DETECTING ANOMALIES IN NATIONAL MORTALITY DATA

Andrew Cairns

Heriot-Watt University, Scotland

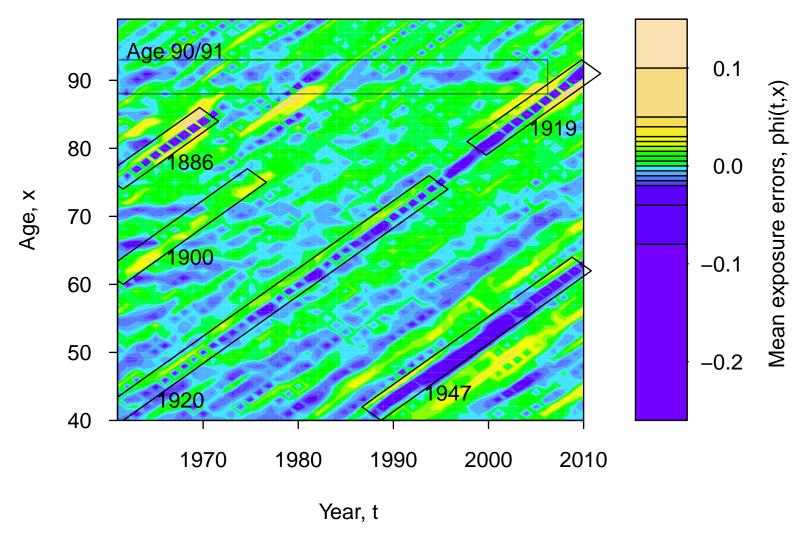
and

The Maxwell Institute, Edinburgh

Joint work with: David Blake, Kevin Dowd and Amy Kessler

International Mortality and Longevity Symposium 2014

Potential Errors in *post-2011* Population Estimates



Source data: ONS EW males deaths and revised population estimates.

Plan

- 1. Background and motivation
- 2. Data issues: deaths, population, exposures
- 3. Graphical diagnostics and signature plots
- 4. Model-based analysis of historical population data
- 5. Conclusions and next steps

1: Background and Motivation

- England and Wales data + other countries
- D(t,x): Death counts considered to be accurate
- $P(t+\frac{1}{2},x)$ mid-year population is an *estimate*
- Crude $m(t,x) = D(t,x)/P(t+\frac{1}{2},x)$ not D(t,x)/E(t,x)
- Post 2011 census revisions ⇒ some big revisions
- Similar magnitude revisions after 2001 census

Why Do Errors in Population Data Matter?

Potential impact on

- Population mortality forecasts
- Forecasts of sub-population mortality
- Calibration of multi-population models
- Calculation of annuity liabilities and Value-at-Risk
- Assessed levels of uncertainty in the above
- Buyout pricing
- Assessment of basis risk in longevity hedges
- Assessment of hedges and hedging instruments

Aims

- How to identify anomalies in data
- How to pre-whiten your mortality data before modelling and forecasting

2: Population Estimates, Exposures, Death Rates

Death rate
$$m(t,x) = \frac{D(t,x)}{E(t,x)}$$

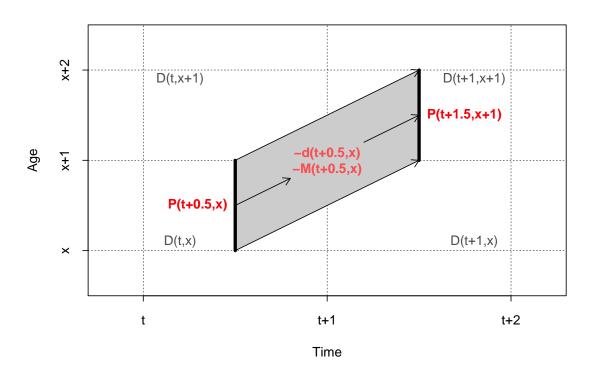
- ullet E(t,x)= 'exposure' in year t (central exposed to risk) $= \textit{average value} \ \text{of} \ P(s,x) \ \text{from} \ t \ \text{ot} \ t+1$ $P(s,x)= \text{population at exact time} \ s \ \text{aged} \ x \ \text{last birthday}$
- England & Wales \Rightarrow only $P(t + \frac{1}{2}, x)$ reported
- Common assumption: $E(t,x) = P(t+\frac{1}{2},x)$
 - e.g. ONS reported death rates: $m(t,x) = D(t,x)/P(t+\frac{1}{2},x)$

2.1: Where Can Errors in E(t,x) Occur?

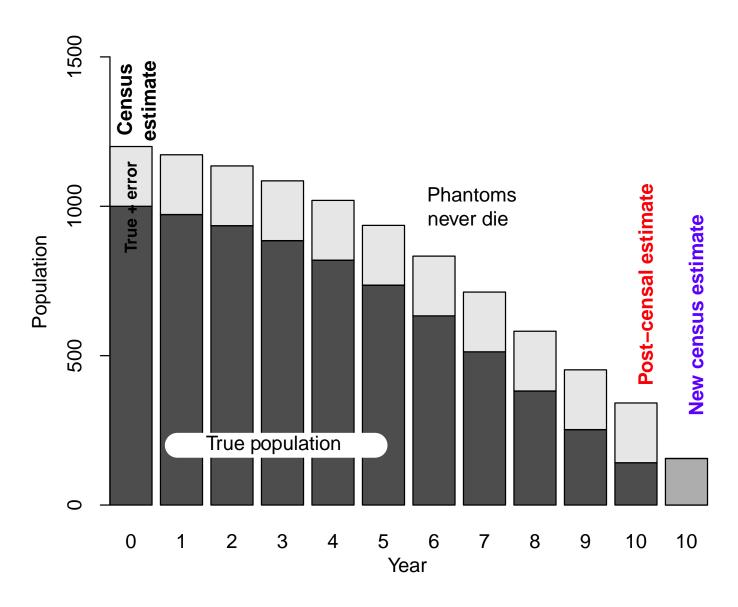
- Known errors: Inaccurate $P(t + \frac{1}{2}, x)$
 - no ID card system
 - infrequent censuses, under-enumeration
 - migration etc.
 - mis-reported age at census
- Lesser known errors:
 - inaccurate shift from census date to mid-year
 - assumption that $P(t+\frac{1}{2},x) \approx E(t,x)$

2.1.1: Propagation of General Errors Through Time

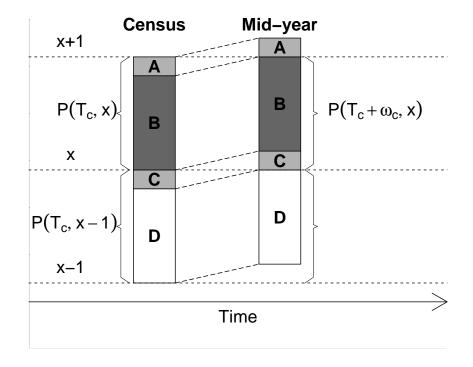
Errors follow cohorts \Rightarrow "Phantoms never die"



Phantoms Never Die



2.2: Census to Mid-year Shift



ONS 2001 assumption: birthdays spread evenly throughout the year

Conjecture:

- different methodology used in earlier censuses and in 2011

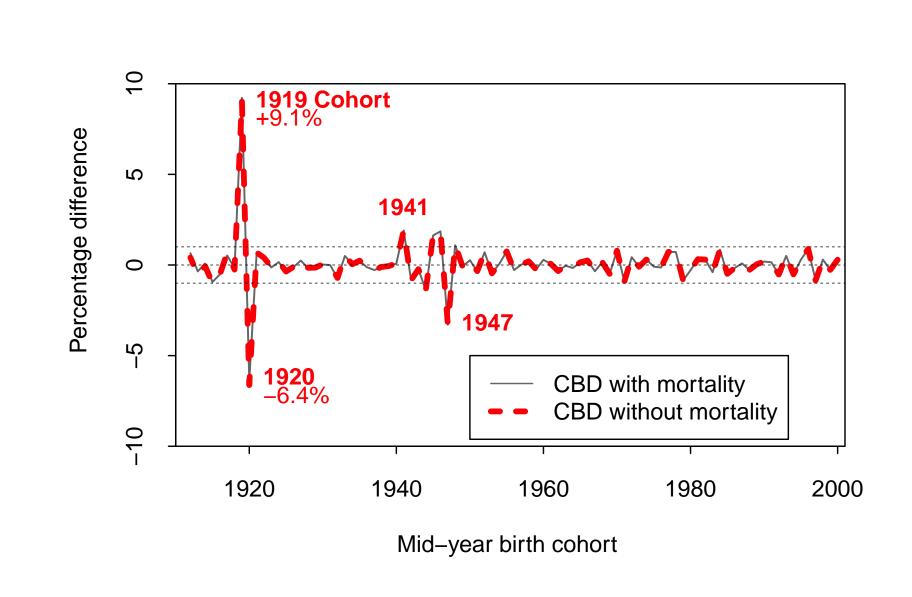
Can We Improve on This Assumption?

The Cohort Births/Deaths (CBD) Exposures Methodology

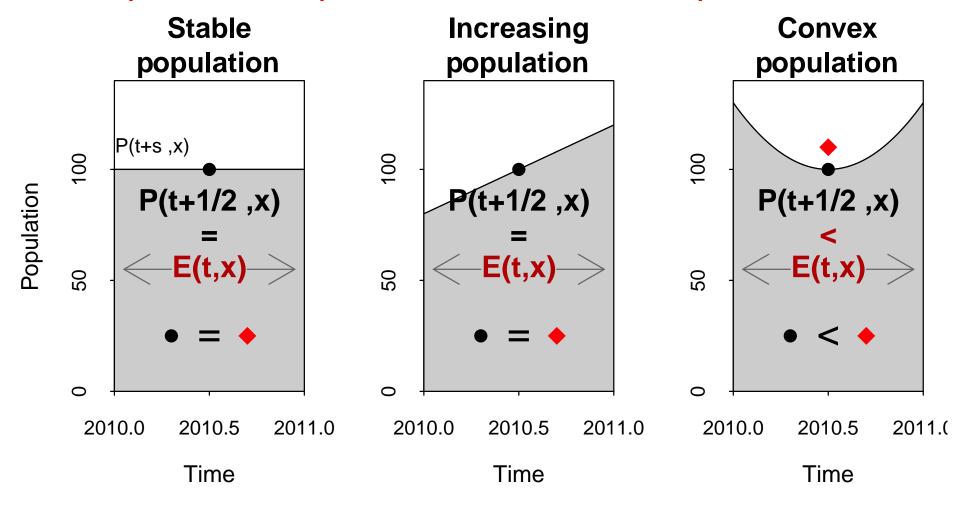
Underlying hypothesis:

- ullet At any point in time t, pattern of birthdays at t will reflect
 - actual pattern of births x years earlier
 - deaths (impact at high ages)
 - migration and birth patterns of immigrants
- ullet Irregular pattern of births can lead to errors in census ullet mid-year shift

Birth month	Ą	ge on F	Proportion	20	01	Ol	NS	Age	e at	0	NS	
30/		4/2001		cen	sus esti		mate	mid-year		mid-year		
May-June 1918		82	2/12	721	111	120	12019		3			
July 1918-April 19	19	82	10/12	1 2 1	114	60	095	8	2	\ 70	352	
May-June 1919		81	2/12	115	115545		257	8	2	(19	73332	
July 1919-April 19	20	81	10/12	113			288	8	1			
Birth	No. of	Age on	Propor	rtion	200	D1	СВІ	D	Age a	at	CBD	
month	births	30/4/200	1		cen	sus	estim	ate	mid-ye	ear	mid-year	
5-6/1918	113475	82	0.177	'85	701	11	12825		83			
7/1918-4/1919	524566	82	0.822	215	72114		5928	59289			} 72741	
5-6/1919	99174	81	0.116	642	2 1155		134	52	82		5 12141	
7/1919-4/1920	752725	81	0.883	358	113	J40 	1020	93	81			



2.3: Proposal to Improve Estimates of Exposures



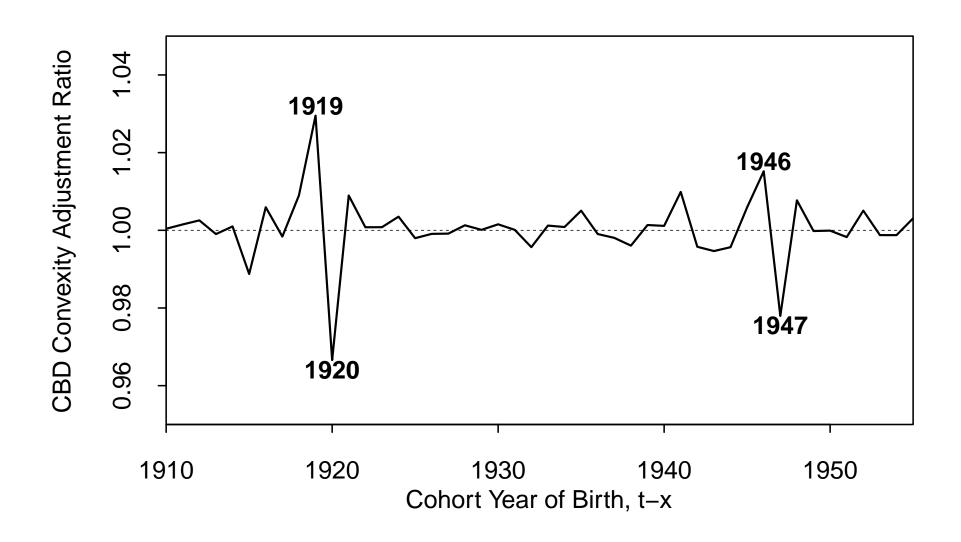
Proposal to Improve Estimates of Exposures

- Death rate m(t,x) = D(t,x)/E(t,x)
- Current assumption: $E(t,x) = P(t + \frac{1}{2},x)$
- CBD Exposures Methodology:

Assume
$$E(t,x) = P(t + \frac{1}{2},x) \times \frac{E(t-x,0)}{P(t + \frac{1}{2} - x,0)}$$

- $E(t-x,0)/P(t+\frac{1}{2}-x,0)=$ Convexity Adjustment Ratio
- \bullet CAR based on monthly pattern of births over t-x-1 to t-x+1

CBD Exposures Methodology: Convexity Adjustment Ratio



2.4: High Age Methodology

- ONS reports
 - $-P(t+\frac{1}{2}, 90+)$ only
 - -D(t,x) for x = 90, 91, 92, ...
- $P(t+\frac{1}{2},x)$ for $x=90,91,\ldots$ derived using the Kannisto-Thatcher Method (extinct cohorts)
- Conjecture: Potential for inconsistencies at the boundary between ages 89 and 90+

3: How to identify anomalies

Graphical Diagnostics and Signature Plots

- Graphical diagnostics
 - hypothesis \Rightarrow

plot should exhibit specific characteristics

- Signature plots
 - what if it does not?

3.1: Graphical Diagnostic 1

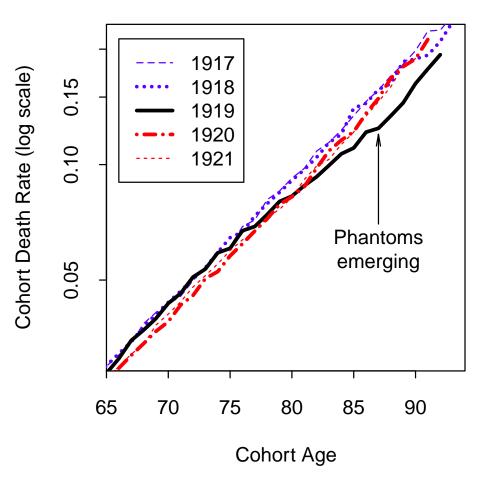
Hypothesis: Crude death rates by age for successive cohorts should look similar.

⇒ Plot crude death rates against age.

Cohort death rates by age for 1907 to 1911 cohorts. ONS revised EW males data up to 2011.

Signature Plot: Emergence of Phantoms

Cohort Death Rates: 1917 to 1921 birth cohorts



3.2: Graphical Diagnostic 2

Hypothesis: Underlying log death rates are approximately linear

⇒ Plot concavity of log death rates: the difference between log of one death rate and the average of its immediate neighbours:

$$C(t, x_0)$$

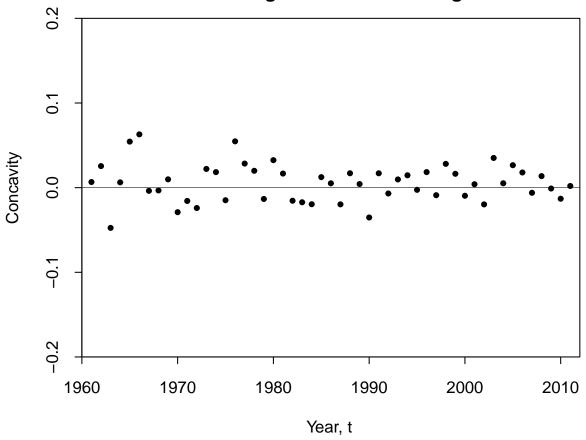
$$= \log m(t, x_0 + t)$$

$$-\frac{1}{2} \left(\log m(t, x_0 + t - 1) + \log m(t, x_0 + t + 1) \right)$$

If log death rates are linear then this should be close to 0.

Concavity function: 1924 Cohort (age 37-87)

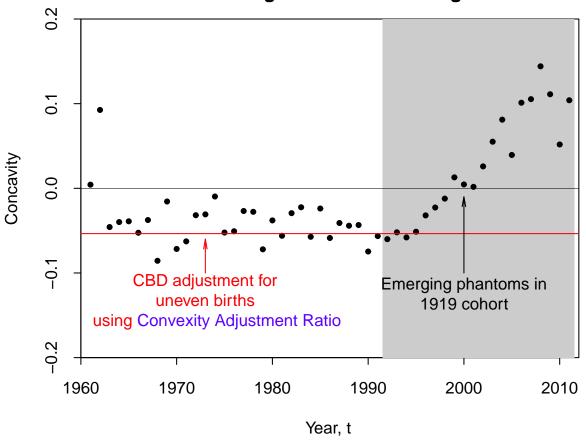
Log Death Rates: Deviation Between 1924 Cohort and the Average of its Nearest Neighbours



Dots are randomly above and below 0.

Concavity function: 1920 Cohort

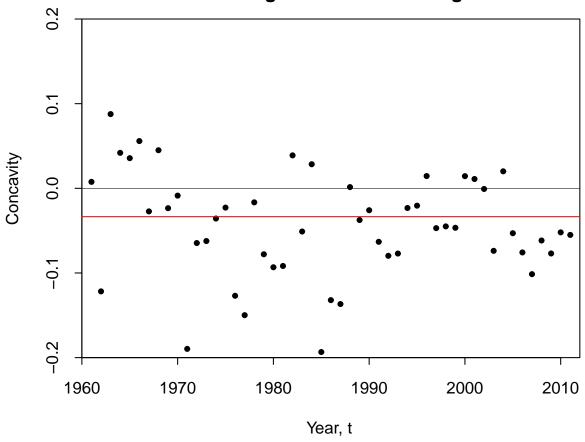
Log Death Rates: Deviation Between 1920 Cohort and the Average of its Nearest Neighbours



Signature plot: births pattern \Rightarrow true $E(t,x) < P(t+\frac{1}{2},x)$

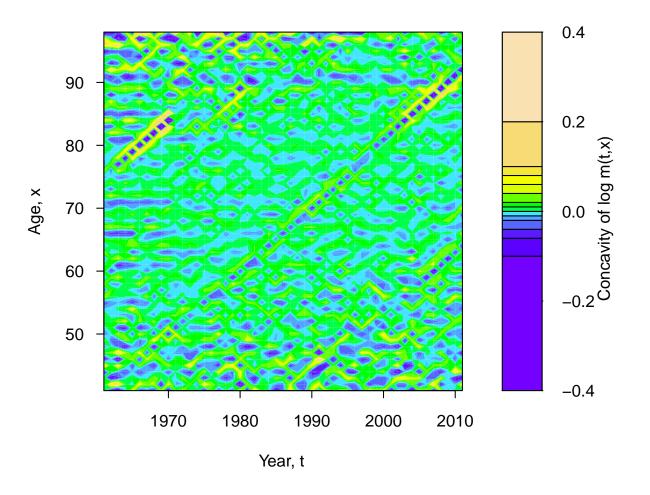
Concavity function: 1947 Cohort

Log Death Rates: Deviation Between 1947 Cohort and the Average of its Nearest Neighbours



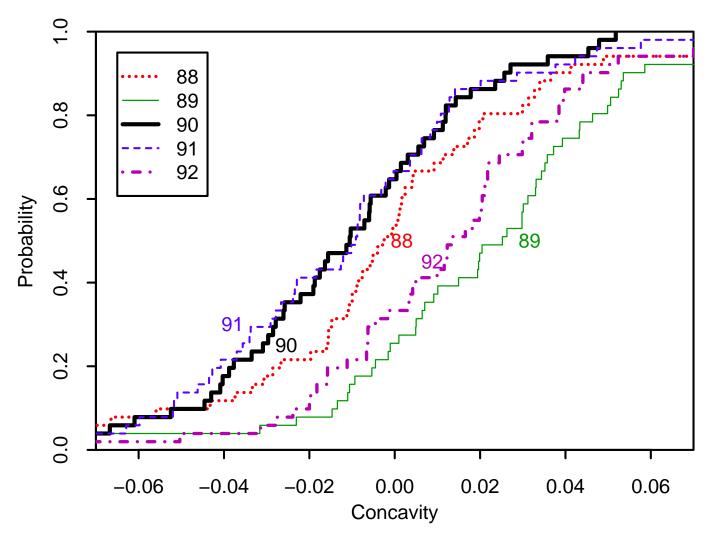
Dosts mostly below $0 \Rightarrow$ cause for concern

Concavity function in 2-Dimensions: Heat Map



Sampling variation \Rightarrow more extremes <50 and >90

Concavity Function: Empirical CDF's by Age; 88-92



Heat Map: by Age and Calendar Year

Identifiable non-random patterns

Signatures:

- ◆ Diagonals ⇒ issues with a cohort
- ◆ Horizontals ⇒ anomalies in reported age at death ???
- Age at death errors are more plausible than systematic age-dependent errors in exposures.
- Except: Prominent horizontal anomaly around 89/90

3.3: Graphical Diagnostic 3

Hypothesis: Changes in cohort population sizes should match pattern of reported deaths

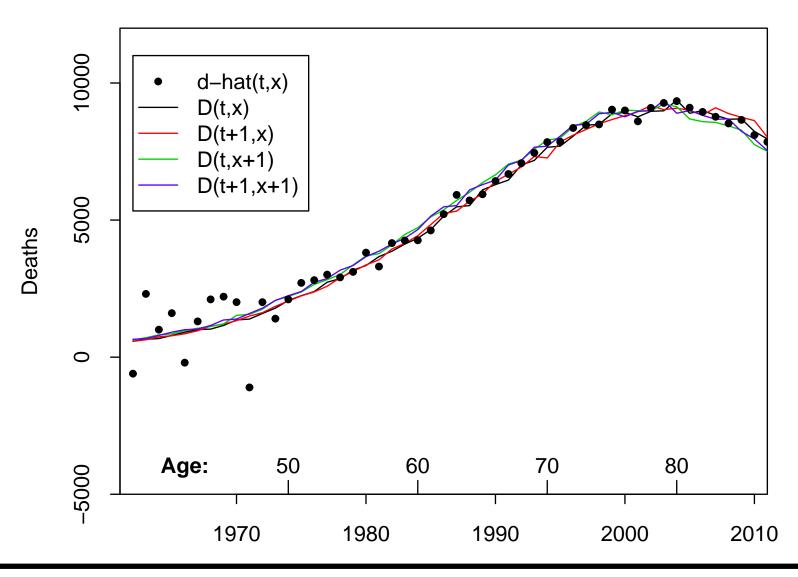
- Underlying data:
 - mid-year population, $P(t+\frac{1}{2},x)$
 - deaths in one calendar year, D(t,x)
- Define $\hat{d}(t + \frac{1}{2}, x) = P(t + \frac{1}{2}, x) P(t + \frac{3}{2}, x + 1)$
- Plot $\hat{d}(t+\frac{1}{2},x)$ by cohort
- ullet Compare with surrounding D(t,x)
- ullet and D should be similar if little or no net migration (e.g. high ages)

Prior adjustments

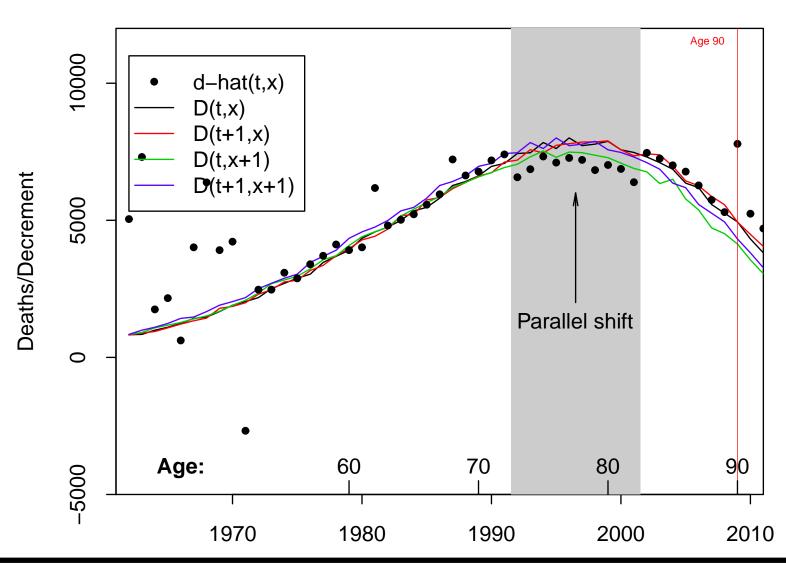
- Decrements: adjust for $E(t,x) \neq P(t+\frac{1}{2},x)$ $\Rightarrow \hat{d}(t+\frac{1}{2},x)$ multiplied by CAR(t-x)
- \bullet Cohorts ± 1 year: adjust for different birth rates

$$D(t, x + 1) \times E(t - x, 0) / E(t - x - 1, 0)$$
$$D(t + 1, x) \times E(t - x, 0) / E(t - x + 1, 0)$$

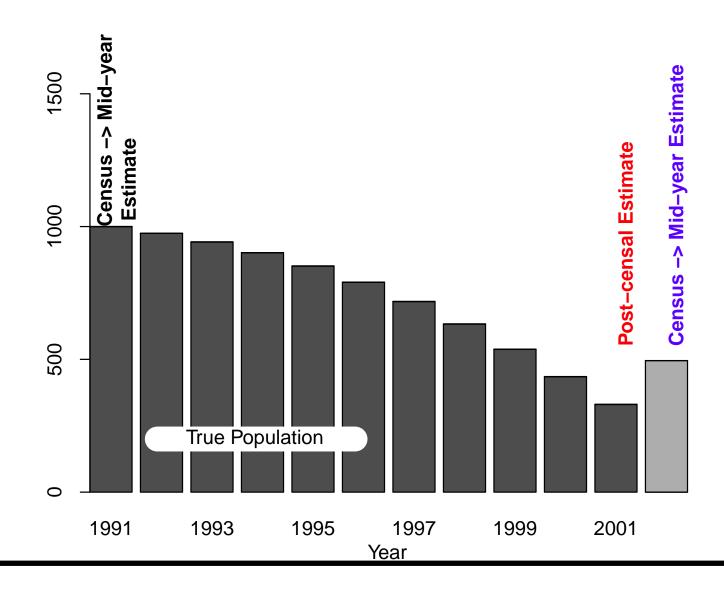
Standard Graphical Diagnostic 3: 1924 Cohort, Deaths Curve



Signature Plot: Backfilling the 1919 Cohort by ONS

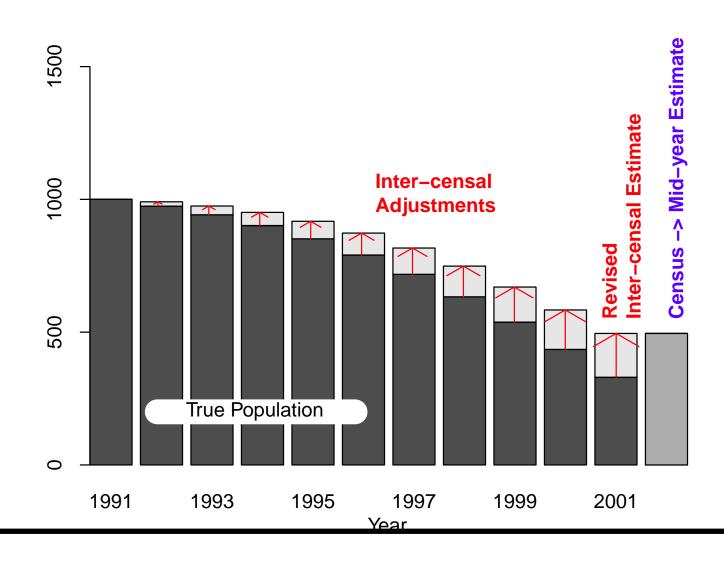


Possible Explanation: Census → Mid-year Pop Error 1919 cohort (stylized)

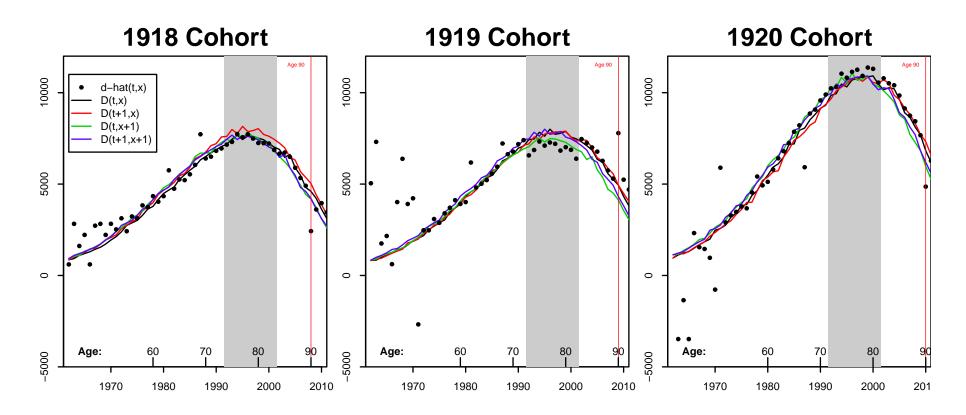


Factual Consquence: Backfilling (ONS Methodology)

1919 cohort (stylized)



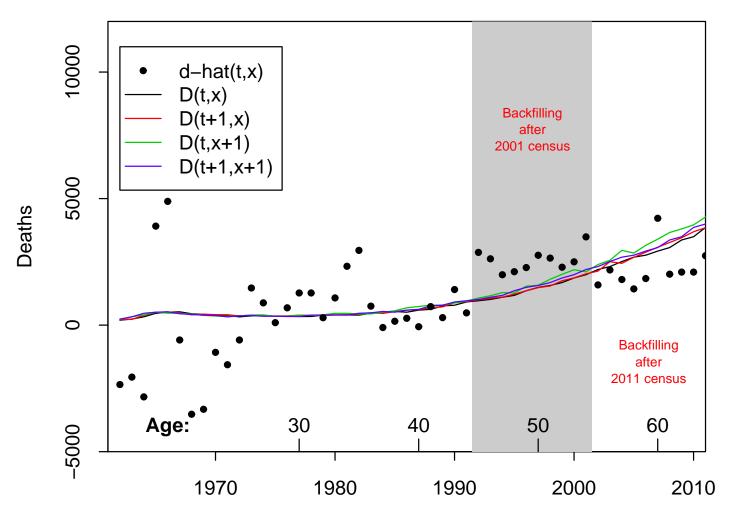
1918, 1919 and 1920 Cohorts, Deaths Curves



- 1920 cohort: similar shift in opposite direction
- Age 90 anomaly for all 3 cohorts ⇒ cause for concern

Signature Plot: Backfilling the 1947 Cohort

1947 Cohort



Again consistent with ONS versus CBD methodologies

3.4: Summary

- Errors remain in the ONS population data
- Combination of three graphical diagnostics highlight known anomalies (e.g.1919) and some unexpected discoveries (e.g. 1920, 1947 cohorts; age 89/90)
- Anomalies characterised by cohort and by age
- CBD Exposures Methodology can be used to improve estimates of exposures
- CBD Exposures Methodology explains the 1919 anomaly that has emerged since 1991

4: Model-Based Analysis of Historical Population Data

4.1: Proposed Solution: Bayesian Adjustment of Exposures

Bayesian prior hypotheses:

A: Death counts are accurate

B: Exposures are subject to errors

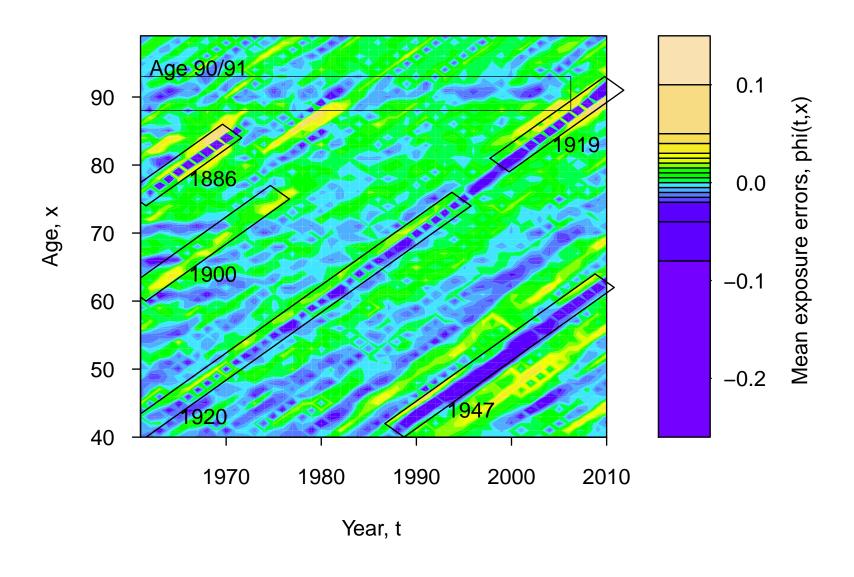
errors following cohorts are correlated through time

C: Within each calendar year:

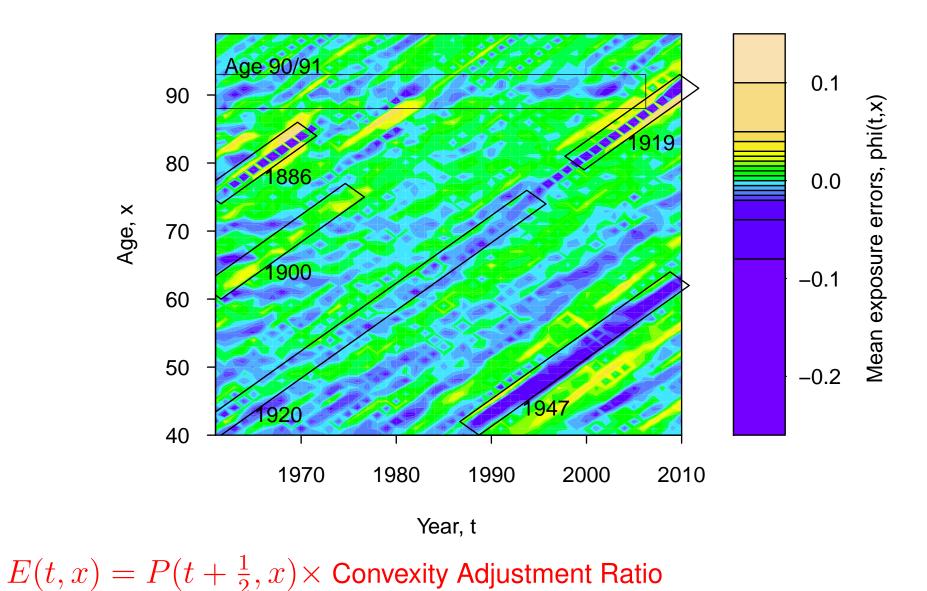
curve of underlying death rates is "smooth"

Adjust exposures to achieve a balance between B and C

4.2: Results: Assume $E(t,x)=P(t+\frac{1}{2},x)$ Mid-year Population



Exposures, E(t,x), Adjusted Using CBD Convexity Adjustment Ratio



4.3: Results 1

- Results confirm conclusions based on graphical diagnostics (e.g. problems with 1919, 1947 cohorts; age 89/90 boundary)
- Bayesian approach allows us to quantify rigorously the size of the error

Results 2

- CBD Exposures Methodology:
 - convexity adjustment for $E(t,x) \neq P(t+\frac{1}{2},x)$ explains 1920 anomaly
 - CBD dampens other anomalies (e.g. 1947 cohort)
- Other anomalies remain but we have some explanations
 - 1919 cohort explained by 2001 census + backfilling
 - age 89/90 ⇒ issues with Kannisto-Thatcher methodology
 - e.g. ages 70, 80 \Rightarrow potential bias in reporting of age at death
- 1947 (1940-1960) cohort(s) should be seen as an issue financially

6: Conclusions and Next Steps

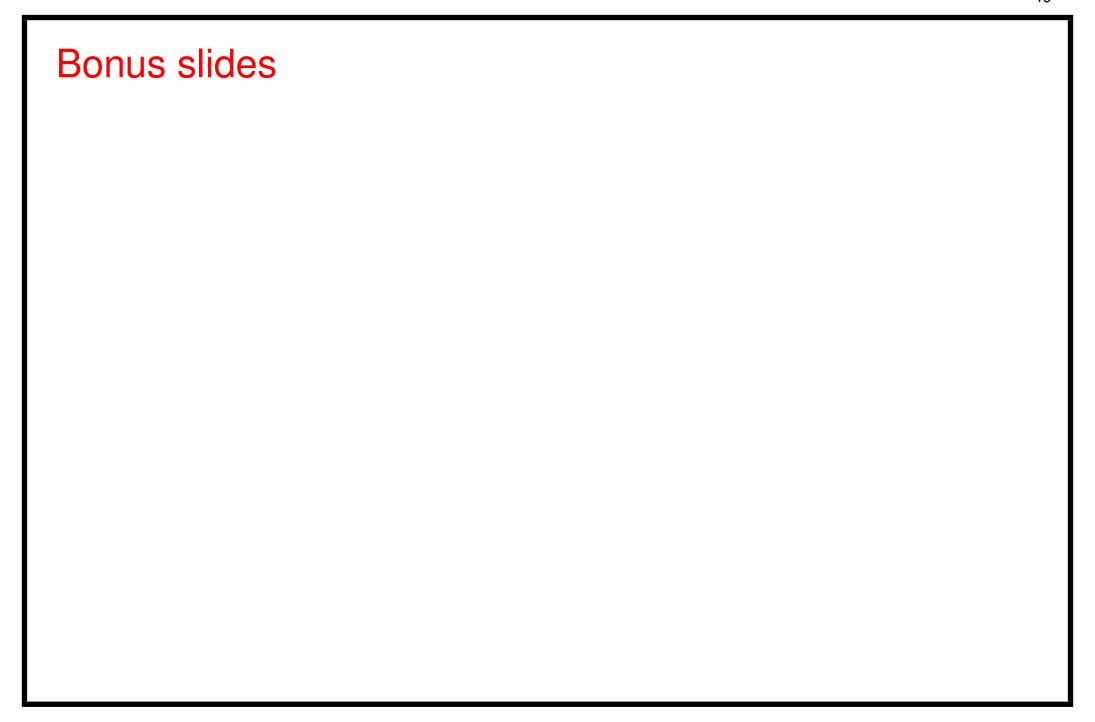
- Significant errors remain in EW males data
- Similar issues with females data
- Errors will exist in data for many other countries
- CBD Exposures Methodology can be used to mitigate errors in exposures
 - census-to-mid-year adjustment
 - mid-year population to exposures: CAR
 - Use exact date of birth in the census questionnaire!
- Kannisto-Thatcher high age methodology needs revisiting
- Financial impact: post WW-2 cohorts need special consideration

Thank you!

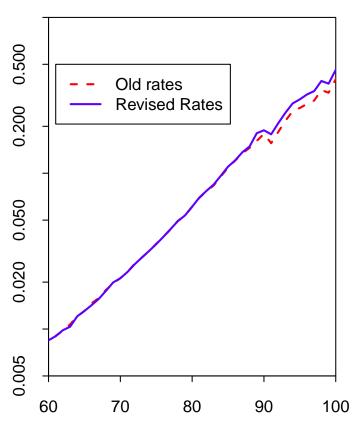
Questions?

Paper online:

 $\verb|http://www.macs.hw.ac.uk/\sim| and rewc/papers/ajgc71.pdf|$



Impact of Population Revisions on Mortality Rates



EW Males Mortality Rates in 2010 Ratio of revised rates to old rates

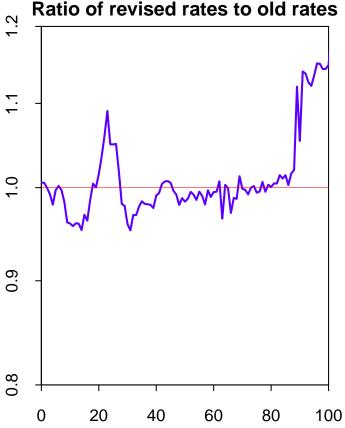
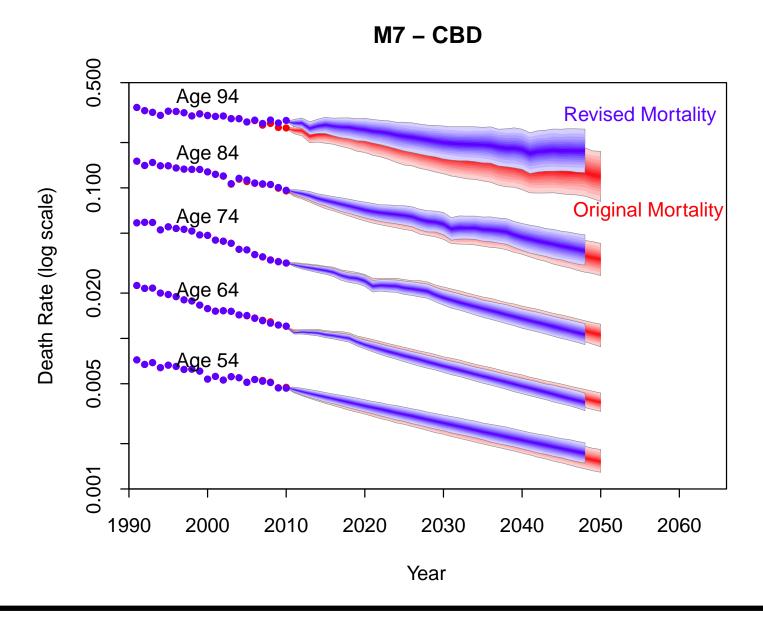
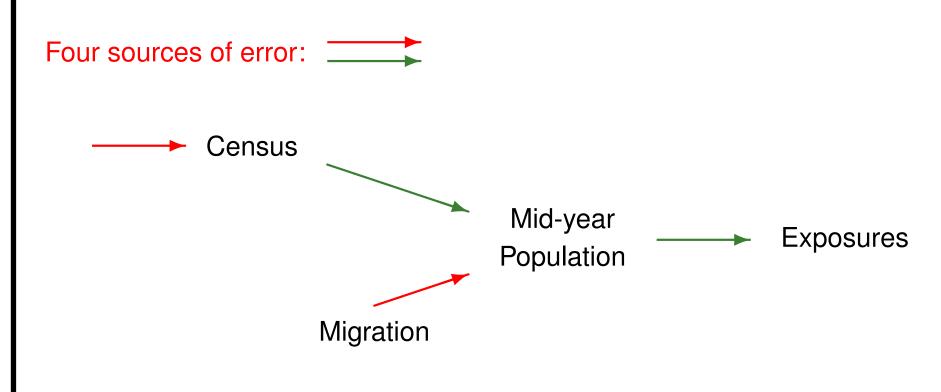


Figure 1:

Types of Impact: Base Table; Central Trend; Future Uncertainty

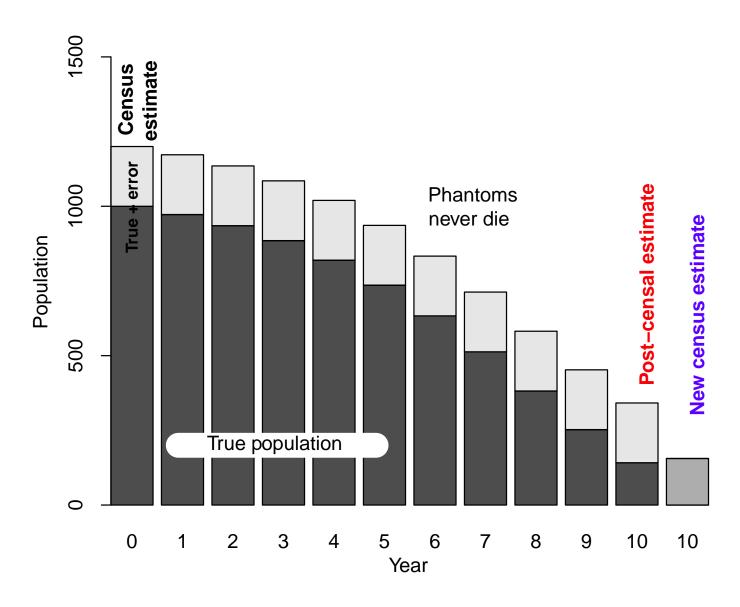


Where Can Errors in E(t,x) Occur?

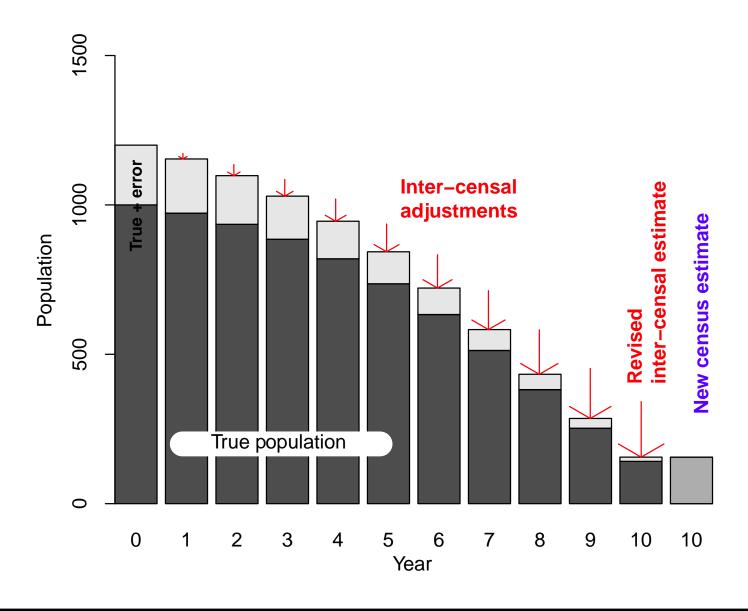


Errors that can be mitigated using CBD Exposures Methodology

Phantoms Never Die

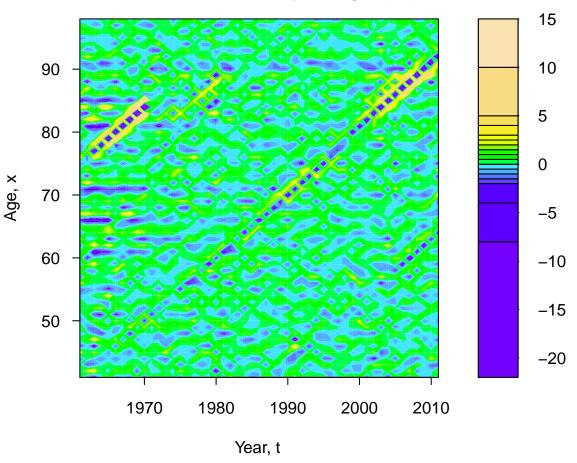


Factual Consquence: Backfilling (ONS Methodology)



Same Data in 2-Dimensions: Heat Map – Normalised

Normalised Concavity of log m(t,x)



Sampling variation \Rightarrow more extremes <50 and >90

Why Use a Bayesian Approach

- Coherent framework within which we can
 - build in prior beliefs (hypotheses A, B, C)
- Output ⇒ straightforward to assess impact of parameter uncertainty