ROBUST HEDGING OF LONGEVITY RISK

Andrew Cairns Heriot-Watt University, and The Maxwell Institute, Edinburgh June 2014

In Journal of Risk and Insurance (2013) 80: 621-648.

Plan

- $\bullet \ {\rm Intro} + {\rm model}$
- Recalibration risk introduction
- Robustness questions index hedging
- Discussion

Background

- Annuity providers and pension plans
- Exposure to longevity risk
 - systematic risk (underlying mortality rates)
 - binomial risk (lives)
 - concentration risk (amounts)
- Alongside: interest rate risk, equity risk

What is longevity risk?

the risk that *in aggregate* a group of lives live longer *than anticipated*

Simple example:

- $\bullet~n$ lives; probability p of survival to T
- $\bullet \ N | p \sim \mathrm{Binomial}(n, \mathbf{p}) \text{ survivors at } T$
- If p is known: $N/n \rightarrow {\rm constant} \; p$
- if p is not known: then N/n contains systematic risk

Hedging problem 1

Annuity provider seeks to hedge its exposure to longevity risk

- Large cohort aged 65 at time 0
- Equal, level annuities payable for life
- S(t, 65) =proportion still alive at t
- $PV = \sum_{t=1}^{\infty} e^{-rt} S(t, 65)$
- \bullet Objective: Hedge longevity risk in PV

Hedging problem 2

Annuity provider seeks to hedge its exposure to longevity risk

- Large cohort aged 65 at time 0
- Equal, level annuities payable for life
- S(t, 65) =proportion still alive at t
- Deficit $D(t) = MCV_{Liabs}(t) MCV_{Assets}(t)$
- Objective: Hedge longevity risk in D(T)e.g. T = 1 under Solvency II

Hedging problem 3

Pension plan

- Cohort now aged 55
- Plan will buy annuities at age 65
- Objective: hedge the longevity risk in the annuity price

Options for hedging

- Customised hedges:
 - e.g. longevity swap
 - floating leg linked to OWN cashflows
 - indemnification
- Index-based hedges:
 - Standardised contracts
 - e.g. Linked to a national index

 \Rightarrow basis risk

Focus of this talk: Index-based hedges

- Customised hedges only available to very large pension plans
- Index-based hedges
 - smaller schemes
 - better value for money for large plans ???
 - Quantity of hedging instrument
 Hedge effectiveness
 Price

How confident are we in these quantities? \Rightarrow ROBUSTNESS

• Here: Hedge Effectiveness := % reduction in Variance of Deficit

Simple Example: Data

- Population 1: Index
 - England & Wales males, 1961-2005, ages 50-89
- Population 2: Hedger
 - CMI assured lives, 1961-2005, ages 50-89
 - CMI: proxy for a typical white-collar pension plan

CMI data not available after 2006

Simple example

- Static *value* hedge: $t = 0 \longrightarrow T$
- $a_k(T, x) =$ population k annuity value at T
- Liability value $L(T) = a_2(T, 65)$
- Hedging instrument: q-forward (www.LLMA.com)

$$H(T) = q_{\mathbf{k}}(T, x) - q_{\mathbf{k}}^{\mathsf{fxd}}(0, T, x)$$

 $q_k^{\mathsf{fxd}}(0, T, x) = \mathsf{value} \text{ at } T \text{ of swap fixed leg}$

- k = 2 (CMI) \Rightarrow CUSTOMISED hedge
- k = 1 (E&W) \Rightarrow INDEX hedge

Simple example: APC model

 $m_{k}(t,x) = \text{population } k \text{ death rate}$

$$\log m_{k}(t,x) = \beta^{(k)}(x) + \kappa^{(k)}(t) + \gamma^{(k)}(t-x)$$

 $eta^{(1)}(x), \ eta^{(2)}(x)$ population 1 and 2 age effects $\kappa^{(1)}(t), \ \kappa^{(2)}(t)$ period effects

 $\gamma^{(1)}(c), \ \gamma^{(2)}(c)$ cohort effects

Realism: valuation model \neq simulation model

- (Re-)calibration using data up to $T \Rightarrow$ realistic!
- Valuers just observe historical mortality plus one future sample path of mortality from 0 to T \Rightarrow do not know the "true" simulation/true model
- Using true model \Rightarrow too optimistic (??) c.f. Black-Scholes
- Valuation model + calibration window

 \Rightarrow Knightian Uncertainty

Key observation

- Critical parameter: $\nu_{\kappa} = \text{long term trend in } \kappa^{(1)}(t), \ \kappa^{(2)}(t)$
- Recalibration $\Rightarrow \nu_{\kappa}$ recalibrated at T
- Recalibration \Rightarrow (assessment of) risk \nearrow
- BUT (assessment of) hedge effectiveness also \nearrow for some hedges

• WHY?

Additional trend risk is common to both populations.

$$a_k(T, x) \approx f(\beta_{[x]}^{(k)}, \kappa_T^{(k)}, \gamma_{T-x+1}^{(k)}, \boldsymbol{\nu_{\kappa}})$$

Recalibration risk – example (random walk)

- You will recalibrate at T
- $\bullet\,$ Recalibration depends on as yet unknown experience from 0 to $T\,$
- Recalibration depends on length of lookback window

How robust are estimates of:

- Optimal hedge ratios
- Hedge effectiveness
- Initial hedge instrument prices
 relative to:
- Treatment of parameter risk
- Treatment of population basis risk
- Valuation model: recalibration risk
- Poisson risk?

Modelling Variants

• PC: Full parameter certainty (PC);

Valuation Model NOT recalibrated in 2015

• PC-R: As full PC

Except: Valuation Model recalibrated in 2015

- PU: Full parameter uncertainty with recalibration
- PU-Poi: Full PU with recalibration + Poisson risk

Data

- Population 1: Index
 - England & Wales males, 1961-2005, ages 50-89
- Population 2: Hedger
 - CMI assured lives, 1961-2005, ages 50-89
 - CMI: proxy for a typical white-collar pension plan

CMI data not available after 2006

Hedging options

- Recall: Liability, $L = a_2(T, 65)$ (CMI)
- Hedging instrument (ref England & Wales):

- q-Forward maturing at
$$T$$

$$H = q_1(T, x) - q_1^F(0, T, x)$$

 \bullet for a range of reference ages \boldsymbol{x}

Robustness relative to recalibration window, W

q-forwards maturing at time 10 are not robust w.r.t. W

• Liability, L, depends on

-
$$\kappa_T^{(2)}$$
 and u_κ ($\kappa^{(1)}(T)$, $W o
u_\kappa$)

- Maturing $q\text{-}\mathsf{Forward}$ depends on $\kappa_T^{(1)}$ only
 - \Rightarrow not robust w.r.t. W
- Possible market solution:

(0, T + U, x) q-Forward, cash settled at T \Rightarrow dependent on $\kappa_T^{(1)}$ and ν_{κ}

Robustness relative to recalibration window, W

• If we know W, then u_{κ} linear in $\kappa_{T}^{(1)}$

 \Rightarrow one hedging instrument sufficient

- If W is not known
 - or, ν_{κ} determined by other methods
 - \Rightarrow two hedging instruments are required
 - \Rightarrow Delta and "Nuga" hedging

Delta and Nuga Hedging

Recall: $a_k(T, x) \approx f(\beta_{[x]}^{(k)}, \kappa_T^{(k)}, \gamma_{T-x+1}^{(k)}, \nu_{\kappa})$ Liability: $L = a_2(T, x)$.

Hedge instruments:

$$\begin{split} H_1 &= q_1(T, x_1) - q_1^{\mathsf{fxd}}(0, T, x_1) & \to h_1 \text{ units} \\ H_2 &= q_1(T + U, x_2) - q_1^{\mathsf{fxd}}(0, T + U, x_2) & \to h_2 \text{ units} \\ & (H_2 \text{ cash settled at } T) \end{split}$$

where $\alpha = Cov(\kappa_T^{(1)},\kappa_T^{(2)})/Var(\kappa_T^{(1)}).$

Concept:

same idea as Vega hedging in equity derivatives ($\mathcal{V} = \partial V / \partial \sigma$)

- hedging against changes in a parameter that is supposed to be constant.

Numerical example: $L = a_2(T, 65)$, T = 10

Four strategies:

A: No hedging

B: H_1 only; h_1 optimal for W = 20

C: H_1 only; h_1 optimal for W = 35

D: H_1 and H_2 ; Delta and Nuga hedging

Numerical example: $L = a_2(T, 65)$, $T = 10$						
	$q extsf{-}F(T,64)$	q-F(T+T,74)				
Strategy	h_1	h_2	$Var({\sf Deficit})$	Hedge Eff.		
W = 20						
A	0	0	0.3481	0		
В	500.7	0	0.03435	0.9013	(1)	
С	389.0	0	0.04996	0.8565	(3)	
D	-279.6	256.4	0.03797	0.8909	(2)	
W = 35						
А	0	0	0.2233	0		
В	500.7	0	0.04953	0.7782	(3)	
С	389.0	0	0.03392	0.8481	(1)	
D	-279.6	256.4	0.03493	0.8436	(2)	

Numerical example: discussion

- Nonlinearities $\Rightarrow D < B$ instead of D = B
- BUT
 - $-W = 20 \Rightarrow$
 - D is nearly optimal
 - C is much worse
 - $-W = 35 \Rightarrow$
 - \boldsymbol{D} is nearly optimal
 - ${\boldsymbol{B}}$ is much worse

Robustness relative to other factors

Results are robust relative to:

- ullet inclusion of parameter uncertainty in $eta_x^{(k)}$, $\kappa_t^{(k)}$, $\gamma_c^{(k)}$
- pension plan's own small-population Poisson risk
- index population: EW-size Poisson risk, maybe smaller
- \bullet CMI data up to 2005 + EW data up to 2005

versus

CMI data up to 2005 + EW data up to 2008

Ongoing work

Economic capital relief using longevity options

- \bullet Option payoff at T based on
 - Pop 1 cashflows up to ${\cal T}$
 - Estimated Pop 1 cashflows after T (commutation)
- Example: BE = best estimate liability at time 0
- EC = additional Economic Capital to cover 95% runoff
 - $EC_0 = EC$ without hedge
 - $EC_1 = EC$ with index-based option hedge

Practical issues

- Structure of the hedging instrument
- Price / risk premium payable by hedger
- Tradeoff:

Hedger	Counterparty	
Customised	Index	
Full term	Medium term	
Uncapped payoff	Limited loss	
Swap	Cat Bond format	

Left: PV of Uncertain Future Annuity Cashflows from Age 65

Right: Pop 1 PV versus PV 10-year Swap + Commutation

Pop 1 PV versus PV T-year Swap with Commutation

Survivor Swap with Commutation at T = 10 or T = 20

Impact of Swap on Economic Capital

Impact of Option on Economic Capital

Option underlying: accumulated cashflows + commutation

Impact of Option on Economic Capital

Option underlying: accumulated cashflows + commutation

Conclusions and the Future

Robust hedging requires inclusion of

- Recalibration risk (Nuga)
- Careful treatment of recalibration window
- Long-dated hedging instruments to handle Nuga risk
 The future
- Cashflow hedging versus value hedging
- Hedging with different instruments
- Longevity risk is here to stay, but
- The problems might be different
- E: A.J.G.Cairns@hw.ac.uk W: www.macs.hw.ac.uk/~andrewc

Bonus slides

Value Hedging: basic idea

- L =liability value
- H = value of hedging instrument
- Objective: minimise Var(deficit) = Var(L + hH)

$$\Rightarrow \text{ optimal hedge ratio, } \hat{h} = -\frac{Cov(L, H)}{Var(H)} = -\rho \frac{S.D.(L)}{S.D.(H)}$$

Hedge effectiveness = $1 - \frac{Var(L + \hat{h}H)}{Var(L)} = \rho^2$

More general: \Rightarrow minimise $Var(L + h_1H_1 + ... + h_nH_n)$

Simpler example: impact of recalibration on correlation

•
$$X_1 = \mu + Z_1$$
, $X_2 = \mu + Z_2$

- Z_1, Z_2 independent
- μ known \Rightarrow cor $(X_1, X_2) = 0$
- μ unknown and independent of Z_1, Z_2 $\Rightarrow \operatorname{Var}(X_1)$ and $\operatorname{Var}(X_2)$ both higher and $\operatorname{cor}(X_1, X_2) > 0$