MULTI-POPULATION MORTALITY MODELLING:

A Danish Case Study

Andrew Cairns

Heriot-Watt University,

and The Maxwell Institute, Edinburgh

Joint work with D. Blake, K. Dowd, M. Kallestrup-Lamb, C. Rosenskjold

Pensions Conference, Glasgow, June 2015

Plan

- Introduction and motivation for multi-population modelling
- Danish population data
- Modelling Danish sub-population mortality
- Applications

- 1. Motivation for multi-population modelling
- A: Risk assessment
- Multi-country (e.g. consistent demographic projections)
- Males/Females (e.g. consistent demographic projections)
- Socio-economic subgroups (e.g. blue or white collar)
- Smokers/Non-smokers
- Annuities/Life insurance
- Limited data \Rightarrow learn from other populations
- \rightarrow reserving calculations; diversification benefits

Motivation for multi-population modelling

B: Risk management for pension plans and insurers

- Retain systematic mortality risk; versus:
- 'Over-the-counter' deals (e.g. longevity swap)
- Standardised mortality-linked securities
 - linked to national mortality index
 - <100% risk reduction: basis risk

Multi-Population Challenges

- Data availability
- Data quality and depth
- Model complexity
 - single population models can be complex
 - 2-population versions are more complex
 - multi-pop
- Multi-population modelling requires
 - (fairly) simple single-population models
 - simple dependencies between populations

2. A New Case Study and a New Model

- Sub-populations differ from national population
 - socio-economic factors
 - other factors
- Denmark
 - High quality data on ALL residents
 - 1981-2005 available (later data soon)
 - Can subdivide population using covariates on the database

Danish Data

• What can we learn from Danish data that will inform us about other populations?

- Key covariates
 - Wealth
 - Income
- Affluence = Wealth+ $15 \times Income$

Problem

- High income \Rightarrow "affluent" and low mortality BUT
- Low income \Rightarrow not affluent, high mortality
- High wealth \Rightarrow "affluent" and low mortality BUT
- Low wealth \Rightarrow not affluent, high mortality

Empirical solution: use a combination

- Affluence, $A = \text{wealth} + K \times \text{income}$
- K = 15 seems to work well *statistically* as a predictor
- Low affluence, A, predicts poor mortality

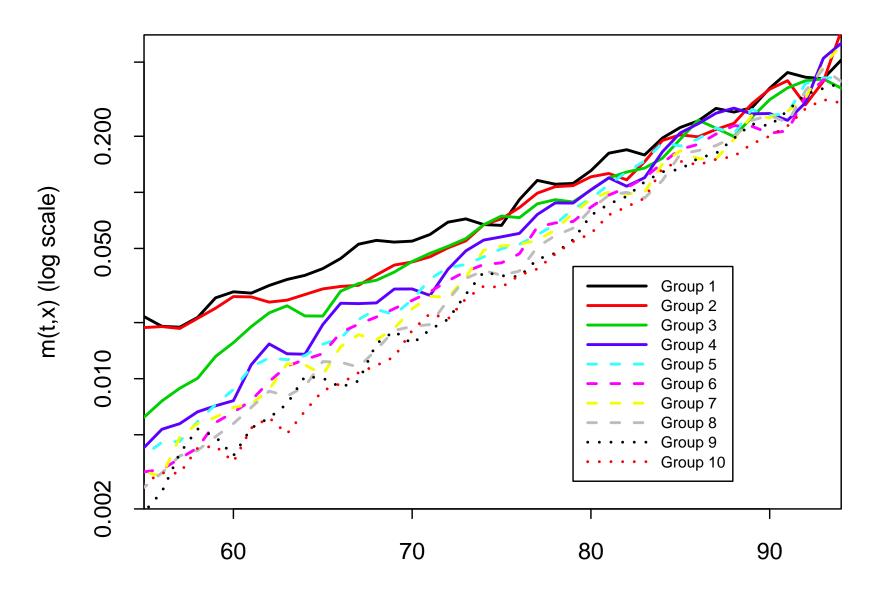
Subdividing Data (after much experimentation!)

- Males resident in Denmark for the previous 12 months
- Divide population in year t
 - into 10 equal sized Groups (approx)
 - using *affluence*, A
- Individuals can change groups up to age 67
- Group allocations are locked down at age 67

(better than not locking down at age 67)

Crude death rates 2005

Males Crude m(t,x); 2005



10 Age

Modelling the death rates, $m_k(t, x)$ $m^{(k)}(t, x) = \text{pop. } k$ death rate in year t at age xPopulation k, year t, age x

$$\log m^{(k)}(t,x) = \beta^{(k)}(x) + \kappa_1^{(k)}(t) + \kappa_2^{(k)}(t)(x-\bar{x})$$

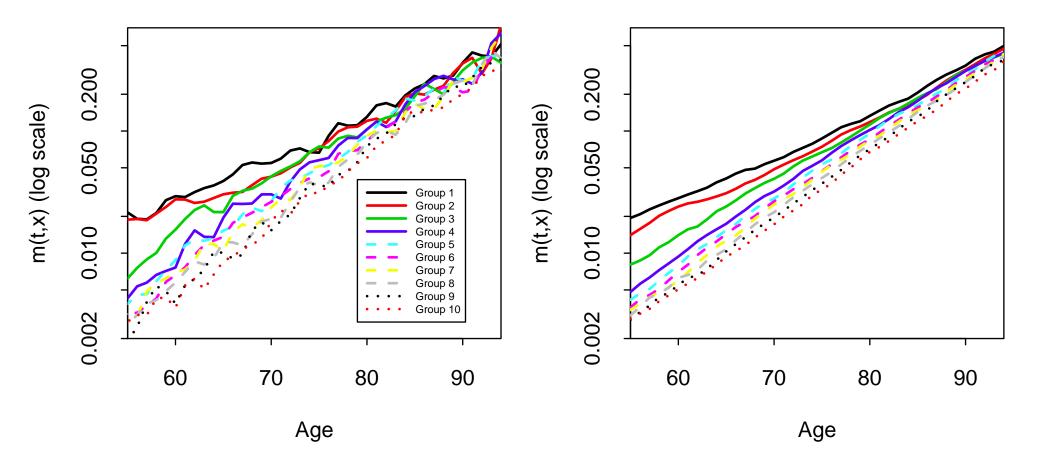
(Extended CBD with a non-parametric base table, $\beta^{(k)}(x)$)

- 10 groups, $k = 1, \ldots, 10$ (low to high affluence)
- 21 years, $t = 1985, \ldots, 2005$
- 40 ages, $x = 55, \dots, 94$

Model-Inferred Underlying Death Rates 2005

Males Crude m(t,x); 2005

Males CBD–X Fitted m(t,x); 2005



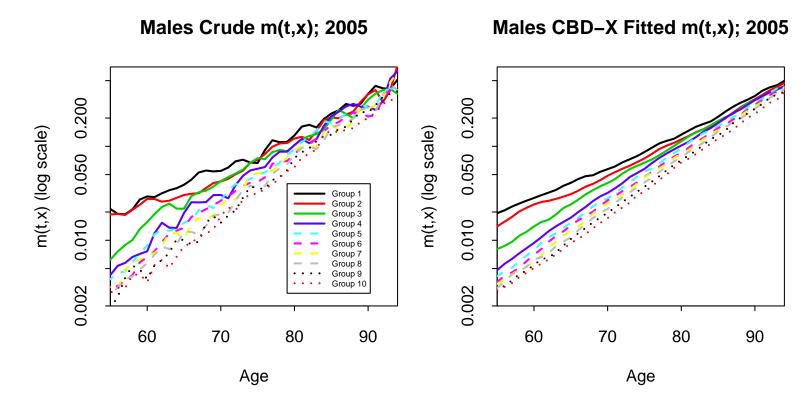
Modelling the death rates, $m_k(t, x)$

$$\log m^{(k)}(t,x) = \beta^{(k)}(x) + \kappa_1^{(k)}(t) + \kappa_2^{(k)}(t)(x-\bar{x})$$

- Model fits the 10 groups well without a cohort effect
- Non-parametric $\beta^{(k)}(x)$ is essential to preserve group rankings
 - Rankings are evident in crude data
 - "Bio-demographical reasonableness":

more affluent \Rightarrow healthier

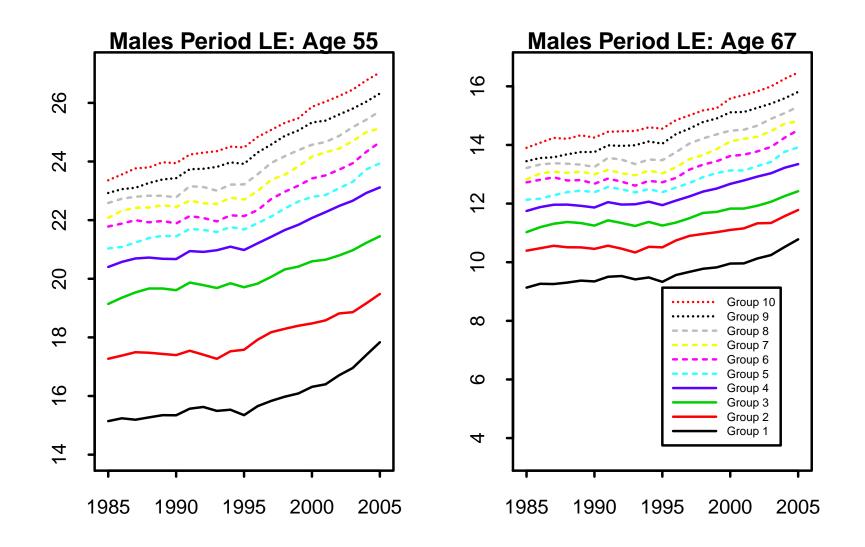
Model-Inferred Underlying Death Rates 2005



• Gap reduces from over $6\times$ to $1.5\times$

- Or +17 years difference for Group 1, age 55; +11 at 67.
- Convergence \Rightarrow way ahead for modelling very high ages???

Life Expectancy for Groups 1 to 10



3. Applications

- Coherent forecasting
- Mortality
- Cohort survivorship
- Annuity risk measurement
- Hedging: customised *versus* index-linked hedges

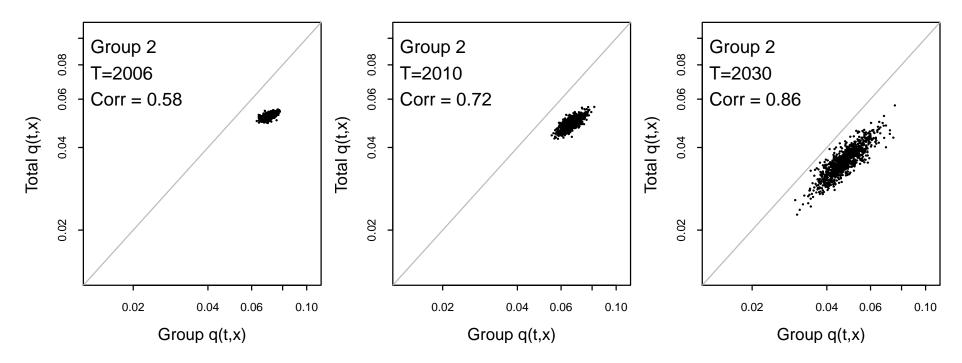
Time series modelling

- $t \rightarrow t + 1$: Allow for correlation
 - between $\kappa_1^{(k)}(t+1)$ and $\kappa_2^{(k)}(t+1)$
 - between groups $k=1,\ldots,10$
- Medium/long term:

group specific period effects gravitate towards the national trend

⇒ Bio-demographical reasonableness: groups should not diverge

Simulated Group versus Population Mortality, q(t, x)

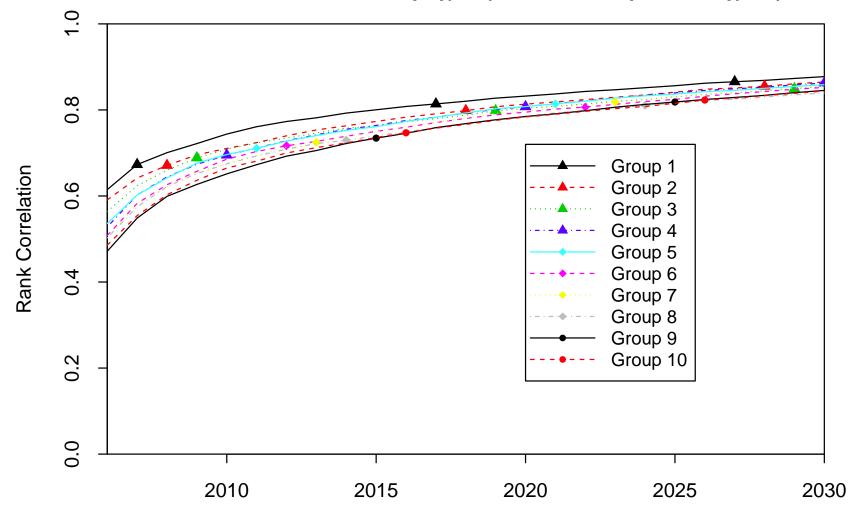


As T increases: +1 year; +5 years; +25years

- Scatterplots become more dispersed
- Shift down and to the left
- Correlation increasess

Forecast Correlations: Mortality Rates

Correlation Between Group q(t,75) and Total Population q(t,75)



Year

Forecast Correlations

• Deciles are quite narrow subgroups

More diversified e.g.

• Blue collar pension plan

 \Rightarrow equal proportions of groups 2, 3, 4

• White collar pension plan

 \Rightarrow equal proportions of groups 8, 9, 10

• Mixed pension plan

 \Rightarrow amounts proportional to (0, 0, 1, 2, 3, 4, 5, 6, 7, 8)

Forecast Correlations: Mortality Rates

Correlation Between Group q(t,75) and Total Population q(t,75) 1.0 0.8 Mixed Plan Rank Correlation Blue Collar Plan 0.6 White Collar Plan Group 2 Group 6 Group 9 0.4 0.2 0.0 2010 2015 2020 2025 2030

Cohort Survivorship

What proportion of a group survive from age 65 at time 0 to time t?

- $S_{\mathbf{X}}(t, 65)$
- Groups 1 to 10 individually
- Blue collar plan
- White collar plan
- Mixed plan

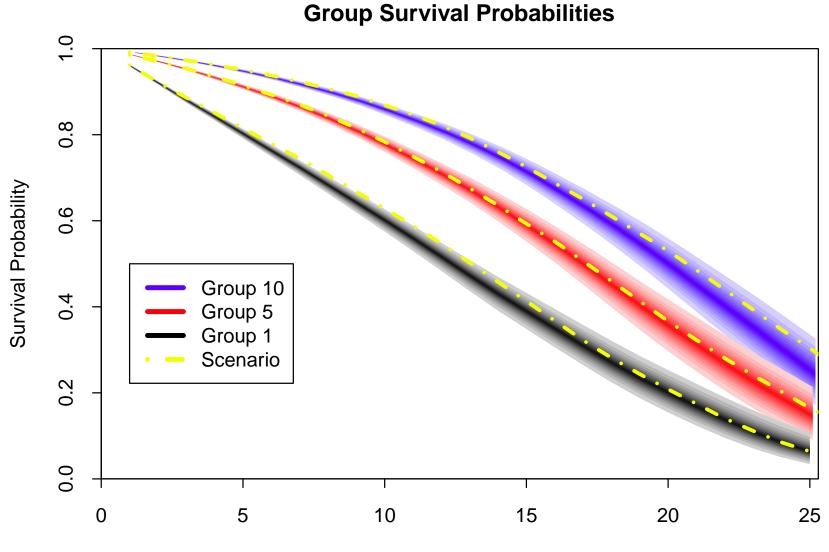
Compare with the national population

Cohort Survivorship: Fan Charts

Group Survival Probabilities 1.0 0.8 Survival Probability 0.6 Group 10 0.4 Group 5 Group 1 0.2 0.0 0 5 10 15 20 25

Survival Time Horizon (years)

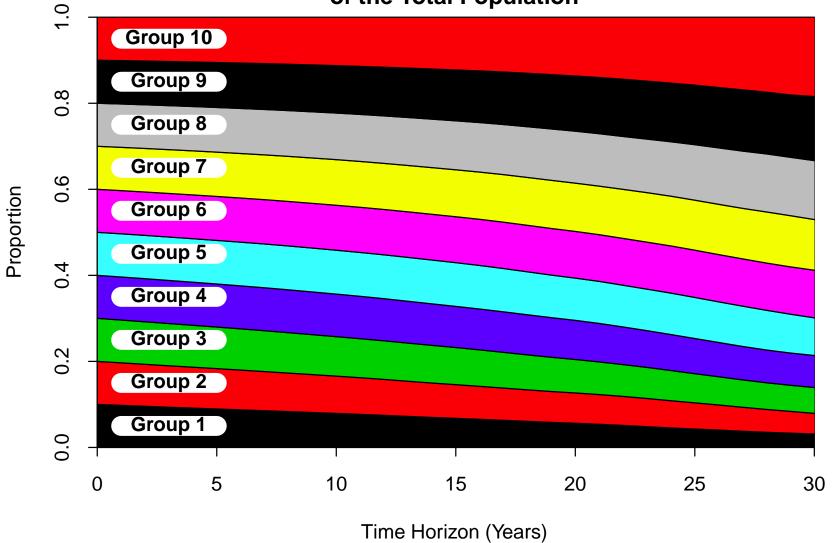
Cohort Survivorship: Individual Scenarios



Survival Time Horizon (years)

Cohort Survivorship: Changing Population Mix

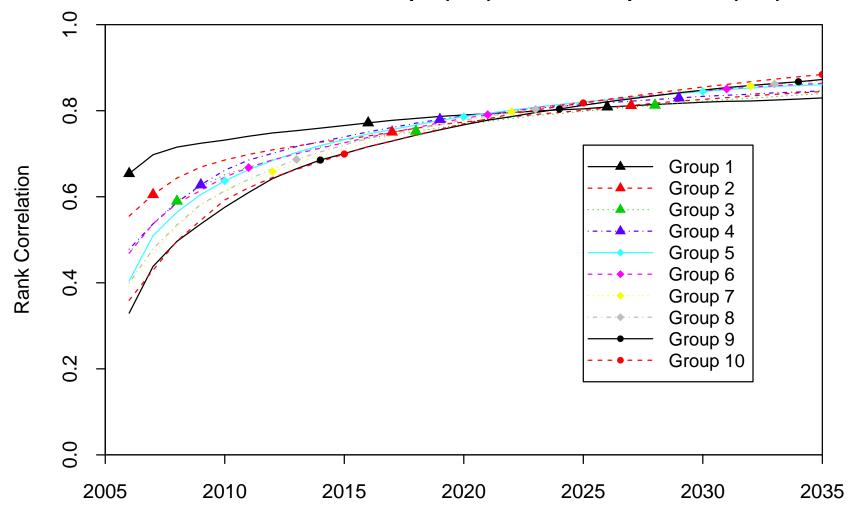
Groups 1 to 10 as a Proportion of the Total Population



25

Forecast Correlations: Cohort Survivorship

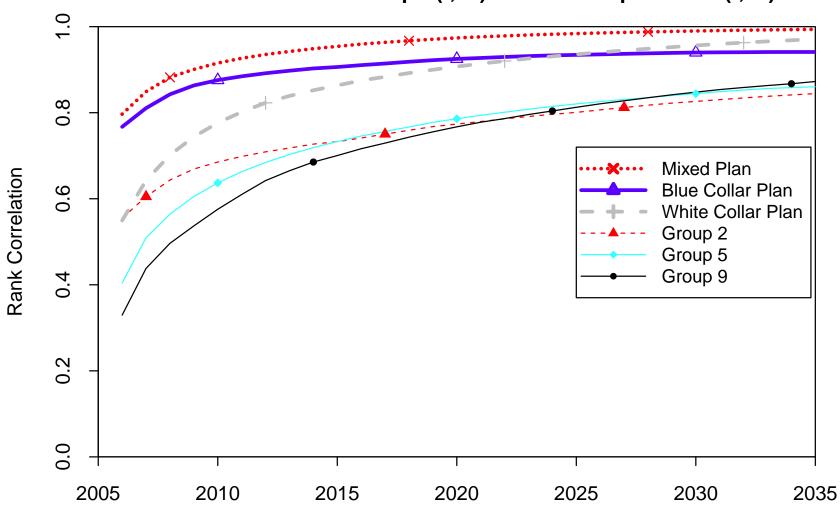
Correlation Between Group S(t,65) and Total Population S(t,65)



Year

26

Forecast Correlations: Cohort Survivorship, 3 Plans



Correlation Between Group S(t,65) and Total Population S(t,65)

Year

Comments

- Are the differences between groups shocking?
- Are the differences between groups surprising?
- www.ubble.co.uk
 - What is your probability of survival for the next 5 years?
 - Various health and lifestyle questions; sex and age
 - Output: what is your effective age?
 - e.g. "Typical" Research Actuary, male, aged 48
 5-year survival probability is:

the same as an "average" male aged 33

 Difference is consistent with Danish Males, Group 10 versus the average

Annuities from Age 65: Present Values (PV)

Group/Plan	Mean P.V.	Correlation with
		National Population
National	13.03	1.000
Group 1	10.34	0.805
Group 10	14.95	0.849
Blue Collar	11.95	0.938
White Collar	14.55	0.947
Mixed	14.06	0.985

Annuities from Age 65: Present Values (PV)

What is the relevance of annuity correlations?

- Risk management of longevity risk
- Customised *versus* Index-linked hedges
- $\bullet > 94\%$ correlation means a well designed index-linked hedge can be very effective.
- Choice depends on
 - Risk appetite (all schemes > 0!)
 - Scheme size: accessibility of customised transactions
 - Scheme size: small population risk

4. Summary

- Danish data allows insight into relative mortality dynamics between socio-economic sub-populations
- Conclusions for other countries likely to be similar
- Results allow us to explore many risk measurement and risk management applications

Working paper available soon.

E: A.J.G.Cairns@hw.ac.uk W: www.macs.hw.ac.uk/~andrewc