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Plan

• Introduction and motivation for multi-population

modelling

• Danish population data

• Modelling Danish sub-population mortality

• Applications
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1. Motivation for multi-population modelling

A: Risk assessment

• Multi-country (e.g. consistent demographic projections)

• Males/Females (e.g. consistent demographic projections)

• Socio-economic subgroups (e.g. blue or white collar)

• Smokers/Non-smokers

• Annuities/Life insurance

• Limited data ⇒ learn from other populations

→ reserving calculations; diversification benefits
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Motivation for multi-population modelling
B: Risk management for pension plans and insurers

• Retain systematic mortality risk; versus:

• ‘Over-the-counter’ deals (e.g. longevity swap)

• Standardised mortality-linked securities

– linked to national mortality index

– < 100% risk reduction: basis risk
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Multi-Population Challenges

• Data availability

• Data quality and depth

• Model complexity

– single population models can be complex

– 2-population versions are more complex

– multi-pop ......

• Multi-population modelling requires

– (fairly) simple single-population models

– simple dependencies between populations
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2. A New Case Study and a New Model

• Sub-populations differ from national population

– socio-economic factors

– other factors

• Denmark

– High quality data on ALL residents

– 1981-2005 available (later data soon)

– Can subdivide population using covariates on the

database
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Danish Data

• What can we learn from Danish data that will inform us

about other populations?

• Key covariates

– Wealth

– Income

• Affluence = Wealth+15×Income
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Problem

• High income ⇒ “affluent” and low mortality BUT

• Low income ⇒/ not affluent, high mortality

• High wealth ⇒ “affluent” and low mortality BUT

• Low wealth ⇒/ not affluent, high mortality

Empirical solution: use a combination

• Affluence, A = wealth +K× income

•K = 15 seems to work well statistically as a predictor

• Low affluence, A, predicts poor mortality
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Subdividing Data (after much experimentation!)

• Males resident in Denmark for the previous 12 months

• Divide population in year t

– into 10 equal sized Groups (approx)

– using affluence, A

• Individuals can change groups up to age 67

• Group allocations are locked down at age 67

(better than not locking down at age 67)
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Crude death rates 2005

60 70 80 90

0.
00

2
0.

01
0

0.
05

0
0.

20
0

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

Males Crude m(t,x); 2005

Age

m
(t

,x
) 

(lo
g 

sc
al

e)

10



Modelling the death rates, mk(t, x)

m(k)(t, x) = pop. k death rate in year t at age x

Population k, year t, age x

logm(k)(t, x) = β(k)(x) + κ
(k)
1 (t) + κ

(k)
2 (t)(x− x̄)

(Extended CBD with a non-parametric base table, β(k)(x))

• 10 groups, k = 1, . . . , 10 (low to high affluence)

• 21 years, t = 1985, . . . , 2005

• 40 ages, x = 55, . . . , 94
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Model-Inferred Underlying Death Rates 2005

60 70 80 90

0.
00

2
0.

01
0

0.
05

0
0.

20
0

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

Males Crude m(t,x); 2005

Age

m
(t

,x
) 

(lo
g 

sc
al

e)

60 70 80 90
0.

00
2

0.
01

0
0.

05
0

0.
20

0

Males CBD−X Fitted m(t,x); 2005

Age

m
(t

,x
) 

(lo
g 

sc
al

e)

12



Modelling the death rates, mk(t, x)

logm(k)(t, x) = β(k)(x) + κ
(k)
1 (t) + κ

(k)
2 (t)(x− x̄)

• Model fits the 10 groups well without a cohort effect

• Non-parametric β(k)(x) is essential to preserve group

rankings

– Rankings are evident in crude data

– “Bio-demographical reasonableness”:

more affluent ⇒ healthier
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Model-Inferred Underlying Death Rates 2005
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• Gap reduces from over 6× to 1.5×

• Or +17 years difference for Group 1, age 55; +11 at 67.

• Convergence ⇒ way ahead for modelling very high ages???
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Life Expectancy for Groups 1 to 10
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3. Applications

• Coherent forecasting

• Mortality

• Cohort survivorship

• Annuity risk measurement

• Hedging: customised versus index-linked hedges
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Time series modelling

• t → t + 1: Allow for correlation

– between κ
(k)
1 (t + 1) and κ

(k)
2 (t + 1)

– between groups k = 1, . . . , 10

• Medium/long term:

group specific period effects gravitate towards the

national trend

⇒ Bio-demographical reasonableness:

groups should not diverge
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Simulated Group versus Population Mortality, q(t, x)
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As T increases: +1 year; +5 years; +25years

• Scatterplots become more dispersed

• Shift down and to the left

• Correlation increasess
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Forecast Correlations: Mortality Rates

2010 2015 2020 2025 2030

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Year

R
an

k 
C

or
re

la
tio

n Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

Correlation Between Group q(t,75) and Total Population q(t,75)

19



Forecast Correlations

• Deciles are quite narrow subgroups

More diversified e.g.

• Blue collar pension plan

⇒ equal proportions of groups 2, 3, 4

• White collar pension plan

⇒ equal proportions of groups 8, 9, 10

• Mixed pension plan

⇒ amounts proportional to (0, 0, 1, 2, 3, 4, 5, 6, 7, 8)
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Forecast Correlations: Mortality Rates
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Cohort Survivorship

What proportion of a group survive from age 65 at time 0

to time t?

• SX(t, 65)

• Groups 1 to 10 individually

• Blue collar plan

• White collar plan

• Mixed plan

Compare with the national population
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Cohort Survivorship: Fan Charts
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Cohort Survivorship: Individual Scenarios
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Cohort Survivorship: Changing Population Mix
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Forecast Correlations: Cohort Survivorship
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Forecast Correlations: Cohort Survivorship, 3 Plans
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Comments

• Are the differences between groups shocking?

• Are the differences between groups surprising?

• www.ubble.co.uk
– What is your probability of survival for the next 5 years?
– Various health and lifestyle questions; sex and age
– Output: what is your effective age?
– e.g. “Typical” Research Actuary, male, aged 48

5-year survival probability is:
the same as an “average” male aged 33

– Difference is consistent with Danish Males, Group 10 versus

the average
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Annuities from Age 65: Present Values (PV)

Group/Plan Mean P.V. Correlation with

National Population

National 13.03 1.000

Group 1 10.34 0.805

Group 10 14.95 0.849

Blue Collar 11.95 0.938

White Collar 14.55 0.947

Mixed 14.06 0.985
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Annuities from Age 65: Present Values (PV)

What is the relevance of annuity correlations?

• Risk management of longevity risk

• Customised versus Index-linked hedges

• > 94% correlation means a well designed index-linked hedge

can be very effective.

• Choice depends on

– Risk appetite (all schemes > 0!)

– Scheme size: accessibility of customised transactions

– Scheme size: small population risk
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4. Summary

• Danish data allows insight into relative mortality

dynamics between socio-economic sub-populations

• Conclusions for other countries likely to be similar

• Results allow us to explore many risk measurement

and risk management applications

Working paper available soon.

E: A.J.G.Cairns@hw.ac.uk W: www.macs.hw.ac.uk/∼andrewc
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