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Plan

e Motivation and challenges

e Danish males data

10 sub-populations grouped by affluence
e An extended CBD multi-population model

e Bayesian implementation and results



Motivation for multi-population modelling

A: Risk assessment

e Multi-country (e.g. consistent demographic projections)

e Males/Females (e.g. consistent demographic projections)
® Socio-economic subgroups (e.g. blue or white collar)

e Smokers/Non-smokers

e Annuities/Life insurance

e Limited data = learn from other populations



Motivation for multi-population modelling
B: Risk management for pension plans and insurers

e Retain systematic mortality risk; versus:
e ‘Over-the-counter’ deals (e.g. longevity swap)

e Standardised mortality-linked securities
— linked to national mortality index

— < 100% risk reduction: basis risk



Challenges

e Data availability
e Data quality and depth

e Model complexity
— single population models can be complex
— 2-population versions are more complex
— multi-pop ......

e Multi-population modelling requires
— (fairly) simple single-population models
— simple dependencies between populations



A New Case Study and a New Model

e Sub-populations differ from national population
— socio-economic factors
— geographical variation
— other factors

e Denmark
— High quality data on ALL residents
— 1981-2005 available
— Can subdivide population using covariates on the

database



Danish Data

e What can we learn from Danish data that will inform us

about other populations?

e Key covariates
— Wealth

— Income

e Affluence = Wealth+15XIncome
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Problem

High income = “affluent” and healthy BUT

_ow income =% not affluent, poor health

High wealth = “affluent” and healthy BUT

e Low wealth = not affluent, poor health

Solution: use a combination

e Affluence, A = wealth +/K X income

e { = 15 seems to work well statistically as a predictor

e Low affluence, A, predicts poor mortality
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Subdividing Data

e Males resident in Denmark for the previous 12 months
e Divide population in year ¢
— into 10 equal sized Groups (approx)

— using affluence, A
e Individuals can change groups up to age 67

e Group allocations are locked down at age 67

(better than not locking down at age 67)
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Subdivided Data
e Exposures £ (¢, z) for groupsi = 1, .. ., 10
range from over 4000 down to 20

e Deaths D')(t, x)

range from 150 down to 6
e Crude death rates 'V (¢, z) = DW(¢, )/ EW (¢, z)

e Small groups = Poisson risk is important
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Crude death rates 2005
Males Crude m(t,x); 2005

o
o
T
o
fonn) —
Q
S o
n Lo
o 2
@) o
N = Group 1
< = Group 2
=) m— Group 3
S = Group 4
S') Group 5
o = = = Group6
o Group 7
Group 8
...... Group 9
------ Group 10
AN
o
o | | | |
o
60 70 80 90

11 Age



Modelling the death rates, my(t, )
m*)(t, x) = pop. k death rate in year ¢ at age z

Population k, year ¢, age x
logm®)(t,z) = BN () + £17(t) + Ky (t) (v — 7)
(Extended CBD with a non-parametric base table, %) ()

e 10 groups, £k =1, ..., 10 (low to high affluence)
e 21 years, t = 1985, ..., 2005

@40 ages,r = HH,..., %
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m(t,x) (log scale)

Model-Inferred Underlying Death Rates 2005
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Modelling the death rates, my(t, )
logm®(t, ) = 8®)(z) + k)" () + K () (z — 7)
e Model fits the 10 groups well without a cohort effect
e Non-parametric [3 () (x) is essential to preserve group
rankings
— Rankings are evident in crude data

— “Bio-demographical reasonableness”.

more affluent = healthier
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Time series modelling

et — ¢+ 1l: Allow for correlation
— between /i%k) (t+ 1) and liék) (t+1)

— between groups k£ =1,...,10

e Bio-demographical reasonableness
—> key hypothesis: groups should not diverge
—> group specific period effects gravitate towards the

national trend
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Life Expectancy for Groups 1 to 10

Males Period LE: Age 55 Males Period LE: Age 67
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Mortality Fan Charts Including Parameter Uncertainty

Mortality Rates: Age 75
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Simulated Group versus Population Mortality
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e Scatterplots become more dispersed

e Shift down and to the left

e Correlation increasess
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Forecast Correlations

e Deciles are quite narrow subgroups

e Blue collar pension plan

—> equal proportions of groups 2, 3, 4

e White collar pension plan

—> equal proportions of groups 8, 9, 10
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Forecast Correlations

Correlation
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Conclusions

e Development of a new multi-population dataset for Denmark
strong bio-demographically reasonable group rankings
based on a new measure of affluence

e Unlike multi-country data
a priori ranking of affluence-related groups

e Proposal for a simple new multi-population model
e Strong correlations over medium to long term

e Correlations depend strongly on diversity of sub-population
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Bonus Slides
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A specific model
V) = &0 = 1) 4 1+ Zu(t) cancom e
(Kﬁ (t—1) — Ryt — 1)) vty booen groups
k) = k(= 1) + o+ Zoi(t)
4 (Hg% — 1) — Ryt — 1))

where

I (7) _ I < (7)
— — t d i) = — {
- ;1 K (t) and FRa(t) - ;1 K ()
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A specific model
)00 = K= 1)+ Zut) — v (1) = Rt - 1)

kO) = kOt — 1)+ g + Zoi(t) — 0 (mg)(t 1) — Ryt — 1)
Model structure =
® (Ri(t), Ro(t)) ~ bivariate random walk
e Each mﬁ“ (t) — R1(t) ~ AR(1) reverting to 0
e Each /fgi) (t) — Rao(t) ~ AR(1) reverting to 0
o 3)(x)vs ) (x) = intrinsic group differences

24



Non-trivial correlation structure:
between different ages and groups

00 = K= 1)+t Zut) = v (K- 1) = Rt - 1)
]t = K= 1)+t Zalt) = v (K (1) — Rolt - 1))
The Z;.; are multivariate normal, mean 0 and
v fore =
COU(Z]{Z', Zl]‘) — | |
pui fori #

p = cond. correlation between /#) () and /fgj )(t) etc.
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Comments

e Model is very simple
— One gravity parameter, 0 < ¥ < 1
— One between-group correlation parameter,

D<p<l
e Many generalisations are possible
e But more parameters + more complex computing
e [his simple model seems to fit quite well.

® Nevertheless = work In progress
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Prior distributions

e As uninformative as possible

® (i1, [4o ~ Improper uniform prior
o {v;;} ~ Inverse Wishart

e p ~ Beta(2, 2)

e ) ~ Beta(2,2)

State variables and process parameters estimated using

MCMC (Gibbs + Metropolis-Hastings)
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Posterior Distributions and 95% Credibility Intervals

Kappa_1 Drift, mu_1 Kappa_2 Drift, mu_2
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Posterior Distributions and 95% Credibility Intervals

Cumulative Posterior Probability

Between Group Correlation, rho Gravity Parameter, psi
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