Risk Management

8: Market Risk Measurement and Management |

Reading:
o Study Note on Stochastic Volatility
o McNeil et al. Chapters 3 and 4
o Moody's Analytics: Model Validation
o Study Note on Model Validation




o Unit 8.1: Introduction
o Unit 8.2: Testing for independence

o Unit 8.3: Stochastic volatility and GARCH
models




Unit 8.1: Introduction
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Types of Market Risk

The risk of losses in positions arising from
movements in market prices.

o Interest rate risk (Ch. 10)

o Factors driving equity prices

o Foreign exchange

o Commodity

o Credit spreads: credit risk risk premium, illiquidity premium
(*)

o etc.

(*) = excludes premium for expected credit losses
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Key situations involving market risk

e Banking
o derivatives desk
o FX
o interbank lending
e Insurer
o investment of reserves
o investment-linked savings contracts
contracts with guarantees
o non-investment-linked contracts
e Investment trusts; Mutual funds; Hedge funds

o terms of reference
o risk tolerances, limits
o basis risk for passive funds
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Example: Analysis of S&P500 Returns

o Time unit = 1 trading day (about 252 per year)
o 0(t) = log return on index from t — 1 to t:

=%latt—1 — $90) at ¢,

o What model for §(t)?
o R(t) =0(1)+6(2)+ ...+ d(t) = log return from O to t:
$1attime0 — $ eR® at time ¢

o What model for R(t)?




Historical Data

S&P 500 Index

o
o
IS]
I
~ 8
L B
[]
Q
2]
=)
g 8 4
=
&
s 8
£ S
o
s}
[>T
N
T T T T T T

1950 1960 1970 1980 1990 2000 2010

Year

Andrew Cairns Risk Management 7/43



Model building & selection flow chart
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Stochastic Volatility

Stylised facts

© Returns are leptokurtic and heavy tailed.

@ Returns are not i.i.d., although autocorrelation is
low.

@ Squared returns have significant autocorrelation.

@ Volatility appears to vary over time.

@ Extreme returns appear in clusters.




Hypothesis Tests and Graphical Diagnostics

o Formal statistical analysis e.g.
o Hypothesis tests
o Numerical model selection criteria (e.g. Bayes
Information Criterion)
o Graphical diagnostics
o Range of graphics that explore the raw data and
processed data under a particular hypothesis
o Each graphic should exhibit certain characteristics if
the hypothesis is true (e.g. if you have chosen a good
model)
o Wrong characteristics = pointers to an alternative,
better hypothesis or model
o Graphical diagnostics will sometimes reveal issues that
formal tests do not
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raphical Diagnostic: Daily Log Returns

S&P Daily Log Returns (1950-2018)
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re the o(t) i.i.d.? versus Clusters of Extremes

S&P Daily Log Returns (1950-2018)

Daily Log Return
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e Know the main types of market risk

e Show an understanding of the basic properties of a
financial time series

o Know the stylised facts that apply to most financial time
series

e Use a time series plot of daily log returns and know how
to interpret it including visual evidence for stochastic
volatility
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Unit 8.2: Testing for Independence
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Testing for non independence:
The autocorrelation function

o Data: §(t) fort=1,...,n
o k =lag

o Autocorrelation function:
p1(k) = cor(5(t), 5(t+k)> (unconditional
correlation)

o If the 0(t) are i.i.d. then py(k) =0 for all k >0

o If empirical p1(k) ~ 0 = consistent with i.i.d.
hypothesis but does not prove i.i.d. hypothesis

o Also look at pa(k) = cor(5(t)2, o(t + k)? )




Graphical Diagnostic: Autocorrelation Function

rhol(k): ACF of delta(t) rho2(k): ACF of delta(t)"2
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Exceedances above a high threshold

o Data: §(t) fort=1,...,n
o g = empirical 95% quantile of the §(t)
o Ty = first time that §(t) > ¢

o I, = second time ...

T,» = final time that 6(t) > g




Example: ldentification of Exceedance Times
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Distribution of Interexceedance Times

o g = 95% quantile implies
o # exceedances ~ n/20
o E[Ty — Ty_1] ~ 20
o Hp: 9(t) are i.i.d.
o Hy: 6(t) are not i.i.d.
o Hy true = (T, — T1), (T3 — Tp),... are
independent and
Ti — Tx_1 has a Geometric distribution

eFork=1,.... m—1,
Pr(Tii1i— T = s)=(1—p)pstfors>1,
p = 0.95




Graphical Diagnostic: Histogram

Histogram of S&P 500 Interexceedance times
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Graphical Diagnostic: QQ plot

QQ-Geometric Plot

Sample quantiles
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Theoretical quantiles: from Geometric(0.05)
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Digression: QQ plot construction

@ Data: X;:i=1,...,n

@ Rank the data: X(;) < X(2) < ... < Xy

e F(x) = fitted cumulative distribution function
@ Fori=1,...,n define

1
=3

up =

n
an evenly spaced sequence filling up (0, 1).

@ Fori=1,...,n define
Yi) = FU (u;)

the u; quantile of the random variable with CDF F(x).
e The QQ plot is a scatterplot of (Y(;, X)) for i =1,...,n.

o If the CDF F(x) represents a good fit, then the QQ plot should look
reasonably linear along the diagonal y = x.
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Preliminary Conclusions

o Very strong evidence that daily log returns are
not i.i.d.
o Graphical diagnostics (several)

o do not support i.i.d. hypothesis
o extended periods of high and low volatility
o clusters of extremes (+ve and —ve)

o Possibly stochastic volatility

o Next steps: find a potential model for stochastic
volatility that fits the observed pattern




e Show how the autocorrelation function can be used to test
for independence or not

o Show how analysis of interexceedance times can be used
to test for independence or not

e Summarise all of the potential graphical diagnostics for
independence of returns

e Show how autocorrelation plots and analysis of
interexceedance times leads to the conclusion that
financial returns exhibit volatility clustering
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Unit 8.3: Stochastic Volatility and GARCH Models




Stochastic Volatility: GARCH Models

Generalised Auto-Regressive Conditionally Heteroscedastic
o §(t) = daily log return with mean p
o Define X(t) = d(t) — p.
Let Z(1),Z(2),...1.id., E[Z(t)] =0, Var[Z(t)] =1
GARCH(p, q) model =

X(t) = o(t)Z(t)

o(t)? = o+ Za,-x(t — i+ Bio(t—j)

j=1

e g >0

ea; >0fori=1...,p
o i >0forj=1,...,q.




GARCH(1,1)

X(t) = a(t)Z(t)
o(t)? = ap+arX(t—1)+ Bio(t — 1)
= oo+ (alz(t —1)%+ Bl>a(t —1)?

o Eflog(c1Z(t —1)? + f31)] < 0 = strictly stationary.

e a7 + 81 < 1 = covariance stationary
Var[X(t)] = Cko/(]. — Q1 — ﬁl)




Maximum Likelihood Estimation

e ) = parameter vector
° 0'(1)
e (o, (0, 617 2
o ¢ = density of Z(t) parameters (s.t. mean 0, Var. 1)

o §(t) i.i.d. = Likelihood is

L(6;6) =[] F(5(2):0)

t=1




Likelihood for non-i.i.d. d(t)

L(6;0) = f(6(1),...,8(T)|0)

Additionally:

f(0(t)|0(1),...,0(t —1),0) = F(6(t)|o(t), w, @)
and o(t) depends on (1), ag, v, 1, p and §(1),...,0(t — 1)




Full MLE

o 0(1) is a parameter to be estimated
o o(t)> =g+ (1 Z(t —1)> + B1)o(t — 1)

L(0;5) = F(6(1)|o(1)) x F(5(2)|(2)) x ...
xf(6(T)|e(T))

o What is the density of 0(t)|o(t)?

Recursive calculations:
o = (0(1), o, 1, B, )
0 Z,(1) = (5(1) — 1)/ou(1)
e Fort=223,...,m
o 0u(t)? =g+ (1 Zy(t — 1)> + B1)o,(t — 1)?

0 Z,(t) = (5(t) — m)/ou(2)




Full MLE

tﬁl% ( i(r)ﬂ”b)

o h(z) = density of i.i.d. Z(t)

o ¢ = parameters of h(z) subject to E[Z] =0, Var[Z] =1
o ¢ = (o(1), ao, a1, B1, )

o 0= (¢, 0)




Quasi Maximum Likelihood

Five steps:

o Estimate g, a1, 41 (and p,o(1))
as if Z(t) ~ N(0,1)
o Extract i and 5,(t) for t = 1,2, ...
o Calculate the volatility standardised residuals, Z(t)

o Find the “correct” distribution for Z(t)
= correct density h(z)

o Then carry out full MLE with the updated h(z)




S&P500 Data from 1/1980 to 1/2018

o 9597 observations of J(t)

o Pre-whitening:
Quasi maximum likelihood = Z(1),...,Z(T).
QML: estimated GARCH(1,1) parameters:

Go =1.442x107%, &; = 0.0839, /; = 0.9045.
(1) = 0.01083, i = 0.0005715.

o VE(E7] = /o/(1 — &1 — Bu) = 0.01115

(per trading day)




The Fitted Volatility o(t)

Daily Log Return
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Standardised Residuals, Z(t)

S&P Daily Std Residuals, Z(t) (1980-2018)
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Autocorrelation Functions for Z(t)

rhol(k): ACF of Z(t) rho2(k): ACF of Z(t)"2
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Distribution of Interexceedance Times

Histogram of S&P 500 Interexceedance times
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QQ Plot of Interexceedance Times

Sample quantiles
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Conclusions

e Daily log returns and many other financial series exhibit
periods of high and low volatility.
o The GARCH(1,1) model does a good job of modelling the
volatility as a stochastic process
o Next steps: develop a model for the i.i.d. random
innovations, Z(t)
o Fat tails
o Skewed
o Use extreme value theory for extreme tail probabilities
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Conclusions (cont.)

e Key point:
Failure to use (a) a stochastic volatility and (b) fat-tailed
distributions and/or extreme value theory will result in
hopelessly inaccurate estimates of the probability of bad
events. In particular, you will seriously underestimate the
probability of bad events if you are already in the midst of
a turbulent period.
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Postcript: model validation and other issues

Modelling and model selection also requires
checks that the data are correct

checks of programming: likelihood and
optimisation code; forecasting model

robustness checks

independent model validation

audit trail and documentation
Reading: Study Note on Model Validation




o Define the GARCH(1,1) model for stochastic
volatility

o Know the conditions for a GARCH(1,1) model
to be covariance stationary

o Derive the likelihood function for a GARCH(1,1)
model

o Understand how quasi maximum likelihood works

o Use a GARCH(1,1) to analyse financial returns
data




Summary (cont.)
o Apply diagnostic tests to verify if GARCH(1,1)
standardised residuals are independent and
identically distributed




