sample LSOAs.
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Using the values for the hyperparameters obtained in the first stage, we fit our estimator
f̂RF to the observations in our new training set and evaluate the goodness of fit using the
test set.

So, both stages follow the same idea, but in the first we refit f̂RF to the stage-one training
set many times to choose optimal hyperparamters, while in stage two f̂RF is fitted to the
stage-two training set only once to assess the out-of-sample goodness of fit.

In this paper we split the set of all N = 32, 844 LSOAs into two equally sized disjoint
sets to obtain a training set and a validation or test set in the two stages.

4.1.3 Stage 3

In the final stage of the estimation procedure we run the random forest algorithm with all
chosen hyperparameters for the full set of N = 32, 844 LSOAs to produce the final estimate
of the regression function f in (4) and obtain the LIFE index values from (5).

4.2 Fitting a single tree

A random forest consists of B > 1 regression trees also known as decision trees. We will here
briefly discuss how each tree is constructed as a crude estimator of the regression function f
in (4). In the next section we will then turn to combining many trees into a random forest.

For fitting an individual tree with index b ∈ {1, . . . , B} we only use a subset Sb of the
LSOAs in the training set Strain in both stages. The procedure for growing a tree is the
same for stages one and two. The choice of Sb is explained in Section 4.3.

Constructing an individual tree is an iterative procedure. We start with defining our
initial estimator f̂

(b)
0 as the average of all observed values of the relative risk R0 of the

LSOAs in the set Sb, that is,

f̂
(b)
0 (x) =

1

|Sb|
∑
i∈Sb

R0
i for all x ∈ L0

where |Sb| is the size of the data set Sb.
In the next step we choose one explanatory variable, say xk∗ , and a level l∗, and split

the initial node L0 into the two disjoint subsets:

Lb
1,1 = {x ∈ L0 : xk∗ < l∗} (6)

Lb
1,2 = {x ∈ L0 : xk∗ ≥ l∗} (7)

This procedure is now repeated but, in addition to choosing an explanatory variable xk∗

and a threshold level l∗, we also choose one of the sets (nodes) Lb
1,1 and Lb

1,2 which we then
split in the next step.

Starting with s = 1 and the two nodes defined in (6) and (7) we now apply the following
iterative procedure:

• Choose one subset Lb
s,j∗ (j∗ ∈ 1, . . . , s+1) out of the s+1 subsets formed by the first

s splits. Also, choose an explanatory variable xk∗ and a threshold l∗

• Split Lb
s,j∗ into two subsets and leave all other subsets unchanged.

With this procedure we have the following nodes available after s+ 1 splits:

Lb
s+1,j = Lb

s,j for j = 1, . . . , s+ 1, j ̸= j∗ (8)

Lb
s+1,j∗ = {x ∈ Lb

s,j∗ : xk∗ < l∗} (9)

Lb
s+1,s+2 = {x ∈ Lb

s,j∗ : xk∗ ≥ l∗} (10)

Equation (8) states that split s + 1 does not affect any nodes other than Lb
s,j∗ . Equations

(9) and (10) mean that all LSOAs with characteristics x in node Lb
s,j∗ for which xk∗ ≥ l∗

are put into a new node Lb
s+1,s+2 so that only those LSOAs with characteristics in Lb

s,j∗

and xk∗ < l∗ remain in that node and are then contained in Lb
s+1,j∗ after s+ 1 splits.

We now define the estimator f̂
(b)
s (x) of the regression function f in (4) obtained from

one tree b after splitting L0 into s+ 1 nodes as:

f̂ (b)
s (x) =

s+1∑
j=1

rjI(x∈Lb
s,j)

7



where rj is the average observed relative risk R0 for LSOAs Xi in node j, that is,

rj =
1∑N

i=1 I(Xi∈Lb
s,j)

N∑
i=1

I(Xi∈Lb
s,j)

R0
i for all j = 1, . . . , s+ 1.

As explained above, for each new split we need to choose an existing node Lb
s,j∗ , an

explanatory variable xk∗ and a threshold l∗. Those are chosen such that the fit of the new
estimator f̂

(b)
s+1(x) = f̂

(b)
s+1 (x; j

∗, xk∗ , l∗) to the observed values of the relative risk, R0
i for

i ∈ Sb, is optimised. More specifically, our choice minimises the residual sum of square

RSSb
s (j, xn, l) =

∑
i∈Sb

(
R0

i − f̂
(b)
s+1 (Xi; j, xn, l)

)2

(11)

(
j∗, n∗, l∗

)b
s
= argmin

j,n,l
RSSb

s (j, xn, l) (12)

Within the random-forest algorithm, for each split, rather than optimise over all p of the
predictive variables, we optimise over a subset ofm variables. This subset is chosen randomly
for each new split (see, for example, James et al. (2013)). The purpose of this is to increase
the variability and reduce the correlation between individual trees. Without restricting the
set of variables we find that trees are very similar. The parameter m is a hyperparameter,
and we explain its choice in Section 4.4.

Finally, we stop splitting nodes further as soon as any obtained node contains less than
M observations where M is another hyperparameter. In our empirical study we choose
M = 200 as that choice achieves a good balance between goodness of fit and overfitting.
Dı́az-Uriarte & Alvarez de Andrés (2006) provide a general discussion of the minimum
node size M , principles of choosing it, and examples on its potential impact on the model
performance and computation time. Wen (2022) has a more detailed discussion around M
in the specific context of modelling relative mortality risk at neighbourhood level using the
random forest algorithm, including its impact on the complexity of underlying trees and the
standard deviation of the outcomes produced by individual trees. Although the model’s out
of sample performance does not appear to be very sensitive to the choice of M , choosing M
to be 200 rather than, say, 5 or 50 significantly saves computation time without sacrificing
the predictive power of the random forest estimator in our application.

In Figure 1 we illustrate the construction of one tree using our data set of LSOAs. In this
example, only two variables are considered for potentially splitting nodes: old age income
deprivation, x1, and employment deprivation, x2. In total s = 5 splits have been performed
leaving us with s+ 1 = 6 nodes, and our estimator for f is given by

f̂
(b)
5 (x) =



0.7117 for x ∈ Lb
5,1 = {x : x1 < −0.418}

0.9830 for x ∈ Lb
5,2 = {x : −0.418 ≤ x1 < 0.351}

1.2070 for x ∈ Lb
5,3 = {x : 0.351 ≤ x1 < 1.06 and x2 < 0.701}

1.4470 for x ∈ Lb
5,4 = {x : 0.351 ≤ x1 < 1.06 and 0.701 ≤ x2}

1.5660 for x ∈ Lb
5,5 = {x : 1.06 ≤ x1 and x2 < 1.441}

1.8750 for x ∈ Lb
5,6 = {x : 1.06 ≤ x1 and 1.441 ≤ x2}

(13)
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Figure 1: The values of the piecewise constant regression tree f̂
(b)
5 (x) in (13) after five splits. Blue solid

lines show the boundaries of the six nodes. Red numbers are the estimated relative risk for all LSOAs
in each of the those nodes. Each of the gray dots represents the observed values of old age income
deprivation and employment deprivation for a single LSOA in the training set for this example.

In Figure 2 we show the order of the performed splits: the first three splits are all based on
x1 (old age income deprivation). Only after three splits using x1, two of the obtained nodes
are split using x2 (employment deprivation). This clearly shows, that for this example x1

has a higher explanatory power than x2 since splitting the early nodes in our tree according
to the old age income deprivation score reduces the residual sum of squares RSS more than
early splits with respect to employment deprivation would achieve.

Figure 2: A graphical representation of our example regression tree f̂
(b)
5 (x) in (13), and the residual sum

of squares, RSSb
s (11) as a function of the number of splits s for this tree.

To illustrate this specific example further we also report the residual sum of squares,
RSSb

s, in Figure 2. As expected, we find that the early splits result in the greatest reduction
of RSSb

s.
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4.3 Many trees form a Random Forest

Having seen how an individual regression tree is fitted to observations in a set Sb, we now
turn to describing how we choose the sets Sb and how we combine many trees to obtain our
final estimator f̂RF for the regression function f in (4).

For each tree b ∈ {1, . . . , B}, the set Sb is obtained by (see, for example, James et al.
(2013))

1. sampling randomly with replacement from the training data set Strain to obtain a
sample of the same size as Strain, and then

2. removing all duplicates from that sample.1

Repeating this procedure B times we obtain B subsets Sb ⊆ Strain of the training data set.
To introduce more randomness in the construction of the random forest estimator f̂RF

we also, as remarked before, restrict the predictive variables considered at each split in any
individual tree. Rather than choosing a predictive variable xk out of all p variables when
minimising the residual sum of squares RSSb

s in (11), we follow James et al. (2013) and
choose xk from a subset of m predictive variables. As mentioned in Section 4.2 this subset
of predictive covariates is randomly chosen for each split within each tree.

So, each tree b = 1, . . . B is fitted to a randomly chosen subset Sb of observations from
the training data set, and RSSb

s is optimised with respect to m randomly chosen predictive
variables. In this way we obtain a total of B regression functions f̂ (b). The number m of
predictive variables considered for each split of nodes is a hyperparameter and will be chosen
in stage one using cross-validation. As mentioned earlier, m is then fixed in stage two.

Our final random forest estimator f̂RF for the regression function f in (4) is obtained by
taking the average over all individual regression trees f̂ (b), that is,

f̂RF(x) =
1

B

B∑
b=1

f̂ (b)(x) for any x ∈ L0 (14)

Note that f̂RF is piecewise constant over the full range of values of x ∈ L0 as it is an average
over a finite number of piecewise constant regression tree functions f̂ (b). However, f̂RF can
take many more values compared to any individual tree f̂ (b).

4.4 Hyperparameter selection (Stage 1)

With the minimum node size, M = 200, fixed, the regression function f̂RF in (14) will
depend on two further hyperparameters: the number m of predictive variables considered
for each split, and the number of trees, B. Both of those parameters need to be chosen.
One could argue that we can also choose the size N train of the training set Strain, but, for
simplicity, we choose that set to include half of the available observations with the other
half being included in the validation set Sval in stage one. For the N = 32, 844 LSOAs in
our empirical study, we clearly have that both sets include N train = Nval = 16, 422 LSOAs.

The hyperparameters B and m are chosen in stage one in the following way: we fit
f̂RF = f̂RF

B,m to the data in the training set using different values for B and m. For each

combination (B,m) considered, we then evaluate the fit of the obtained estimate f̂RF
B,m to

the data in the validation set using the mean squared error as criterion.

MSE(B,m) =
1

Nval

∑
i∈Sval

(
R0

i − f̂RF
B,m(Xi)

)2
f̂RF
B,m(Xi)/D̂0

i

=
1

Nval

∑
i∈Sval

(
Di − D̂RF

i

)2
D̂RF

i

(15)

where Di = R0
i D̂

0
i =

∑
t,a Dita is the observed total number of deaths across all ages a and

years t in LSOA i, and D̂RF
i = f̂RF

B,m(Xi)D̂
0
i is the expected total number of deaths adjusted

with the fitted relative risk f̂RF
B,m(Xi) for LSOA i.

In Figure 3 we plot MSE(B,m) in (15) for different values of B (withm = 4) and different
values of m (with B = 2, 500). The figure shows that the out-of-sample performance of the
random forest is not worsening as more trees are grown, and we choose B = 2, 500 as we
think this will be a good compromise between computational effort and goodness of fit.
However, we find that considering m = 4 predicative variables in (11) leads to the smallest
mean squared error.

Table 4 summarises our choice of hyper-parameters

1If we generate a random sample of size n with replacement from a set also of size n, and then remove duplicates,
we are left with a sample with a random size and mean size equal to n(1− n−1)2 ≈ n(1− e−1) ≈ 0.632n.
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Figure 3: Validation MSE calculated following (15) and over LSOAs in the validation set Sva, of random
forest model trained using relative risk of England males aged 70-79, and with diffrent number of trees
B (left plot, with m set as 4) and different number of variables considered per split m (right plot, with
B set as 2, 500). The twelve predictive variables outlined in table 1 are used.

Parameter / hyperparameter Notation Value

Number of trees B 2, 500
Total number of variables p 12

Number of variables to consider per split m 4
Minimum size of terminal nodes (floor) M 200

Table 4: Settings of the final random forest model we use for creating the mortality index for England
males.

4.5 Goodness of Fit (Stage 2)

In order to assess the out-of-sample performance of the proposed random forest estimator
applied to the mortality data for the 32, 844 LSOAs, we move on to stage two as mentioned
in Section 4.1.

To this end, we randomly split the set of all 32, 844 LSOAs into two equally sized subsets:
the training set Strain (different from before) and the test set Stest. The training set Strain

chosen at this stage is a random sample of S and independent of the training set chosen in
stage 1. The sets Strain and Stest are disjoint and Strain ∪ Stest = S. We then construct an
estimator f̂RF using the data in Strain and the hyper-parameters in Table 4. To quantify
the goodness of fit of the obtained estimator f̂RF we evaluate its out-of-sample fit to data
in the test set by calculating the mean squared error as in (15) but now considering LSOAs
in the test set rather than the validation set, that is,

MSEtest =
1

N test

∑
i∈Stest

(
R0

i − f̂RF(Xi)
)2

f̂RF(Xi)/D̂0
i

(16)

Clearly, the realised values of MSEtest will depend on the randomly chosen LSOAs in Strain

and Stest. To get an idea of how sensitive the results are to the randomised choice of Strain

and Stest, we calculate MSEtest for three different splits (rounds) of our data into training
and test sets. The results are provided in table 5 for data based on different age ranges. We
find that there is not much variation in the values of MSEtest between rounds. We also see
that the goodness of fit of f̂RF is much better when it is estimated from mortality data at
younger ages.

Age Round 1 Round 2 Round 3 Overall

60-69 1.273 1.253 1.299 1.275
70-79 1.686 1.689 1.688 1.688
80-89 2.799 2.744 2.935 2.826

Table 5: Test set MSE of the proposed random forest model fitted to three randomly chosen training
sets (rounds) for data from different age groups. The applied hyperparameters are listed in table 4.
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4.6 Robustness

The rather small variation of the test set MSEs over different randomly chosen training sets in
Table 5 is an indication that the fitted relative risk, and therefore the LIFE index, is a robust
estimator of the true underlying relative mortality risk. To investigate robustness further
we now split the annual data for the observation period 2001 – 2018 into two subsets: data
for even years 2002, 2004, ... and data for odd years 2001, 2003, ... This split leaves us with
two subsets each consisting of nine years of observations. We chose to split the observation
period in this way to avoid any impact of potential trends in the relative mortality risk over
time.

We now apply the above methods to obtain estimates f̂RF(x) with data from only one
of the two observation subsets and then compare the results.

Figure 4: Estimated relative risk over 16, 422 LSOAs in Ste by random forest model trained using LSOAs
in Str and relative risks of the two year groups, R0,odd and R0,even. x-axis: model trained with odd
years; y-axis: model trained with even years. Left to right: relative risk of age 60-69, 70-79 and 80-89.

We present scatter plots of the estimated values of f̂RF(x) based on odd years (horizontal
axis) and even years (vertical axis) using mortality data for different age ranges in Figure 4.
The plots clearly show that the estimated values of the relative risk for individual LSOAs are
very similar when mortality data from different years are used, in particular, there seems to
be no systematic differences - this is further evidence that the results of our random forest
estimator are robust. Any variation we see is most likely due to sampling variation in the
deaths counts rather than systematic differences.

4.7 Final Index Values (Stage 3)

The hyperparameters have been chosen in stage 1 and goodness of fit and robustness assessed
in stage 2, and it has been concluded that the random forest algorithm has produced a good
estimate of f with the chosen parameters. In the final stage, we simply rerun the random
forest algorithm but, instead of using only half of the data, we use the full set of 32,844
LSOAs.

5 Fitting the LIFE index to different age groups

As mentioned in Section 3.3 the LIFE index is not directly age specific. However, its
estimated values do depend upon the specified age range, A, and the index values obtained
can be assumed to apply to either the whole of that age range or to the midpoint of that
range.

To investigate the effect of different age groups on the estimated LIFE index value, we
compare index values obtained from fitting f̂RF(x) to mortality data for three age groups:
60-69, 70-79 and 80-89. We report Q-Q-plots of the obtained index values Ri (Equation 5)
for all 32, 844 LSOAs in Figure 5.
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Figure 5: Percentiles of LIFE index values Ri compared between indices estimated from different age
groups over all 32, 844 LSOAs. Left: 60-69 vs. 70-79; Middle: 60-69 vs. 80-89; Right: 70-79 vs. 80-89.

Figure 5 shows a very strong dependency between the LIFE index for age groups 60-69
and 70-79 (left-hand plot). This dependency is slightly weaker when we compare the age
group 80-89 with the younger ages (a greater spread of points in the middle and right hand
plots) but the dependency is still strong. Wen (2022) found similar results for an index
constructed using local linear regression.
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Figure 6: Cumulative distribution function of the LIFE scores for all 32,844 LSOAs fitted to mortality
data for different age groups.

Empirical distributions of the Ri are plotted in Figure 6 for different age groups. We can
see that variation in relative mortality risk is greater for younger ages than older ages, an
observation that is consistent with previous research on socio-economic variation in mortality
in various populations (see, for example, Chetty et al. (2016), Mackenbach et al. (2003, 2015),
Wen et al. (2020) and Wen et al. (2021) and references therein).

6 The LIFE index versus the Index of Multiple De-
privation

The Index of Multiple Deprivation (IMD) is published by the Department for Communities
and Local Government in the UK (Smith et al. (2015)). The IMD is designed as a general
measure for deprivation. The LIFE index on the other hand has been produced specifically
as a measure of mortality deprivation with the aim to predict mortality differences between
LSOAs. We would expect the two indices to have a high rank correlation. To check this
hypothesis we plot the LIFE index values fitted to mortality data for ages 40 - 49, 60 - 69
and 80 - 89 vs the IMD scores in Figure 7. We also report Spearman’s rank correlations
between the LIFE index fitted to different age ranges and the IMD scores in Table 6.
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Age group 40-49 50-59 60-69 70-79 80-89
Correlation with IMD 0.941 0.932 0.917 0.896 0.836

Table 6: Spearman’s rank correlation of IMD and LIFE index values. The LIFE index has been fitted
to the mortality experience in different age groups.
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Figure 7: Scatterplot of LIFE index vs. IMD. The LIFE index is based on an estimated relative mortality
risk fitted to mortality data for ages 40 - 49 (top left), 60 - 69 (top right) and 80-89 (bottom). Colour
indicate the urban-rural class of an LSOA: conurbations (black), cities/towns (red), villages (green),
rural areas (dark blue) and London (light blue).

We find that the rank correlation is indeed high, in particular, when the LIFE index is
fitted to mortality data at younger ages, see Table 6. We also observe in Figure 7 that there
is a strong dependency between the scores of the two indices, but that there are some outlier
LSOAs with a rather low IMD score (little deprivation) and a rather high relative mortality
risk.

We did consider the outlier LSOAs, for example, for ages 60-69 in some detail. Individual
predictive variables for these LSOAs tended to be towards the tails of the data but not too
extreme, but, in higher dimensions, the vectors Xi for these LSOAs were clearly positioned
around the fringes of the cluster of observations for the 32,844 LSOAs. As with most
regression methods, estimates at the edges of a dataset do carry higher levels of uncertainty
that estimates in the middle of the dataset.

The colouring of the dots in Figure 7 reveals how significantly the inclusion of urban-
rural class has impacted on estimates of the relative risk compared to the IMD, particularly
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ages 40-49 and 60-69. In the upper plots, the dark blue dots representing very rural areas
are mostly shifted to the left of the main diagonal. This indicates that the inclusion of
urban-rural class in the random forest model estimates significantly lower mortality in these
rural areas than would be suggested by the IMD, which takes no explicit account of urban-
rural class. Indeed the IMD includes a subdomain called geographical barriers which counts
greater distance to services as meaning an area is more deprived. But in mortality terms
(at least at the macro scale) the opposite is true: larger, more-rural or otherwise less-dense
LSOAs have lower mortality even though one has to travel further for essential services.

The RF model also predicts lower mortality for London (light blue dots) than the IMD
predicts. In this case, the reason is less clear but needs further investigation: what is
missing in the IMD that is to the advantage of London and to the disadvantage of other
areas, particularly other conurbations and cities.

7 Distribution of Low and High Risk Groups across
Urban-Rural Classes

In this section we investigate if there are differences between urban-rural classes in the
number of low and high risk mortality populations. More specifically, we denote by qRα the
empirical α-quantile of the estimated relative risk R0 in all LSOAs, and we then define
four groups of LSOAs: the lower 5% and 50% quantile groups, and the upper 5% and 50%
quantile groups,

Gl
α :=

{
k : R0

k < qRα

}
and Gu

α :=
{
k : R0

k > qR1−α

}
for α = 0.05, 0.5 (17)

where qRα is the empirical α quantile of the fitted values R0
k.

Table 7 shows how urban-rural classes are distributed in each of those groups.

Relative Risk Rk fitted to ages 60 - 69
UR class all LSOAs Gl

0.05 Gu
0.05 Gl

0.5 Gu
0.5

1 7921 220 (2.8) 944 (11.9) 2681 (33.9) 5240 (66.2)
2 14515 734 (5.1) 610 (4.2) 7205 (49.6) 7310 (50.4)
3 3056 162 (5.3) 8 (0.3) 2216 (72.5) 840 (27.5)
4 2542 326 (12.8) 0 (0.0) 2444 (96.1) 98 (3.9)
5 4810 201 (4.2) 81 (1.7) 1876 (39.0) 2934 (61.0)

Total 32844 1643 (5.0) 1643 (5.0) 16422 (50.0) 16422 (50.0)
Relative Risk Rk fitted to ages 80 - 89

1 7921 223 (2.8) 597 (7.5) 2558 (32.3) 5363 (67.7)
2 14515 657 (4.5) 768 (5.3) 6979 (48.1) 7536 (51.9)
3 3056 129 (4.2) 86 (2.8) 1863 (61.0) 1193 (39.0)
4 2542 111 (4.4) 32 (1.3) 1926 (75.8) 616 (24.2)
5 4810 523 (10.9) 160 (3.3) 3096 (64.4) 1714 (35.6)

Total 32844 1643 (5.0) 1643 (5.0) 16422 (50.0) 16422 (50.0)

Table 7: Distribution of LSOAs across urban-rural classes for different subpopulations. The numbers
in brackets refer to the proportion (in %) of all LSOAs in a group that fall within an urban-rural class.
The subpopulation groups are defined in (17). See Table 2 for the definition of urban-rural classes. Note
that percentages do not always add up to 100% as the reported percentages have been rounded.

An interesting result in Table 7 is that out of the 2542 LSOAs that are classified as
rural hamlets and isolated dwellings (urban-rural class 4) none can be found in the high risk
group Gu

0.05 when the relative risk is fitted to mortality data for ages 60 to 69. Similarly,
only eight of the 3056 LSOAs in urban-rural class 3 are found in the high risk group. On the
other hand 11.9% of large conurbations outside London made it into the top 5% risk group
while only 1.7% of LSOAs in London are in that group. The data in Table 7 clearly show
the strong impact that the urban-rural class has on the estimated relative mortality risk
of an LSOA with the general conclusion that LSOAs in large cities tend to have a higher
mortality risk than LSOAs in rural areas. London is an exception for the very high risk
group but we also find that more than half (61%) of LSOAs in London have a mortality risk
greater than the median for England.
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The picture changes slightly when we consider the oldest age group, 80 to 89, in our
data set. However, the general conclusion seems to be unchanged: large cities have higher
mortality than rural areas.

8 Impact of Specific Variables

Since the LIFE index is based on a nonparameteric estimator of the regression function f in
(4) it is not straightforward to assess the impact of specific variables on the index value from
the sign or magnitude of specific parameters as is often possible for parametric regression
models. Instead, we study the values of f̂RF(x) for a certain range of covariate values where
we vary only some variables while leaving others constant.

In Wen (2022) it was found that employment and old age income deprivation are two of
the most significant predictors of mortality rates. We therefore focus on those two variables
first. We also include here x6 – the proportion of an LSOA’s population born in the UK
– as an example of a less important variable. Figure 8 shows the fitted relative mortality
risk as a function of those three covariates. In each of the plots, all variables except the
variable on the horizontal axis have been set to their median calculated across all LSOAs.
More specifically, for the first row in Figure 8 (old age income deprivation) the value shown
for LSOA i is calculated as:

f
(
Xi,1, X

50
2 , . . . , X50

11 , X
50
i,12

)
(18)

where x50 denotes the empirical 50% quantile of covariate x. We use a similar approach for
X2 and X6. This allows us to zoom in on the specific effect of one variable.
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Figure 8: Estimated relative risk as a function of income deprivation at old age (first row), employment
deprivation (second row) and the proportion of the population born in the UK (third row). In each
case other covariates (except the urban rural classification) are fixed to their median across all LSOAs.
The index is fitted to mortality data for ages 60 to 69 (left column) and ages 80-89 (right column), and
urban-rural classes are colour coded.

We can clearly see that old age income deprivation and employment deprivation have a
similar effect on the risk of dying with high levels of deprivation associated with high levels
of mortality. However, comparing the range of risk values (y-axis) we find that income
deprivation is a much better variable than employment deprivation to distinguish between
low and high risk LSOAs. This is particularly true when data for ages 60 to 69 are used
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to fit the relative risk function. Not surprisingly, old age income deprivation is still a good
variable to explain differences at the older ages 80 to 89, but employment in an LSOA has
little explanatory power for mortality differences in that age group.

Turning to x6 – the proportion of the population born in the UK – this variable has very
limited explanatory power (a narrow range of reltive risk values) when all other variables
are set to the median. Nevertheless, Wen (2022) has found that it is a variable that helps
the random forest algorithm to better predict observed mortality risk. While we find that
higher numbers of UK born residents seems to slightly increase mortality in an LSOA, this
effect is relatively small. We also observe in Figure 8 that the relative risk is below one for
all LSOAs. This is clearly a consequence of setting all other covariates to the median. The
relative risk values and our conclusions about x6 might change when other covariates are
set to different values rather than the median. Our proposed nonparametric estimation of
the relative risk would allow for such more detailed empirical studies but that is beyond the
scope of this paper. Also of note is the fact that the steep portion of both plots for x6 is well
to the left of the median (x6 = 0). A potential reason for this is how x6 interacts with other
predictive variables. It is only for the 20% lowest where there is a significant dependency
between x6 and other predictive variables. For the upper 80% of the distribution of x6 there
is very little dependency with other variables.

Finally, we conclude from Figure 8 that the impact of the three considered variables is
comparable in all five urban-rural classes.

The LIFE index has been constructed by keeping all variables at their observed levels
except the proportion of residents living in care homes, x11 and x12, see Section 3.3 for
details. To investigate further the impact of the three variables we now plot the values of
the LIFE index for all LSOAs as a function of one covariate in Figure 9.
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Figure 9: LIFE index scores as a function of income deprivation at old age (top left), employment
deprivation (top right) and the proportion of the population born in the UK (bottom). In contrast to
Figure 8 all covariates other than care home populations, x11 and x12, have been left at their observed
values. The index is fitted to mortality data for ages 60 to 69, and urban-rural classes are colour coded.

We find in Figure 9 that, as expected, there is a lot more fluctuation when the variabil-
ity from other covariates is not removed as in Figure 8. We can see that old-age income
deprivation has the strongest correlation with estimated relative mortality risk followed by
employment deprivation and, finally, there is no clear pattern linking the population born
in the UK to the relative risk. In each plot, the colour of each point shows the urban-rural
class. We can see that a London-effect is clearly visible: London has lower mortality as seen
from the plot on the top left, and London has also a relatively large population of people
born abroad which is clearly visible in the lower plot.

Finally, we consider the joint impact of two variables on the LIFE index. In Figure
10 we show heat plots of LIFE index values for ages 60-69 as functions of old age income
deprivation, x1, and employment deprivation, x2. All variables x3, . . . , x9, x11 and x12 are
set to their median and the three panels show urban-rural classes 1, 4 and 5 from left to
right. It is notable that, in all three cases, for less deprived LSOAs, the divisions between
bands of colour are nearly vertical indicating that old-age income deprivation is the main
driver of the LIFE index out of the two variables. However, as we move up the divisions
between colour bands gradually tilts indicating that there is more of a balance between the
two measures of deprivation in terms of their impact on the LIFE index. This then gives
a good indication of how the non-linear random forest algorithm is easily able to pick up
changes in the impact of different variables as we move across the dataset.
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Figure 10: Heatmaps of LIFE index values as a function of income deprivation at ages 65+ and employ-
ment deprivation. All other variables are fixed to the median. The left panel shows LSOAs in urban-rural
class 1 (7921 LSOAs), the middle plot shows results for 2542 LSOAs in class 4 (isolated dwellings) and
the right plot is for the 4810 LSOAs in London. The LIFE index is fitted to mortality data for ages 60
to 69.

9 Deciles of the LIFE Index

9.1 Relative Risk in Different Deciles

With the proposed LIFE index we can also zoom in on specific populations identified by
their mortality risk. For example, Figure 11 shows the LIFE index values where we only
consider the 10% of LSOAs with the lowest relative risk (left plot) and the 10% of LSOAs
with the highest relative risk (right plot).

More specifically, we introduce a decile function g which identifies the decile k for any
LSOA i with g(i) = k for k ∈ {1, . . . , 10}. The 10% of LSOAs with the highest mortality
risk are LSOAs i with g(i) = 1 and the LSOAs with the lowest relative risk have g(i) = 10.

The plots in Figure 11 clearly show that in both subpopulations the most important
variable to explain mortality differences is old age income deprivation while employment
deprivation has less impact.
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Figure 11: Heatmaps of observed relative risk values as a function of income deprivation at ages 65+
and employment deprivation. All other variables are unchanged. The LIFE index is fitted to mortality
data for ages 60 to 69. In the left plot only LSOAs with g(i) = 1 (highest relative risk) are shown and
for the right plot only LSOAs with g(i) = 10 (lowest) are used.

9.2 Explanatory Power of the LIFE Index

The LIFE index has been constructed with the aim to explain the mortality risk in an LSOA
based on socio-economic variables. Therefore, the question arises whether the LIFE index
can indeed differentiate between high and low mortality areas. Or, in other words, are the
socio-economic variables and the constructed index able to predict the relative mortality
risk in an LSOA. To investigate this we calculate age standardised mortality rates (ASMR)
and age and deprivation standardised mortality rates (ADSMR).

The ASMR for any population in year t is calculated as follows:

ASMRgt =

∑
a∈X mgtaE

s
a∑

a∈X Es
a

(19)
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where X refers to the age range used and mgta = Dgta/Egta is the crude death rate for the
underlying population g in year t for age a. The standard population Es

a used in our study
is the European Standard Population2 (ESP) in 2013.

To investigate how well the LIFE index can distinguish between different levels of mor-
tality, we split the set of all LSOAs into ten deciles as described above and plot the ASMRs
for each decile over time. We then compare our results to ASMRs calculated for deciles
obtained from the Index of Multiple Deprivation (IMD), see Wen et al. (2021). The results
are shown in Figure 12.
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Figure 12: ASMR by deprivation decile based on IMD scores (left) and LIFE scores (right) (log scale).
The LIFE index and the ASMRs have been calculated for age groups 60 – 69 and 80 – 89, see Figure 15
in the appendix for other age groups.

We can see in Figure 12 that the ten deciles obtained from either index, LIFE or IMD,
produce very different mortality rates. The figure also shows that the LIFE index leads to
a wider spread of mortality rates meaning that it is better than the IMD in identifying low
and high mortality on the basis of socio-economic variables. However, we must keep in mind
that the IMD was not designed to predict mortality while the LIFE index was chosen to do
so. We also find that both indices show a widening of mortality gap, the difference between
rates for the most deprived as compared to the least deprived. For the IMD we discussed
this issue in detail in Wen et al. (2021).

9.3 Explaining Regional Differences

While the LIFE index only uses information about socio-economic covariates, including an
urban-rural class, to predict the relative mortality risk in an LSOA it might be that LSOAs

2Report on ESP 2013 is available at: https://ec.europa.eu/eurostat/documents/3859598/5926869/KS-RA-13-
028- EN.PDF/e713fa79-1add-44e8-b23d-5e8fa09b3f8f, downloaded 24 June 2019
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in different regions in England have different mortality rates although they have the same
socio-economic characteristics.

To investigate this question further we group all LSOAs into nine geographical regions.
Table 8 lists the regions and shows the percentage of a region’s LSOAs that belong to the
risk groups defined in Section 7 for the LIFE index fitted to ages 60 to 69.

Region all LSOAs Gl
0.05 Gu

0.05 Gl
0.5 Gu

0.5

East 3614 197 (5.4) 59 (1.6) 2198 (60.8) 1416 (39.2)
East Midlands 2774 69 (2.5) 103 (3.7) 1442 (52.0) 1332 (48.0)

London 4835 205 (4.2) 81 (1.7) 1895 (39.2) 2940 (60.8)
North East 1657 35 (2.1) 180 (10.9) 557 (33.6) 1100 (66.4)
North West 4497 114 (2.5) 556 (12.4) 1832 (40.7) 2665 (59.3)
South East 5382 616 (11.4) 76 (1.4) 3531 (65.6) 1851 (34.4)
South West 3281 179 (5.5) 75 (2.3) 2040 (62.2) 1241 (37.8)

West Midlands 3487 107 (3.1) 234 (6.7) 1482 (42.5) 2005 (57.5)
Yorkshire 3317 121 (3.6) 279 (8.4) 1445 (43.6) 1872 (56.4)

total 32844 1643 (5) 1643 (5) 16422 (50) 16422 (50)

Table 8: Distribution of LSOA into regions for different subpopulation classes. The LIFE index has been
fitted to ages 60 to 69.

The table shows that 12.4% of the LSOAs in the North West of England belong to the
group of LSOAs with the 5% highest mortality risk, closely followed by the North East. The
lowest LIFE scores are observed in the South East with 11.4% of those LSOAs belonging to
the 5% English LSOAs with the lowest mortality risk. The results for other age groups are
very similar, and, therefore, not reported in this paper.

To obtain a more detailed picture of the regional differences we consider age standardised
mortality rates. The ASMRs by region for age 60 – 69 and 80 –89 can be seen in the Figure
13. We find that there are apparently substantial inequalities between regions, but how
much of that can be explained by differences in the socio-economic mix of the nine regions?
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Figure 13: ASMRs by region for mortality data for ages 60 – 69 and 80 – 89 (log scale). See Figure 16
in the appendix for other age groups.

To address this question we propose using what we call the Age and Deprivation Stan-
dardised Mortality Rate, ADSMR. In the same way that the basic ASMR removes differences
between populations that have different age profiles, the ADSMR is designed to remove the
impact of different deprivation profiles. Thus, the ADSMR in region r in year t is defined
as

ADSMRrt =
1

10

10∑
k=1

ASMRrkt (20)

where ASMRrkt is the ASMR in year t of all LSOAs in region r and index decile k. Deciles

22



are formed on the basis of the LIFE index values as described above, and, for comparison,
on an IMD basis.

Assuming that all mortality differences are explained by the LIFE (or IMD) index based
on socio-economic variables, the ADSMRs should be the same for different regions (since
ASMRrkt would be independent of r). In Figure 14 we plot ADSMRrt for the nine regions
where deciles have been obtained from using the IMD (left plots) and the LIFE index (right
plots).
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Figure 14: ADSMRs on the basis of IMD deciles (left) and LIFE deciles (right) where mortality data for
different age groups have been used (log scale). . See Figure 17 in the appendix for other age groups.

We clearly see that the purpose built LIFE index is better suited to explain mortality
differences between regions, resulting in much smaller differences in the ADSMR between
the regions than the IMD-based ADSMR. While this is true for both age ranges (and other
ranges as shown in Figure 17 in the appendix) it is for the oldest age group 80-89 that
the LIFE index can explain most of the differences between regions - the ADSMRs in the
bottom right plot are much more similar than in the bottom left plot. This can also be
observed for age 70-79, see Figure 17. The reason for the much better ability of the LIFE
index to explain differences between regions for higher age groups as compared to the IMD
might be the inclusion of old-age income deprivation in the LIFE index rather than general
income deprivation (which is one of the domains of deprivation used for the IMD).

Another interesting feature we observe in Figures 14 and 17 are the mortality improve-
ment rates in London which seem to be much greater than in other regions. Considering the
oldest age group 80-89 and measuring deprivation using the IMD suggests that mortality in
London improved significantly more than in other areas even after accounting for depriva-
tion and that this improvement continued after 2011 when other regions have experienced
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no or little improvements. However, measuring deprivation using the LIFE index changes
this conclusion. The ADSMRs for the nine regions are very close together and there is no
London-effect visible for this age range.

10 Summary and Conclusion

We have introduced a new mortality index, the Longevity Index for England (LIFE) that uses
socio-economic characteristics to explain mortality rates in individual LSOAs. The LIFE
index is constructed by first modelling the relationship between mortality and explanatory
variables as a non-parametric function and estimating that function using the random forest
method. In a second step, the resulting regression function is adjusted to account for inflated
death counts in LSOAs with care homes so that the LIFE index is a good representation of
the general population.

Using the random forest estimator of the relationship between socio-economic variables
and relative mortality risk we are able to study the impact of specific variables in isolation.
While we have only reported results for three covariates in this paper the proposed method
allows for a much more detailed analysis. However, our empirical results indicate that of all
the covariates considered it is old-age income deprivation which has the highest explanatory
power for mortality differences between LSOAs - the higher old-age income deprivation the
higher are the mortality rates in an LSOA.

Comparing the LIFE index with the widely used English Index of Multiple Deprivation
shows that the LIFE index is more able to explain regional variations in mortality with
deprivation measures than the IMD. However, keeping in mind that the IMD has not been
constructed with reference to relative mortality risk, we find that it actually is a good pre-
dictor for mortality differences. Nevertheless, for any application with the goal of explaining
mortality differences between different geographic locations in England the LIFE index is
more suitable than the IMD.
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A Data - Details, Sources and Standardisation

A.1 Mortality Data

For the exposure data, Eitx, we used mid year population estimates by single LSOA and
single year of age, which are available for the years 2001 to 2019 at:

- Office for National Statistics, 2020, Lower layer Super Output Area population esti-
mates (supporting information), [data collection], Accessed 11 September 2020. Avail-
able from: https://www.ons.gov.uk/peoplepopulationandcommunity/popu
lationandmigration/populationestimates/datasets/lowersuperoutputareamidyear
populationestimates

The LSOA-specific number of deaths at single years of age during the years 2001 to 2018
are also available on the ONS website:
Deaths registered during 2001 to 2016:

- Office for National Statistics, 2017, Deaths by lower super output area, age and sex:
England and Wales, 2001 to 2016, [data collection], Accessed 10 December 2017. Avail-
able from: https://www.ons.gov.uk/peoplepopulationandcommunity/
birthsdeathsandmarriages/deaths/adhocs/007807deathsbylowersuperoutputarea
ageandsexenglandandwales2001to2016

Deaths registered in 2017:

- Office for National Statistics, 2018, Number of deaths registered in each Lower Super
Output Area by sex and age, deaths registered in 2017, [data collection], Accessed 20
November 2018. Available from: https://www.ons.gov.uk/peoplepopu
lationandcommunity/birthsdeathsandmarriages/deaths/adhocs/009235numberof
deathsregisteredineachlowersuperoutputareabysexandagedeathsregisteredin2017

Deaths registered in 2018:

- Office for National Statistics, 2019, Deaths by Lower level Super Output Area (LSOA),
England and Wales, 2018 registrations, [data collection], Accessed 02 December 2019.
Available from: https://www.ons.gov.uk/peoplepopulationand
community/birthsdeathsandmarriages/deaths/adhocs/10829deathsbylowerlevel
superoutputarealsoaenglandandwales2018registrations

A.2 Individual Data sets for Predictive Variables

Old age income deprivation x1: income deprivation affecting older people index (IDAOPI),
see https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015, File
3: supplementary indices - income deprivation affecting children index and income de-
privation affecting older people index

Employment deprivation x2: subdomain “employment deprivation” of the IMD, see
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015, File 2:
domains of deprivation

Education deprivation x3: subdomain “Education, Skills and Training Deprivation” of
the IMD, see
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015, File 2:
domains of deprivation

Crime rate x4: subdomain ”crime” of the IMD, see
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015, File 2:
domains of deprivation

Average number of bedrooms x5: The average number of bedrooms in a household’s
accommodation. DOI: http://dx.doi.org/10.5257/census/aggregate-2011-2

Proportion of population born in the UK x6: The proportion of usual residents that
were born within the UK in an LSOA, calculated by dividing the number of UK-born
residents by the total number of residents.
See https://www.nomisweb.co.uk/census/2011/ks204ew

Deprivation in housing/living environment x7: This is the index for the“Wider Bar-
riers Sub-domain” of the IMD domain “Barriers to Housing and Services”, see
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2015, File 4:
sub-domains of deprivation
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Proportion in management position x8: The proportion of usual residents that are in
a managerial role (including both lower and higher management) at work, using the
NS-SEC classification (split by age groups is also available). Unemployed and full-time
students are included. DOI: http://dx.doi.org/10.5257/census/aggregate-2011-2

Proportion working more than 49h per week x9: This is the proportion of full time
workers (males and females) who worked more than 49 hours in the week before the
2011 census, out of all usual residents aged 16 to 74 in employment in an LSOA in the
same week, see, https://statistics.ukdataservice.ac.uk/dataset/age-hours-worked-2011

Urban-Rural classification x10: This is the level of urbanization following the 4-class
rural/urban classification in the 2011 Census. We have added a fifth class for LSOAs
in London. For LSOA-level data and guidance on the classification, see
https://www.ons.gov.uk/methodology/geography/geographicalproducts /ruralurban-
classifications/2011ruralurbanclassification

Proportion of those aged 60+ in care homes with nursing x11: This is the propor-
tion of residents aged 60 and above that live in a care home with nursing services (0
for LSOAs without care homes). The data have been provided to the authors by the
ONS and, to the best of our knowledge, are not publicly available.

Proportion of those aged 60+ in care homes without nursing x12: This is the pro-
portion of residents aged 60 and above that live in a care home without nursing services
(0 for LSOAs without care homes). The data have been provided to the authors by
the ONS and, to the best of our knowledge, are not publicly available.

A.3 Standardised Data

In order to prevent the modelling outcome from being distorted by the different scales of
different predictive variables, we standardise x1, . . . , x9 in Table 1 to be consistent with a
standard normal distribution.

Denoting the original variable by Ai we define xi as follows:

ui =
rank(Ai)

N + 1
uniformized variables (21)

xi = ϕ−1(ui) normalized to N(0,1)

where ϕ is the distribution function of the standard normal distribution and N is the number
of LSOAs.

B Correlation of Covariates by Urban-Rural Class

x1 x2 x3 x4 x5 x6 x7 x8 x9 x11 x12

x1 1 0.8 0.8 0.58 -0.61 -0.22 0.72 -0.79 -0.63 0.04 0.05
x2 0.8 1 0.79 0.56 -0.56 0.03 0.52 -0.8 -0.65 0.01 0.02
x3 0.8 0.79 1 0.51 -0.56 0.02 0.57 -0.84 -0.66 0.04 0.03
x4 0.58 0.56 0.51 1 -0.45 -0.25 0.54 -0.55 -0.39 0.03 0.05
x5 -0.61 -0.56 -0.56 -0.45 1 0.01 -0.54 0.49 0.4 -0.01 -0.02
x6 -0.22 0.03 0.02 -0.25 0.01 1 -0.49 0.01 0 -0.01 -0.04
x7 0.72 0.52 0.57 0.54 -0.54 -0.49 1 -0.61 -0.43 0.02 0.03
x8 -0.79 -0.8 -0.84 -0.55 0.49 0.01 -0.61 1 0.72 0.01 0.02
x9 -0.63 -0.65 -0.66 -0.39 0.4 0 -0.43 0.72 1 0.03 0.05
x10 0.04 0.01 0.04 0.03 -0.01 -0.01 0.02 0.01 0.03 1 0.06
x11 0.05 0.02 0.03 0.05 -0.02 -0.04 0.03 0.02 0.05 0.06 1

Table 9: Correlations for urban-rural class 1.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x11 x12

x1 1 0.81 0.77 0.63 -0.72 -0.1 0.68 -0.77 -0.53 0.02 0.09
x2 0.81 1 0.76 0.63 -0.64 0.14 0.54 -0.81 -0.53 -0.02 0.06
x3 0.77 0.76 1 0.52 -0.57 0.15 0.5 -0.84 -0.6 0.01 0.04
x4 0.63 0.63 0.52 1 -0.52 -0.16 0.57 -0.57 -0.36 -0.02 0.07
x5 -0.72 -0.64 -0.57 -0.52 1 0.06 -0.62 0.54 0.41 0 -0.07
x6 -0.1 0.14 0.15 -0.16 0.06 1 -0.37 -0.14 -0.02 -0.04 -0.01
x7 0.68 0.54 0.5 0.57 -0.62 -0.37 1 -0.54 -0.31 0.01 0.06
x8 -0.77 -0.81 -0.84 -0.57 0.54 -0.14 -0.54 1 0.64 0.05 0.01
x9 -0.53 -0.53 -0.6 -0.36 0.41 -0.02 -0.31 0.64 1 0.06 0.06
x10 0.02 -0.02 0.01 -0.02 0 -0.04 0.01 0.05 0.06 1 0.07
x11 0.09 0.06 0.04 0.07 -0.07 -0.01 0.06 0.01 0.06 0.07 1

Table 10: Correlations for urban-rural class 2.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x11 x12

x1 1 0.8 0.76 0.37 -0.75 0.26 0.55 -0.75 -0.41 0.05 0.13
x2 0.8 1 0.72 0.44 -0.69 0.41 0.46 -0.82 -0.51 0 0.07
x3 0.76 0.72 1 0.37 -0.61 0.41 0.39 -0.83 -0.52 0.03 0.08
x4 0.37 0.44 0.37 1 -0.31 0.04 0.36 -0.39 -0.17 0.03 0.05
x5 -0.75 -0.69 -0.61 -0.31 1 -0.21 -0.55 0.68 0.44 0.01 -0.07
x6 0.26 0.41 0.41 0.04 -0.21 1 -0.11 -0.45 -0.4 -0.05 -0.02
x7 0.55 0.46 0.39 0.36 -0.55 -0.11 1 -0.46 -0.1 0.04 0.07
x8 -0.75 -0.82 -0.83 -0.39 0.68 -0.45 -0.46 1 0.52 0.01 -0.05
x9 -0.41 -0.51 -0.52 -0.17 0.44 -0.4 -0.1 0.52 1 0.02 0.03
x10 0.05 0 0.03 0.03 0.01 -0.05 0.04 0.01 0.02 1 0.05
x11 0.13 0.07 0.08 0.05 -0.07 -0.02 0.07 -0.05 0.03 0.05 1

Table 11: Correlations for urban-rural class 3.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x11 x12

x1 1 0.66 0.68 0.13 -0.63 0.27 0.32 -0.63 -0.33 0.04 0.1
x2 0.66 1 0.6 0.19 -0.62 0.39 0.21 -0.67 -0.37 0 0.08
x3 0.68 0.6 1 0.14 -0.6 0.45 0.11 -0.69 -0.37 0.06 0.09
x4 0.13 0.19 0.14 1 -0.09 -0.11 0.17 -0.05 -0.14 0.02 0.02
x5 -0.63 -0.62 -0.6 -0.09 1 -0.33 -0.33 0.64 0.46 0.01 -0.01
x6 0.27 0.39 0.45 -0.11 -0.33 1 -0.19 -0.44 -0.17 -0.04 0
x7 0.32 0.21 0.11 0.17 -0.33 -0.19 1 -0.24 -0.11 0 0
x8 -0.63 -0.67 -0.69 -0.05 0.64 -0.44 -0.24 1 0.25 0.04 -0.01
x9 -0.33 -0.37 -0.37 -0.14 0.46 -0.17 -0.11 0.25 1 -0.01 -0.04
x10 0.04 0 0.06 0.02 0.01 -0.04 0 0.04 -0.01 1 0.06
x11 0.1 0.08 0.09 0.02 -0.01 0 0 -0.01 -0.04 0.06 1

Table 12: Correlations for urban-rural class 4.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x11 x12

x1 1 0.76 0.6 0.53 -0.64 -0.52 0.8 -0.52 -0.35 -0.01 0
x2 0.76 1 0.71 0.5 -0.45 -0.26 0.66 -0.73 -0.56 0 0.01
x3 0.6 0.71 1 0.36 -0.26 -0.04 0.44 -0.75 -0.65 0.01 0.01
x4 0.53 0.5 0.36 1 -0.31 -0.3 0.49 -0.34 -0.24 -0.04 0.01
x5 -0.64 -0.45 -0.26 -0.31 1 0.19 -0.6 0.11 0 0 0
x6 -0.52 -0.26 -0.04 -0.3 0.19 1 -0.64 0.31 0.23 0 0.03
x7 0.8 0.66 0.44 0.49 -0.6 -0.64 1 -0.54 -0.35 0 0
x8 -0.52 -0.73 -0.75 -0.34 0.11 0.31 -0.54 1 0.83 0.02 0.03
x9 -0.35 -0.56 -0.65 -0.24 0 0.23 -0.35 0.83 1 -0.01 0.01
x10 -0.01 0 0.01 -0.04 0 0 0 0.02 -0.01 1 0.03
x11 0 0.01 0.01 0.01 0 0.03 0 0.03 0.01 0.03 1

Table 13: Correlations for urban-rural class 5.
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C ASMR and ADSMR

C.1 ASMR using European Standard Population

For the age range relevant to our study, the European Standard Population (ESP) is given
for five year age groups: 40 – 44, 45 – 49, etc. We therefore modify the general formula in
(19). We first obtain observed death rates m̃gta for five year age groups:

D̃gta = Dgta +Dgt,a+1 + ...+Dgt,a+4 for a = 40, 45, . . . , 85

Ẽgta = Egta + Egt,a+1 + ...+ Egt,a+4 for a = 40, 45, . . . , 85

m̃gta = D̃gta/Ẽgta

We then apply (19) to m̃gta with X ⊆ {40, 45, 50, . . . , 85} and the standard exposures Es
a

referring to age group [a, a+ 4].

C.2 ASMR by IMD and LIFE Deciles and Age Group
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Figure 15: ASMR (log scale) by deprivation decile based on IMD scores (top) and LIFE scores (bottom).
The LIFE index and the ASMRs have been calculated for age groups 40 – 49, 50 – 59 and 70 – 79, see
Figure 12 for other age groups.
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Figure 16: ASMRs by region for mortality data for ages 40 – 49, 50 – 59 and 70 – 79 (log scale). . See
Figure 13 for other age groups.
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C.4 ADSMR by Region and Age Group

In addition to Figure 14 we provide the ADSMRs for three further age groups. An interesting
feature is that the ADSMRs for the youngest age group 40 – 49 are very flat except for
those in London indicating very low mortality improvement rates outside London. We also
find that the results based on IMD deciles and LIFE deciles are more similar for younger
populations showing that the LIFE index is better able to explain mortality differences with
socio-economic factors for older ages. This might be due to the lower number of deaths at
young ages leading to more fluctuations in the observed relative risk at those ages.
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Figure 17: ADSMRs on the basis of IMD deciles (top) and LIFE deciles (bottom) where mortality data
for different age groups has been used (log scale). The ADSMRs for ages 60 – 69 and 80 – 89 are shown
in Figure 14.
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