# DETECTING ANOMALIES IN NATIONAL MORTALITY DATA

**Andrew Cairns** 

Heriot-Watt University, Scotland

and

The Maxwell Institute, Edinburgh

Joint work with: David Blake, Kevin Dowd and Amy Kessler

International Mortality and Longevity Symposium 2014

#### Potential Errors in *post-2011* Population Estimates



Source data: ONS EW males deaths and revised population estimates.

#### Plan

- 1. Background and motivation
- 2. Data issues: deaths, population, exposures
- 3. Graphical diagnostics and signature plots
- 4. Model-based analysis of historical population data
- 5. Conclusions and next steps

#### 1: Background and Motivation

- England and Wales data + other countries
- D(t,x): Death counts considered to be accurate
- $P(t+\frac{1}{2},x)$  mid-year population is an *estimate*
- Crude  $m(t,x) = D(t,x)/P(t+\frac{1}{2},x)$  not D(t,x)/E(t,x)
- Post 2011 census revisions ⇒ some big revisions
- Similar magnitude revisions after 2001 census

#### Why Do Errors in Population Data Matter?

#### Potential impact on

- Population mortality forecasts
- Forecasts of sub-population mortality
- Calibration of multi-population models
- Calculation of annuity liabilities and Value-at-Risk
- Assessed levels of uncertainty in the above
- Buyout pricing
- Assessment of basis risk in longevity hedges
- Assessment of hedges and hedging instruments

#### Aims

- How to identify anomalies in data
- How to pre-whiten your mortality data before modelling and forecasting

#### 2: Population Estimates, Exposures, Death Rates

Death rate 
$$m(t,x) = \frac{D(t,x)}{E(t,x)}$$

- ullet E(t,x)= 'exposure' in year t (central exposed to risk)  $= \textit{average value} \ \text{of} \ P(s,x) \ \text{from} \ t \ \text{ot} \ t+1$   $P(s,x)= \text{population at exact time} \ s \ \text{aged} \ x \ \text{last birthday}$
- England & Wales  $\Rightarrow$  only  $P(t + \frac{1}{2}, x)$  reported
- Common assumption:  $E(t,x) = P(t+\frac{1}{2},x)$ 
  - e.g. ONS reported death rates:  $m(t,x) = D(t,x)/P(t+\frac{1}{2},x)$

# 2.1: Where Can Errors in E(t,x) Occur?

- Known errors: Inaccurate  $P(t + \frac{1}{2}, x)$ 
  - no ID card system
  - infrequent censuses, under-enumeration
  - migration etc.
  - mis-reported age at census
- Lesser known errors:
  - inaccurate shift from census date to mid-year
  - assumption that  $P(t+\frac{1}{2},x) \approx E(t,x)$

### 2.1.1: Propagation of General Errors Through Time

Errors follow cohorts  $\Rightarrow$  "Phantoms never die"



#### Phantoms Never Die



#### 2.2: Census to Mid-year Shift



ONS 2001 assumption: birthdays spread evenly throughout the year

#### Conjecture:

- different methodology used in earlier censuses and in 2011

#### Can We Improve on This Assumption?

The Cohort Births/Deaths (CBD) Exposures Methodology

Underlying hypothesis:

- ullet At any point in time t, pattern of birthdays at t will reflect
  - actual pattern of births x years earlier
  - deaths (impact at high ages)
  - migration and birth patterns of immigrants
- ullet Irregular pattern of births can lead to errors in census ullet mid-year shift

| Birth month        | Ą      | ge on F  | Proportion | 20    | 01        | Ol        | NS    | Age      | e at   | 0        | NS       |  |
|--------------------|--------|----------|------------|-------|-----------|-----------|-------|----------|--------|----------|----------|--|
| 30/                |        | 4/2001   |            | cen   | sus esti  |           | mate  | mid-year |        | mid-year |          |  |
| May-June 1918      |        | 82       | 2/12       | 721   | 111       | 120       | 12019 |          | 3      |          |          |  |
| July 1918-April 19 | 19     | 82       | 10/12      | 1 2 1 | 114       | 60        | 095   | 8        | 2      | \<br>70  | 352      |  |
| May-June 1919      |        | 81       | 2/12       | 115   | 115545    |           | 257   | 8        | 2      | (19      | 73332    |  |
| July 1919-April 19 | 20     | 81       | 10/12      | 113   |           |           | 288   | 8        | 1      |          |          |  |
| Birth              | No. of | Age on   | Propor     | rtion | 200       | <b>D1</b> | СВІ   | D        | Age a  | at       | CBD      |  |
| month              | births | 30/4/200 | 1          |       | cen       | sus       | estim | ate      | mid-ye | ear      | mid-year |  |
| 5-6/1918           | 113475 | 82       | 0.177      | '85   | 701       | 11        | 12825 |          | 83     |          |          |  |
| 7/1918-4/1919      | 524566 | 82       | 0.822      | 215   | 72114     |           | 5928  | 59289    |        |          | } 72741  |  |
| 5-6/1919           | 99174  | 81       | 0.116      | 642   | 2<br>1155 |           | 134   | 52       | 82     |          | 5 12141  |  |
| 7/1919-4/1920      | 752725 | 81       | 0.883      | 358   | 113       | J40<br>   | 1020  | 93       | 81     |          |          |  |



#### 2.3: Proposal to Improve Estimates of Exposures



#### Proposal to Improve Estimates of Exposures

- Death rate m(t,x) = D(t,x)/E(t,x)
- Current assumption:  $E(t,x) = P(t + \frac{1}{2},x)$
- CBD Exposures Methodology:

Assume 
$$E(t,x) = P(t + \frac{1}{2},x) \times \frac{E(t-x,0)}{P(t + \frac{1}{2} - x,0)}$$

- $E(t-x,0)/P(t+\frac{1}{2}-x,0)=$  Convexity Adjustment Ratio
- $\bullet$  CAR based on monthly pattern of births over t-x-1 to t-x+1

#### CBD Exposures Methodology: Convexity Adjustment Ratio



#### 2.4: High Age Methodology

- ONS reports
  - $-P(t+\frac{1}{2}, 90+)$  only
  - -D(t,x) for x = 90, 91, 92, ...
- $P(t+\frac{1}{2},x)$  for  $x=90,91,\ldots$  derived using the Kannisto-Thatcher Method (extinct cohorts)
- Conjecture: Potential for inconsistencies at the boundary between ages 89 and 90+

#### 3: How to identify anomalies

#### Graphical Diagnostics and Signature Plots

- Graphical diagnostics
  - hypothesis  $\Rightarrow$

plot should exhibit specific characteristics

- Signature plots
  - what if it does not?

#### 3.1: Graphical Diagnostic 1

Hypothesis: Crude death rates by age for successive cohorts should look similar.

⇒ Plot crude death rates against age.





Cohort death rates by age for 1907 to 1911 cohorts. ONS revised EW males data up to 2011.

# Signature Plot: Emergence of Phantoms

# Cohort Death Rates: 1917 to 1921 birth cohorts



#### 3.2: Graphical Diagnostic 2

Hypothesis: Underlying log death rates are approximately linear

⇒ Plot concavity of log death rates: the difference between log of one death rate and the average of its immediate neighbours:

$$C(t, x_0)$$

$$= \log m(t, x_0 + t)$$

$$-\frac{1}{2} \left( \log m(t, x_0 + t - 1) + \log m(t, x_0 + t + 1) \right)$$

If log death rates are linear then this should be close to 0.

#### Concavity function: 1924 Cohort (age 37-87)

Log Death Rates: Deviation Between 1924 Cohort and the Average of its Nearest Neighbours



Dots are randomly above and below 0.

#### Concavity function: 1920 Cohort

Log Death Rates: Deviation Between 1920 Cohort and the Average of its Nearest Neighbours



Signature plot: births pattern  $\Rightarrow$  true  $E(t,x) < P(t+\frac{1}{2},x)$ 

#### Concavity function: 1947 Cohort

Log Death Rates: Deviation Between 1947 Cohort and the Average of its Nearest Neighbours



Dosts mostly below  $0 \Rightarrow$  cause for concern

### Concavity function in 2-Dimensions: Heat Map



Sampling variation  $\Rightarrow$  more extremes <50 and >90

# Concavity Function: Empirical CDF's by Age; 88-92



#### Heat Map: by Age and Calendar Year

Identifiable non-random patterns

#### Signatures:

- ◆ Diagonals ⇒ issues with a cohort
- ◆ Horizontals ⇒ anomalies in reported age at death ???
- Age at death errors are more plausible than systematic age-dependent errors in exposures.
- Except: Prominent horizontal anomaly around 89/90

#### 3.3: Graphical Diagnostic 3

Hypothesis: Changes in cohort population sizes should match pattern of reported deaths

- Underlying data:
  - mid-year population,  $P(t+\frac{1}{2},x)$
  - deaths in one calendar year, D(t,x)
- Define  $\hat{d}(t + \frac{1}{2}, x) = P(t + \frac{1}{2}, x) P(t + \frac{3}{2}, x + 1)$
- Plot  $\hat{d}(t+\frac{1}{2},x)$  by cohort
- ullet Compare with surrounding D(t,x)
- ullet and D should be similar if little or no net migration (e.g. high ages)

#### Prior adjustments

- Decrements: adjust for  $E(t,x) \neq P(t+\frac{1}{2},x)$   $\Rightarrow \hat{d}(t+\frac{1}{2},x)$  multiplied by CAR(t-x)
- $\bullet$  Cohorts  $\pm 1$  year: adjust for different birth rates

$$D(t, x + 1) \times E(t - x, 0) / E(t - x - 1, 0)$$
$$D(t + 1, x) \times E(t - x, 0) / E(t - x + 1, 0)$$

#### Standard Graphical Diagnostic 3: 1924 Cohort, Deaths Curve





# Signature Plot: Backfilling the 1919 Cohort by ONS





# Possible Explanation: Census → Mid-year Pop Error 1919 cohort (stylized)



# Factual Consquence: Backfilling (ONS Methodology)

1919 cohort (stylized)



#### 1918, 1919 and 1920 Cohorts, Deaths Curves



- 1920 cohort: similar shift in opposite direction
- Age 90 anomaly for all 3 cohorts ⇒ cause for concern

#### Signature Plot: Backfilling the 1947 Cohort

#### 1947 Cohort



Again consistent with ONS versus CBD methodologies

#### 3.4: Summary

- Errors remain in the ONS population data
- Combination of three graphical diagnostics highlight known anomalies (e.g.1919) and some unexpected discoveries (e.g. 1920, 1947 cohorts; age 89/90)
- Anomalies characterised by cohort and by age
- CBD Exposures Methodology can be used to improve estimates of exposures
- CBD Exposures Methodology explains the 1919 anomaly that has emerged since 1991

4: Model-Based Analysis of Historical Population Data

4.1: Proposed Solution: Bayesian Adjustment of Exposures

Bayesian prior hypotheses:

A: Death counts are accurate

B: Exposures are subject to errors

errors following cohorts are correlated through time

C: Within each calendar year:

curve of underlying death rates is "smooth"

Adjust exposures to achieve a balance between B and C

# 4.2: Results: Assume $E(t,x)=P(t+\frac{1}{2},x)$ Mid-year Population



#### Exposures, E(t,x), Adjusted Using CBD Convexity Adjustment Ratio



#### 4.3: Results 1

- Results confirm conclusions based on graphical diagnostics (e.g. problems with 1919, 1947 cohorts; age 89/90 boundary)
- Bayesian approach allows us to quantify rigorously the size of the error

#### Results 2

- CBD Exposures Methodology:
  - convexity adjustment for  $E(t,x) \neq P(t+\frac{1}{2},x)$  explains 1920 anomaly
  - CBD dampens other anomalies (e.g. 1947 cohort)
- Other anomalies remain but we have some explanations
  - 1919 cohort explained by 2001 census + backfilling
  - age 89/90 ⇒ issues with Kannisto-Thatcher methodology
  - e.g. ages 70, 80  $\Rightarrow$  potential bias in reporting of age at death
- 1947 (1940-1960) cohort(s) should be seen as an issue financially

#### 6: Conclusions and Next Steps

- Significant errors remain in EW males data
- Similar issues with females data
- Errors will exist in data for many other countries
- CBD Exposures Methodology can be used to mitigate errors in exposures
  - census-to-mid-year adjustment
  - mid-year population to exposures: CAR
  - Use exact date of birth in the census questionnaire!
- Kannisto-Thatcher high age methodology needs revisiting
- Financial impact: post WW-2 cohorts need special consideration

# Thank you!

## Questions?

#### Paper online:

 $\verb|http://www.macs.hw.ac.uk/\sim| and rewc/papers/ajgc71.pdf|$ 



### Impact of Population Revisions on Mortality Rates





### EW Males Mortality Rates in 2010 Ratio of revised rates to old rates



Figure 1:

#### Types of Impact: Base Table; Central Trend; Future Uncertainty



### Where Can Errors in E(t,x) Occur?



Errors that can be mitigated using CBD Exposures Methodology

#### Phantoms Never Die



### Factual Consquence: Backfilling (ONS Methodology)



#### Same Data in 2-Dimensions: Heat Map – Normalised

#### Normalised Concavity of log m(t,x)



Sampling variation  $\Rightarrow$  more extremes <50 and >90

### Why Use a Bayesian Approach

- Coherent framework within which we can
  - build in prior beliefs (hypotheses A, B, C)
- Output ⇒ straightforward to assess impact of parameter uncertainty