MULTI-POPULATION MORTALITY MODELLING Danish data and Basis Risk

Andrew Cairns

Heriot-Watt University, Scotland

and

The Maxwell Institute, Edinburgh

Joint work with

David Blake, Kevin Dowd, Malene Kallestrup-Lamb and Carsten Rosenskjold

Plan

- Motivation and challenges
- Danish males data
 - 10 sub-populations grouped by affluence
- An extended CBD multi-population model
- Bayesian implementation and results

Motivation for multi-population modelling

A: Risk assessment

- Multi-country (e.g. consistent demographic projections)
- Males/Females (e.g. consistent demographic projections)
- Socio-economic subgroups (e.g. blue or white collar)
- Smokers/Non-smokers
- Annuities/Life insurance
- Limited data ⇒ learn from other populations

Motivation for multi-population modelling

B: Risk management for pension plans and insurers

- Retain systematic mortality risk; versus:
- 'Over-the-counter' deals (e.g. longevity swap)
- Standardised mortality-linked securities
 - linked to national mortality index
 - < 100% risk reduction: basis risk

Challenges

- Data availability
- Data quality and depth
- Model complexity
 - single population models can be complex
 - 2-population versions are more complex
 - multi-pop
- Multi-population modelling requires
 - (fairly) simple single-population models
 - simple dependencies between populations

A New Case Study and a New Model

- Sub-populations differ from national population
 - socio-economic factors
 - geographical variation
 - other factors
- Denmark
 - High quality data on ALL residents
 - 1981-2005 available
 - Can subdivide population using covariates on the database

Danish Data

 What can we learn from Danish data that will inform us about other populations?

- Key covariates
 - Wealth
 - Income
- Affluence = Wealth $+15 \times$ Income

Problem

- ◆ High income ⇒ "affluent" and healthy BUT
- Low income

 → not affluent, poor health
- ◆ High wealth ⇒ "affluent" and healthy BUT

Solution: use a combination

- ullet Affluence, A= wealth $+K\times$ income
- \bullet K=15 seems to work well *statistically* as a predictor
- \bullet Low affluence, A, predicts poor mortality

Subdividing Data

- Males resident in Denmark for the previous 12 months
- Divide population in year t
 - into 10 equal sized Groups (approx)
 - using *affluence*, A
- Individuals can change groups up to age 67
- Group allocations are locked down at age 67

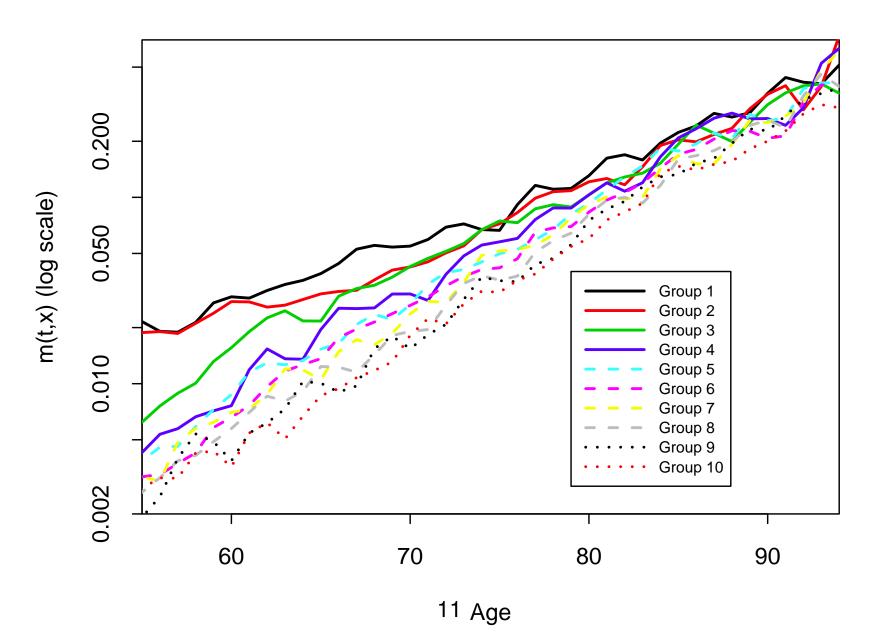
(better than not locking down at age 67)

Subdivided Data

- ullet Exposures $E^{(i)}(t,x)$ for groups $i=1,\ldots,10$ range from over 4000 down to 20
- \bullet Deaths $D^{(i)}(t,x)$ range from 150 down to 6
- \bullet Crude death rates $\hat{m}^{(i)}(t,x) = D^{(i)}(t,x)/E^{(i)}(t,x)$
- Small groups ⇒ Poisson risk is important

Crude death rates 2005

Males Crude m(t,x); 2005



Modelling the death rates, $m_k(t,x)$

 $m^{(k)}(t,x) = \text{pop. } k \text{ death rate in year } t \text{ at age } x$

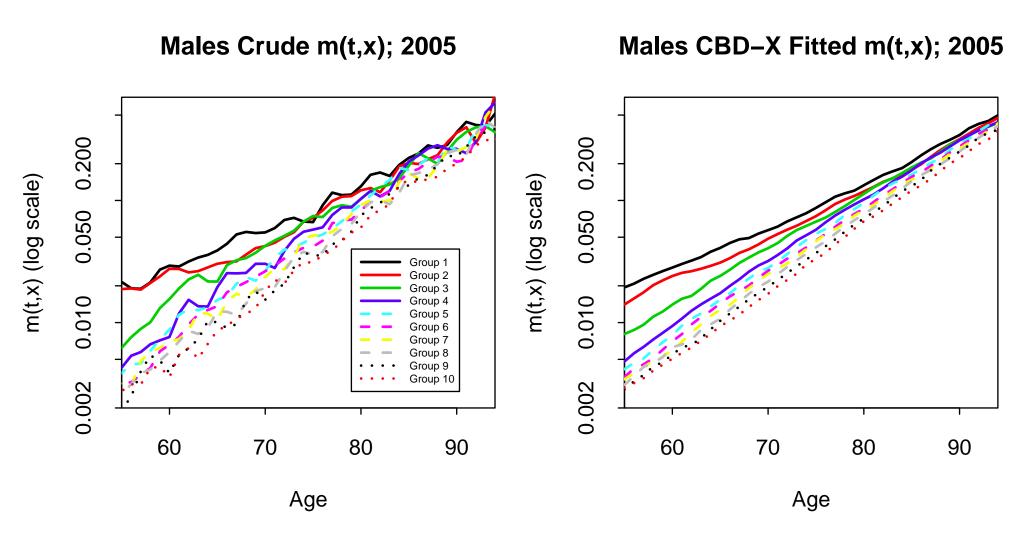
Population k, year t, age x

$$\log m^{(k)}(t,x) = \beta^{(k)}(x) + \kappa_1^{(k)}(t) + \kappa_2^{(k)}(t)(x - \bar{x})$$

(Extended CBD with a non-parametric base table, $\beta^{(k)}(x)$)

- 10 groups, $k=1,\ldots,10$ (low to high affluence)
- 21 years, $t = 1985, \dots, 2005$
- 40 ages, $x = 55, \dots, 94$

Model-Inferred Underlying Death Rates 2005



Modelling the death rates, $m_k(t,x)$

$$\log m^{(k)}(t,x) = \beta^{(k)}(x) + \kappa_1^{(k)}(t) + \kappa_2^{(k)}(t)(x - \bar{x})$$

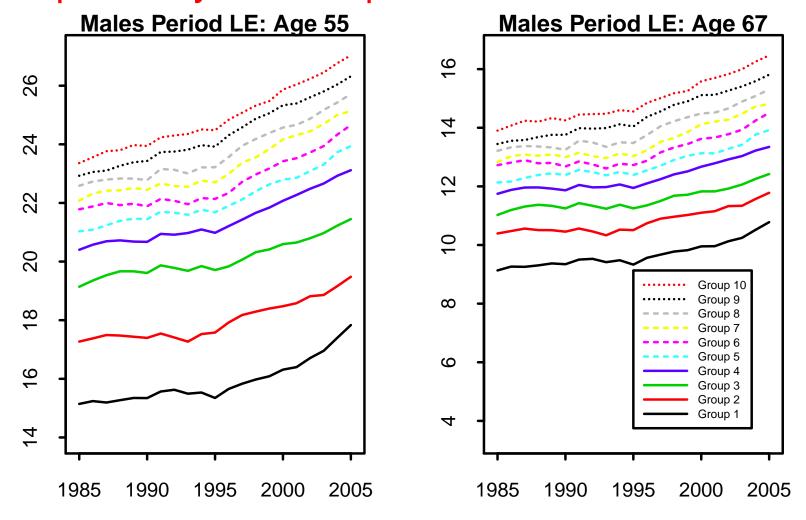
- Model fits the 10 groups well without a cohort effect
- \bullet Non-parametric $\beta^{(k)}(x)$ is essential to preserve group rankings
 - Rankings are evident in crude data
 - "Bio-demographical reasonableness":

more affluent \Rightarrow healthier

Time series modelling

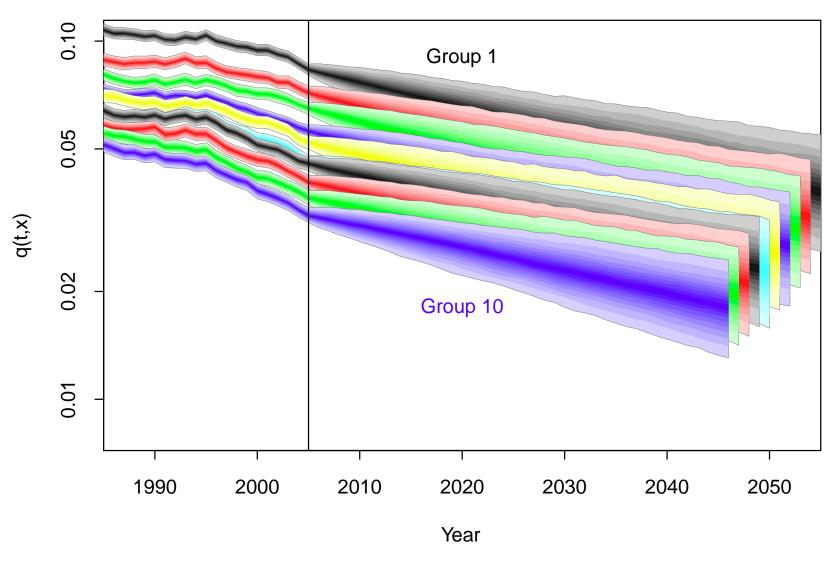
- $t \rightarrow t + 1$: Allow for correlation
 - between $\kappa_1^{(k)}(t+1)$ and $\kappa_2^{(k)}(t+1)$
 - between groups $k=1,\ldots,10$
- Bio-demographical reasonableness
 - ⇒ key hypothesis: groups should not diverge
 - ⇒ group specific period effects gravitate towards the national trend

Life Expectancy for Groups 1 to 10

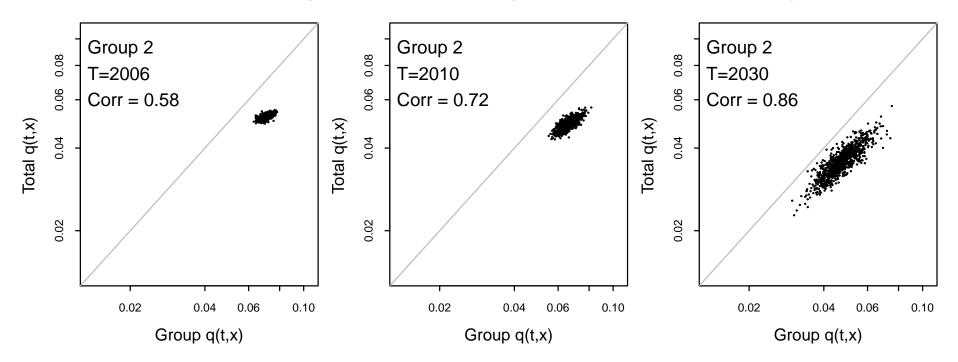


Mortality Fan Charts Including Parameter Uncertainty

Mortality Rates: Age 75



Simulated Group versus Population Mortality



As T increases

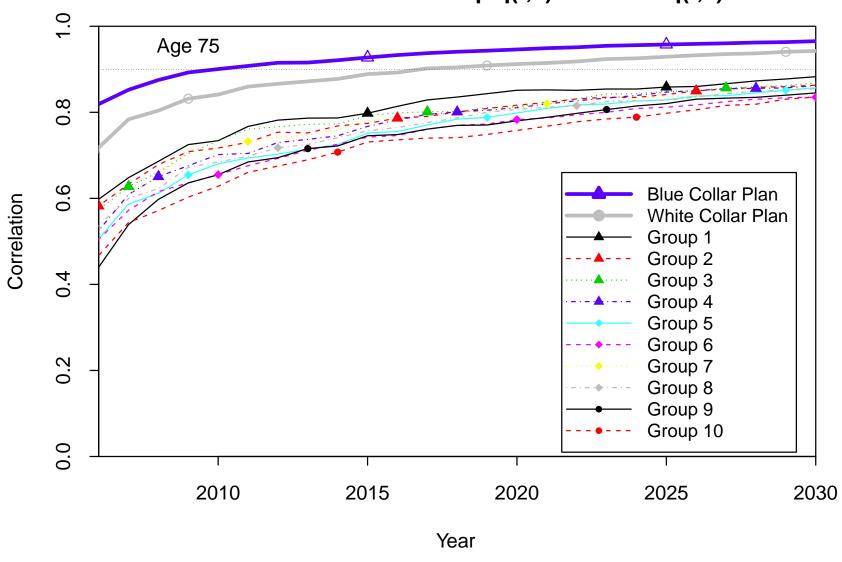
- Scatterplots become more dispersed
- Shift down and to the left
- Correlation increasess

Forecast Correlations

- Deciles are quite narrow subgroups
- Blue collar pension plan
 - \Rightarrow equal proportions of groups 2, 3, 4
- White collar pension plan
 - \Rightarrow equal proportions of groups 8, 9, 10

Forecast Correlations

Correlation Between Group q(t,x) and Total q(t,x)



Conclusions

- Development of a new multi-population dataset for Denmark strong bio-demographically reasonable group rankings based on a new measure of affluence
- Unlike multi-country data
 a priori ranking of affluence-related groups
- Proposal for a simple new multi-population model
- Strong correlations over medium to long term
- Correlations depend strongly on diversity of sub-population

Bonus Slides

A specific model

$$\begin{array}{lll} \kappa_1^{(i)}(t) &=& \kappa_1^{(i)}(t-1) + \mu_1 + Z_{1i}(t) & \text{(random walk)} \\ && -\psi\left(\kappa_1^{(i)}(t-1) - \bar{\kappa}_1(t-1)\right) & \text{(gravity between groups)} \\ \kappa_2^{(i)}(t) &=& \kappa_2^{(i)}(t-1) + \mu_2 + Z_{2i}(t) \\ && -\psi\left(\kappa_2^{(i)}(t-1) - \bar{\kappa}_2(t-1)\right) \end{array}$$

where

$$ar{\kappa}_1(t) = rac{1}{n} \sum_{i=1}^n \kappa_1^{(i)}(t)$$
 and $ar{\kappa}_2(t) = rac{1}{n} \sum_{i=1}^n \kappa_2^{(i)}(t)$

A specific model

$$\kappa_1^{(i)}(t) = \kappa_1^{(i)}(t-1) + \mu_1 + Z_{1i}(t) - \psi \left(\kappa_1^{(i)}(t-1) - \bar{\kappa}_1(t-1) \right)
\kappa_2^{(i)}(t) = \kappa_2^{(i)}(t-1) + \mu_2 + Z_{2i}(t) - \psi \left(\kappa_2^{(i)}(t-1) - \bar{\kappa}_2(t-1) \right)$$

Model structure \Rightarrow

- $(\bar{\kappa}_1(t), \bar{\kappa}_2(t)) \sim$ bivariate random walk
- \bullet Each $\kappa_1^{(i)}(t) \bar{\kappa}_1(t) \sim AR(1)$ reverting to 0
- \bullet Each $\kappa_2^{(i)}(t) \bar{\kappa}_2(t) \sim AR(1)$ reverting to 0
- $\beta^{(i)}(x)$ vs $\beta^{(j)}(x)$ \Rightarrow intrinsic group differences

Non-trivial correlation structure: between different ages and groups

$$\kappa_1^{(i)}(t) = \kappa_1^{(i)}(t-1) + \mu_1 + Z_{1i}(t) - \psi \left(\kappa_1^{(i)}(t-1) - \bar{\kappa}_1(t-1) \right)
\kappa_2^{(i)}(t) = \kappa_2^{(i)}(t-1) + \mu_2 + Z_{2i}(t) - \psi \left(\kappa_2^{(i)}(t-1) - \bar{\kappa}_2(t-1) \right)$$

The Z_{ki} are multivariate normal, mean 0 and

$$Cov(Z_{ki}, Z_{lj}) = \begin{cases} v_{kl} & \text{for } i = j \\ \rho v_{kl} & \text{for } i \neq j \end{cases}$$

 ${\color{blue} \rho}=$ cond. correlation between $\kappa_1^{(i)}(t)$ and $\kappa_1^{(j)}(t)$ etc.

Comments

- Model is very simple
 - One gravity parameter, $0<\psi<1$
 - One between-group correlation parameter,

$$0 < \rho < 1$$

- Many generalisations are possible
- But more parameters + more complex computing
- This simple model seems to fit quite well.
- Nevertheless ⇒ work in progress

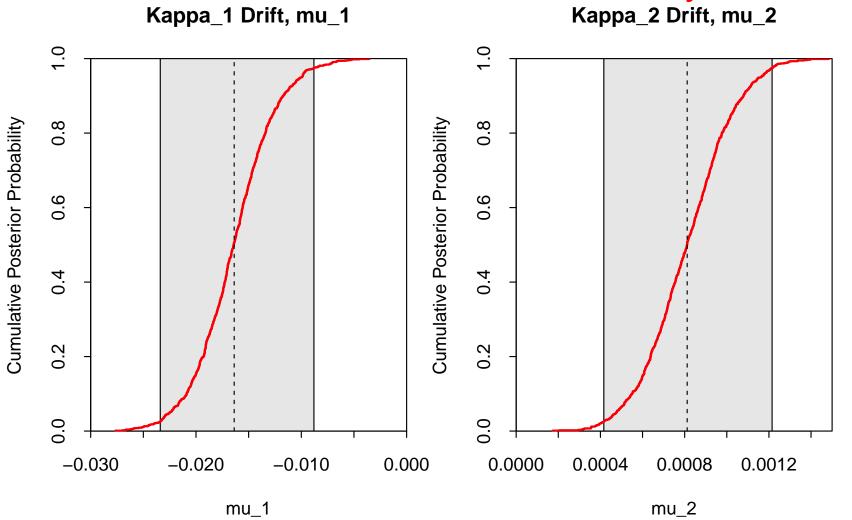
Prior distributions

- As uninformative as possible
- $\mu_1, \; \mu_2 \sim$ improper uniform prior
- $\{v_{ij}\}$ ~ Inverse Wishart
- $\bullet \ \rho \sim \text{Beta}(2,2)$
- $\bullet \ \psi \sim \mathrm{Beta}(2,2)$

State variables and process parameters estimated using

MCMC (Gibbs + Metropolis-Hastings)

Posterior Distributions and 95% Credibility Intervals



Note: $-\mu_1$ = global improvement rate

Posterior Distributions and 95% Credibility Intervals

