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Plan

• Intro + model

• Recalibration risk – introduction

• Robustness questions – index hedging

• Discussion
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Background

• Annuity providers and pension plans

• Exposure to longevity risk

– systematic risk (underlying mortality rates)

– binomial risk (lives)

– concentration risk (amounts)

• Alongside: interest rate risk, equity risk ....
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What is longevity risk?

the risk that in aggregate a group of lives live longer than

anticipated

Simple example:
• n lives; probability p of survival to T

• N |p ∼ Binomial(n, p) survivors at T

• If p is known: N/n → constant p

• if p is not known: then N/n contains systematic risk
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Hedging problem 1

Annuity provider seeks to hedge its exposure to longevity

risk

• Large cohort aged 65 at time 0

• Equal, level annuities payable for life

• S(t, 65) = proportion still alive at t

• PV =
∑∞

t=1 e
−rtS(t, 65)

• Objective: Hedge longevity risk in PV
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Hedging problem 2

Annuity provider seeks to hedge its exposure to longevity

risk

• Large cohort aged 65 at time 0

• Equal, level annuities payable for life

• S(t, 65) = proportion still alive at t

• Deficit D(t) = MCVLiabs(t)−MCVAssets(t)

• Objective: Hedge longevity risk in D(T )

e.g. T = 1 under Solvency II



7

Hedging problem 3

Pension plan

• Cohort now aged 55

• Plan will buy annuities at age 65

• Objective: hedge the longevity risk in the annuity price
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Options for hedging

• Customised hedges:

– e.g. longevity swap

– floating leg linked to OWN cashflows

– indemnification

• Index-based hedges:

– Standardised contracts

– e.g. Linked to a national index

⇒ basis risk
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Focus of this talk: Index-based hedges

• Customised hedges only available to very large pension plans

• Index-based hedges

– smaller schemes

– better value for money for large plans ???

– Quantity of hedging instrument
Hedge effectiveness
Price
How confident are we in these quantities? ⇒ ROBUSTNESS

• Here: Hedge Effectiveness := % reduction in Variance of Deficit
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Simple Example: Data

• Population 1: Index

– England &Wales males, 1961-2005, ages 50-89

• Population 2: Hedger

– CMI assured lives, 1961-2005, ages 50-89

– CMI: proxy for a typical white-collar pension plan

CMI data not available after 2006
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Simple example

• Static value hedge: t = 0 −→ T

• ak(T, x) = population k annuity value at T

• Liability value L(T ) = a2(T, 65)

• Hedging instrument: q-forward (www.LLMA.com)

H(T ) = qk(T, x)− qk
fxd(0, T, x)

qfxd
k (0, T, x) = value at T of swap fixed leg

• k = 2 (CMI) ⇒ CUSTOMISED hedge

• k = 1 (E&W) ⇒ INDEX hedge
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Simple example: APC model

mk(t, x) = population k death rate

logmk(t, x) = β(k)(x) + κ(k)(t) + γ(k)(t− x)

β(1)(x), β(2)(x) population 1 and 2 age effects

κ(1)(t), κ(2)(t) period effects

γ(1)(c), γ(2)(c) cohort effects
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Realism: valuation model ̸= simulation model

• (Re-)calibration using data up to T ⇒ realistic!

• Valuers just observe historical mortality plus

one future sample path of mortality from 0 to T

⇒ do not know the “true” simulation/true model

• Using true model ⇒ too optimistic (??) c.f. Black-Scholes

• Valuation model + calibration window

⇒ Knightian Uncertainty
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Key observation

• Critical parameter: νκ = long term trend in κ(1)(t), κ(2)(t)

• Recalibration ⇒ νκ recalibrated at T

• Recalibration ⇒ (assessment of) risk ↗

• BUT (assessment of) hedge effectiveness also ↗ for some hedges

• WHY?

Additional trend risk is common to both populations.

ak(T, x) ≈ f(β
(k)
[x] , κ

(k)
T , γ

(k)
T−x+1, νκ)
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Recalibration risk – example (random walk)
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• You will recalibrate at T

• Recalibration depends on as yet unknown experience from 0 to T

• Recalibration depends on length of lookback window
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How robust are estimates of:

• Optimal hedge ratios

• Hedge effectiveness

• Initial hedge instrument prices

relative to:

• Treatment of parameter risk

• Treatment of population basis risk

• Valuation model: recalibration risk

• Poisson risk?
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Modelling Variants

• PC: Full parameter certainty (PC);

Valuation Model NOT recalibrated in 2015

• PC-R: As full PC

Except: Valuation Model recalibrated in 2015

• PU: Full parameter uncertainty with recalibration

• PU-Poi: Full PU with recalibration + Poisson risk
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Data

• Population 1: Index

– England &Wales males, 1961-2005, ages 50-89

• Population 2: Hedger

– CMI assured lives, 1961-2005, ages 50-89

– CMI: proxy for a typical white-collar pension plan

CMI data not available after 2006
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Hedging options

• Recall: Liability, L = a2(T, 65) (CMI)

• Hedging instrument (ref England & Wales):

– q-Forward maturing at T

H = q1(T, x)− qF1 (0, T, x)

• .... for a range of reference ages x
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Robustness of Hedge Ratios

60 65 70 75 80 85

0
20

0
40

0
60

0
80

0

q−forwards

Reference Age, x

H
ed

ge
 R

at
io

PC

PC−R
PUPU−Poi

PC → PC-R not robust; PC-R → PU robust



21

Robustness relative to recalibration window, W
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Robustness relative to recalibration window, W

q-forwards maturing at time 10 are not robust w.r.t. W

• Liability, L, depends on

– κ
(2)
T and νκ (κ(1)(T ), W → νκ)

• Maturing q-Forward depends on κ
(1)
T only

⇒ not robust w.r.t. W

• Possible market solution:

(0, T + U, x) q-Forward, cash settled at T

⇒ dependent on κ
(1)
T and νκ
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x = 65: Robustness relative to recalibration window, W
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Robustness relative to recalibration window, W

• If we know W , then νκ linear in κ
(1)
T

⇒ one hedging instrument sufficient

• If W is not known

or, νκ determined by other methods

⇒ two hedging instruments are required

⇒ Delta and “Nuga” hedging
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Delta and Nuga Hedging

Recall: ak(T, x) ≈ f(β
(k)
[x] , κ

(k)
T , γ

(k)
T−x+1, νκ)

Liability: L = a2(T, x).

Hedge instruments:

H1 = q1(T, x1)− qfxd
1 (0, T, x1) → h1 units

H2 = q1(T + U, x2)− qfxd
1 (0, T + U, x2) → h2 units

(H2 cash settled at T )
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Delta and Nuga hedging ⇒ require

Deltas: α
∂L

∂κ(2)
= −h1

∂H1

∂κ(1)
− h2

∂H2

∂κ(1)

and Nugas:
∂L

∂νκ
= −h1

∂H1

∂νκ
− h2

∂H2

∂νκ

where α = Cov(κ
(1)
T , κ

(2)
T )/V ar(κ

(1)
T ).

Concept:

same idea as Vega hedging in equity derivatives (V = ∂V/∂σ)

– hedging against changes in a parameter that is supposed to be constant.
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Numerical example: L = a2(T, 65), T = 10

Four strategies:

A: No hedging

B: H1 only; h1 optimal for W = 20

C: H1 only; h1 optimal for W = 35

D: H1 and H2; Delta and Nuga hedging
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Numerical example: L = a2(T, 65), T = 10

q-F(T, 64) q-F(T + T , 74)

Strategy h1 h2 V ar(Deficit) Hedge Eff.

W = 20

A 0 0 0.3481 0

B 500.7 0 0.03435 0.9013 (1)

C 389.0 0 0.04996 0.8565 (3)

D -279.6 256.4 0.03797 0.8909 (2)

W = 35

A 0 0 0.2233 0

B 500.7 0 0.04953 0.7782 (3)

C 389.0 0 0.03392 0.8481 (1)

D -279.6 256.4 0.03493 0.8436 (2)
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Numerical example: discussion

• Nonlinearities ⇒D < B instead of D = B

• BUT

– W = 20 ⇒
D is nearly optimal

C is much worse

– W = 35 ⇒
D is nearly optimal

B is much worse
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Robustness relative to other factors

Results are robust relative to:

• inclusion of parameter uncertainty in β
(k)
x , κ

(k)
t , γ

(k)
c

• pension plan’s own small-population Poisson risk

• index population: EW-size Poisson risk, maybe smaller

• CMI data up to 2005 + EW data up to 2005

versus

CMI data up to 2005 + EW data up to 2008
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Ongoing work

Economic capital relief using longevity options

• Option payoff at T based on

– Pop 1 cashflows up to T

– Estimated Pop 1 cashflows after T (commutation)

• Example: BE = best estimate liability at time 0

• EC = additional Economic Capital to cover 95% runoff

– EC0 = EC without hedge

– EC1 = EC with index-based option hedge
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Practical issues

• Structure of the hedging instrument

• Price / risk premium payable by hedger

• Tradeoff:

Hedger Counterparty

Customised Index

Full term Medium term

Uncapped payoff Limited loss

Swap Cat Bond format
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Left: PV of Uncertain Future Annuity Cashflows from Age 65

Right: Pop 1 PV versus PV 10-year Swap + Commutation
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Pop 1 PV versus PV T -year Swap with Commutation

Survivor Swap with Commutation at T = 10 or T = 20
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Impact of Swap on Economic Capital
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Impact of Option on Economic Capital

Option underlying: accumulated cashflows + commutation
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Impact of Option on Economic Capital

Option underlying: accumulated cashflows + commutation
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Conclusions and the Future

Robust hedging requires inclusion of

• Recalibration risk (Nuga)

• Careful treatment of recalibration window

• Long-dated hedging instruments to handle Nuga risk

The future

• Cashflow hedging versus value hedging

• Hedging with different instruments

• Longevity risk is here to stay, but

• The problems might be different

E: A.J.G.Cairns@hw.ac.uk W: www.macs.hw.ac.uk/∼andrewc
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Bonus slides
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Value Hedging: basic idea

• L = liability value

• H = value of hedging instrument

• Objective: minimise V ar(deficit) = V ar(L+ hH)

⇒ optimal hedge ratio, ĥ = −Cov(L,H)

V ar(H)
= −ρ

S.D.(L)

S.D.(H)

Hedge effectiveness = 1− V ar(L+ ĥH)

V ar(L)
= ρ2

More general: ⇒ minimise V ar(L+ h1H1 + . . .+ hnHn)
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Simpler example: impact of recalibration on correlation

• X1 = µ+ Z1, X2 = µ+ Z2

• Z1, Z2 independent

• µ known ⇒ cor(X1, X2) = 0

• µ unknown and independent of Z1, Z2

⇒ Var(X1) and Var(X2) both higher

and cor(X1, X2) > 0


