Mortality and smoking prevalence: An empirical investigation in ten developed countries

Torsten Kleinow and Andrew J.G. Cairns

British Actuarial Journal / Volume 18 / Issue 02 / July 2013, pp 452 - 466
DOI: 10.1017/S1357321713000238, Published online: 17 May 2013

Link to this article: http://journals.cambridge.org/abstract_S1357321713000238

How to cite this article:

Request Permissions : Click here
Mortality and smoking prevalence: An empirical investigation in ten developed countries

Torsten Kleinow*,1
Heriot-Watt University and the Maxwell Institute for Mathematical Sciences, Edinburgh, UK

Andrew J.G. Cairns1
Heriot-Watt University and the Maxwell Institute for Mathematical Sciences, Edinburgh, UK

Abstract
We investigate the link between death rates and smoking prevalence in ten developed countries with the aim of using smoking prevalence data to explain differences in country-specific death rates. A particular problem in building a stochastic mortality model based on smoking prevalence is that there are in general no separate mortality data for smokers and non-smokers available. We show how we can estimate mortality rates for smokers and non-smokers using information about the smoking prevalence in a number of developed countries, and making an additional assumption about the death rates of smokers. We consider this empirical investigation to be the first step towards a consistent mortality model for multiple populations, which will require modelling of country specific differences in mortality, as well as non-smokers’ and smokers’ mortality rates.

Keywords
Mortality models; multiple population models; smoking and mortality

1 Introduction

A strong increase in life expectancies has been observed in developed countries during the last century, and as a result, changes in mortality rates and life expectancies are now recognised as one of the major factors influencing the value of liabilities of pension providers. This development led to an increasing interest in mortality models in the pensions and insurance industry, and among academics, which in turn, led to the development of a number of stochastic mortality models.

Most of the models developed and used in the actuarial community are for a whole population or cohort, rather than for individuals, and mortality rates in these models usually depend on gender, age, period of observation and birth cohort, while only a few actuarial models make use of other covariates that might explain changes in mortality rates. On the other hand, the influence of life style and socio-economic factors on the life expectancies of individuals has been studied by medical researchers, and it is now very well known that one of the most significant factors on individual life expectancy is smoking, see for example Doll et al. (2004) which causes a number of diseases that

*Correspondence to: Torsten Kleinow, Department of Actuarial Mathematics and Statistics, School of Mathematical and Computer Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, U.K. E-mail: t.kleinow@hw.ac.uk

1Both authors acknowledge support from the Institute and Faculty of Actuaries.
often lead to a premature death. For example Ezzati & Lopez (2003) estimate for the year 2000 that “The leading causes of death from smoking were cardiovascular diseases …, chronic obstructive pulmonary disease …, and lung cancer….”. This strong link between smoking and individual life expectancy is the motivation for us to consider a stochastic model for mortality rates observed in a population based on smoking prevalence data for that population.

One of the main issues with such a model is that there are usually no separate mortality rates for smokers and non-smokers available for a particular country. Also, the combination of overall mortality rates and smoking prevalence data for a particular country is not sufficient to estimate smokers’ and non-smokers’ mortality rates, since any decrease in smoking prevalence might either be caused by a large number of deaths among smokers, or by a large number of smokers ceasing to smoke. This identification problem might only be overcome by collecting cessation data, but these data are usually not available.

One way to overcome this issue is to estimate smokers’ mortality rates based on lung cancer mortality as suggested by Peto et al. (1992). However, in this paper we introduce a different approach. Rather than studying cause specific mortality we will consider mortality data in ten developed countries together with smoking prevalence data for these countries to obtain the required mortality rates. Considering several countries rather than one, allows us to estimate mortality rates for smokers and non-smokers separately. In a second step we can then use this information to explain, at least to some extent, differences in mortality rates between countries. In that sense, we find that combining mortality models for multiple populations or countries with smoking prevalence data, allows us to estimate the impact of smoking on mortality rates in a whole population, and, at the same time, enables us to model mortality rates in multiple populations consistently. Although, we are focusing here on smoking prevalence, other covariates might be used in future research.

1.1 Notation

Before we start developing our model we introduce some notation. Since we will use data provided by the Human Mortality database (HMD) to estimate parameters in our model our notation follows the HMD notation. For details about the exact calculation or estimation of death counts and exposure-to-risk we refer to Wilmoth et al. (2007).

In the following we assume that time is measured in years, and (calendar) year t refers to the time interval $[t, t+1]$. Assuming that we observe mortality data for K countries, we introduce the following notation for a specific country i, and for any year t and age x:

$$D_i(t, x)$$ denotes the death count in year t among individuals aged x last birthday, and

$$E_i(t, x)$$ denotes the Exposure-to-risk in country i at age x during year t, which “refers to the total person-years lived in the age interval $[x, x + 1]$ during calendar year t.” (Wilmoth et al. (2007), page 2). In other words $E_i(t, x)$ refers to the population exposed to the risk of death, where we should note that in the HMD “Estimates of the population exposed to the risk of death during some age-time interval are based on annual (January 1st) population estimates, with a small correction that reflects the timing of deaths during the interval.” (Wilmoth et al. (2007), page 8). The precise way in which these population estimates are obtained is also described in the same document.

We can now define the realised death rate in country i at age x in year t as

$$m_i(t, x) = D_i(t, x)/E_i(t, x).$$
The death rate $m_i(t, x)$ should not be confused with the mortality rate $q(t, x)$ which usually denotes the probability of a life aged exactly x at exact time t to die before time $t + 1$. However, in the existing literature on mortality models either $m_i(t, x)$ and/or $q(t, x)$ are used as basic building blocks. In this paper we will develop models for $m_i(t, x)$.

2 Smoking and Mortality

In this section we will first describe the data sets we use in our empirical study and then discuss a particular cohort study in which the impact of smoking on mortality has been analysed for a controlled cohort rather than the population of a country.

2.1 Data

For our empirical analysis we use data compiled by Forey et al. (2011) in the International Smoking Statistics (ISS). The ISS data set consists of smoking prevalence data obtained from a large number of surveys. Rather than using data from an individual survey, we use prevalence data for standard age groups calculated by Forey et al. In the ISS there are three types of prevalence data: prevalence of smoking manufactured cigarettes, any cigarettes or any tobacco product. We consider here the prevalence of smoking any cigarettes, since many of the cohort studies consider cigarette smoking, but also since there are more data available for total cigarettes than for manufactured cigarettes. The standard age groups that are used are: 15–19, 20–24, ..., 80–84, 85+. In the ISS data calendar years are also in groups: 1951–55, ..., 2006–2010. The available smoking prevalence data are summarised in Table 1.

As we want to include as many data as possible in our empirical study, we do not exclude years for which smoking prevalence data are missing for a particular country. We therefore define for each calendar year t the set $C(t)$ of countries for which smoking prevalence data are available for this particular calendar year, for example, $C(1953) = \{AT, DK, US\}$. In the following we let $s_i(t, x) \in [0, 1]$ denote the smoking prevalence in country i, that is, the proportion of people aged x in year t in country i who smoke. The corresponding number of smokers is then approximately $s_i(t, x)E_i(t, x)$. Note that $s_i(t, x)E_i(t, x)$ is actually an approximation for the smokers’ exposure-to-risk, that is the total number of person-years lived by smokers in the age interval $[x, x + 1]$ during calendar year t.

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
<th>Calendar years (in groups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>AT</td>
<td>1951–1955 ... 2006–2010</td>
</tr>
<tr>
<td>Australia</td>
<td>AU</td>
<td>1971–1975 ... 2001–2005</td>
</tr>
<tr>
<td>Canada</td>
<td>CA</td>
<td>1961–1965 ... 2001–2005</td>
</tr>
<tr>
<td>Denmark</td>
<td>DK</td>
<td>1951–1955 ... 2006–2010</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>GB</td>
<td>1961–1965 ... 2001–2005</td>
</tr>
<tr>
<td>New Zealand</td>
<td>NZ</td>
<td>1961–1965 ... 2006–2010</td>
</tr>
<tr>
<td>Sweden</td>
<td>SE</td>
<td>1961–1965 ... 2006–2010</td>
</tr>
</tbody>
</table>
The mortality data we use are the observed number of deaths \(D_i(t, x) \) and the exposure-to-risk \(E_i(t, x) \), which we obtained from the Human Mortality database, www.mortality.org. Unlike the ISS data, HMD data are available as “1 × 1-tables”, meaning that we have observations for each calendar year and each year of age.

Note that we do not observe death rates for smokers and non-smokers, separately. Observing these would simplify building a mortality model significantly. However, as far as we know, these data are not available in general. Also we do not observe cessation data, that is the proportion of non-smokers who used to smoke earlier in life.

Another issue with the available data is that smoking prevalence data are not available in a “1 × 1-table”. In general, prevalence data are only available for age groups as described earlier. To build a model based on annual observations we use linear interpolation to obtain annual prevalence data for each year of age, but it should be noted that this might not be the best way to deal with missing data. More sophisticated methods to estimate smoking prevalence in years with no observations are beyond the scope of this paper and are left for future research. For the linear interpolation applied here we assume that the observation for a particular age group in any five year period is the smoking prevalence for the middle age in this group in the middle year of that period. For example, we assume that the smoking prevalence in country \(i \) in the year 1973 for males aged 52, \(s_i(1973, 52) \), is given by the observed smoking prevalence for males aged 50 to 54 in the period 1971 to 1975. We then linearly interpolate across ages and calendar years to obtain a “1 × 1-table” containing smoking prevalence data for each calendar year and each age ranging from 17 (15–19 years old) to age 87 (aged 85+).

2.2 Smoking and Mortality - British Doctors

Our main motivation for some of our assumptions are the empirical results obtained by Doll et al. (2004). In their empirical study they have collected data concerning the smoking habits of 34,439 male British doctors. They started with a first survey in 1951 and then repeated the survey periodically thereafter. Data on cigarette consumption were collected, and mortality rates were monitored for the following 50 years. Since only male British doctors have been the subject of this study, the obtained results are for a very homogeneous group of people who do not differ substantially in many of the other factors that might influence mortality, like social status, wealth or education. The differences in observed death rates among these doctors can therefore be attributed to differences in smoking habits.

The main findings of this study are

- there was a substantial decrease in the mortality rates of non-smokers,
- the survival rates from age 35 for smokers are the same for all birth cohorts born between 1900 to 1930,
- but for non-smokers these survival rates have increased substantially

Roughly speaking, this means that improvements in life expectancies for cohorts born between 1900 and 1930 were only experienced by non-smokers, while for smokers there was no improvement at all. We will use this result to motivate a model for which we assume that there is no decrease in the mortality rates of smokers, but that every improvement in overall life expectancies is due to an increased life expectancy of non-smokers combined with decreasing smoking prevalence.
3 The Basic Model

To build a model for observed death rates, \(m_i(t, x) \), we start with the following obvious relationship for the number of deaths in country \(i \)

\[
D_i(t, x) = D_i^N(t, x) + D_i^S(t, x)
\]

where \(D_i^N(t, x) \) and \(D_i^S(t, x) \) are the numbers of deaths among current non-smokers, and current smokers respectively, in country \(i \) aged \(x \) in year \(t \). The total number of deaths is therefore the sum of the number of deaths among current smokers and the number of deaths among current non-smokers. We should mention here that \(D_i^N \) and \(D_i^S \) are not observed directly, as explained earlier. Also note that we do not distinguish between life-long non-smokers and former smokers. Both groups combined form the group of current non-smokers. We could divide the total population further taking into account other quantities, like number of cigarettes smoked per day, but with the limited data available, we choose to consider only current smokers and current non-smokers.

Using smoking prevalence data we can rewrite (1) as

\[
D_i(t, x) = m_i^N(t, x) + m_i^S(t, x)
\]

where \(s_i(t, x) \) denotes smoking prevalence, so that the number of smokers is \(s_i(t, x)E_i(t, x) \), and

\[
m_i^N(t, x) = \frac{D_i^N(t, x)}{[1-s_i(t, x)]E_i(t, x)}
\]

\[
m_i^S(t, x) = \frac{D_i^S(t, x)}{s_i(t, x)E_i(t, x)}
\]

denote the death rates for non-smokers and smokers, respectively.

We then obtain for the death rates

\[
m_i(t, x) = \frac{D_i(t, x)}{E_i(t, x)} = m_i^N(t, x) + [m_i^S(t, x) - m_i^N(t, x)]s_i(t, x).
\]

This equation does not form a model yet, and will still not allow us to estimate \(m_i^N \) and \(m_i^S \). For that we will have to make some assumptions. The first assumption we make is

(A1) Non-smokers' mortality in country \(i \) is the sum of general non-smokers' mortality in all countries and a “country effect”

where the country effect is denoted by \(C_i(t, x) \) and refers to a country-specific quantity that affects non-smokers’ and smokers’ mortality in country \(i \). This assumption implies that in the absence of smokers, the death rate in country \(i \) is given by \(m_i(t, x) = m_i^N(t, x) + C_i(t, x) \). This is comparable to the model introduced by Li & Lee (2005) although we are here looking at the death rates directly rather than log of death rates.

The second assumption we make deals with the effect of smoking:

(A2) Smoking has the same effect on mortality rates in all observed countries.
This assumption says that the excess mortality due to smoking is the same for every smoker in every country, although the actual death rates among smokers depend on the country effects, \(C_i(t, x) \), and also on general non-smokers’ mortality.

Combining assumptions (A1) and (A2) we formulate the following model

\[
m_i(t, x) = m^N(t, x) + [m^S(t, x) - m^N(t, x)]s_i(t, x) + C_i(t, x)
\]

(3)

where \(C_i(t, x) \) is the country specific effect, and \([m^S(t, x) - m^N(t, x)]\) is the excess mortality caused by smoking. Note that in this model, \(m^N \) and \(m^S \) are not country specific. The model in (3) will serve as our basic model in the remainder of this paper.

We should mention here that the proposed model has a very simple structure, and that the effects of smoking on mortality and health are cumulative rather than immediate as our model might suggest. It is well known that smoking, and giving up smoking, do not cause an immediate change in survival probabilities of an individual. However, the model has been set up to allow us to estimate smokers’ and non-smokers’ death rates in multiple populations from the observations we have rather than describing the effects of smoking on the life expectancy of an individual life.

Our aim is now to estimate \(m^N(t, x) \) and \(m^S(t, x) \) in (3). As we wish to explain country-specific differences in mortality rates using smoking prevalence, we want to minimise the effect of other country-specific quantities, that is, we want to minimise the effect of \(C_i \) in (3). We will therefore choose estimates for \(m^N \) and \(m^S \) such that the following mean squared error

\[
\text{MSE}(m^S(t, x), m^N(t, x)) = \sum_{i \in C(t)} C_i(t, x)^2
\]

(4)

is minimised for each year \(t \) and age \(x \), where \(C(t) \) denotes the set of countries for which prevalence data are available for calendar year \(t \), compare section 2.1. Note that this is equivalent to treating \(C_i(t, x) \) as error terms in a linear regression model for each fixed age \(x \) and year \(t \) where the death rate \(m_i(t, x) \) is treated as a linear function of smoking prevalence \(s_i(t, x) \).

In figure 1 we show the data and the estimated linear regression function for years \(t = 1980 \) and \(t = 1990 \) for males aged 60. These plots are rather typical and plots for other years or ages exhibit the same problem, namely that the slope of the regression line is not significantly different from zero. However, although the slope is not particularly strong for most ages and years, it is positive for almost all ages and years.

To investigate this relationship further we calculate the correlation between \(s_i(t, x) \) and \(m_i(t, x) \) for those years for which smoking data are available for all ten countries, that is, for 1973 to 1993, where we use the linear interpolated smoking prevalence data \(s_i(t, x) \) described earlier. Figure 2 shows the results as a contour plot of the correlation function

\[
\gamma(t, x) = \text{Corr}(s_i(t, x), m_i(t, x))
\]

where Corr denotes the empirical correlation function.

We observe in figure 2 that there are only a small number of years in which negative correlations between smoking prevalence and death rates have been observed. This was for example the case in 1987 for males aged 73 with \(\gamma(1987, 73) = -0.132 \). However, the figure also indicates that for the vast majority of period-age combinations we find that \(\gamma(t, x) \) is positive. In fact, only about 1.3% of
all correlations are negative (black area in figure 2), while about 39% of them are above 0.5 (white area in figure 2).

4 Further Modelling Assumptions

To develop a model for death rates as a function of time, age and smoking prevalence, we will now make further assumptions that link death rates observed over time and over ages to each other. Although, a large variety of assumptions is possible here, we will in the following consider only one particular assumption motivated by the empirical results found by Doll et al. (2004):

(CSM) (Constant Smokers’ Mortality): There is no improvement in smokers’ mortality rates over time, that is $m^s(t, x) = m^s(x)$ for all years t;

This is arguably a very strong assumption. However, taking into account that we are considering cohorts aged 50 to 87 in 1961 to 2005, that is, cohorts born between 1874 to 1955, we believe that...
this assumption might be justified by the results found by Doll et al. (2004) for British Doctors born between 1900 and 1930. We should also mention that it is our aim for further research to consider alternative assumptions.

Under the (CSM) assumption our model becomes

\[m_i(t, x) = m^N(t, x) + [m^S(x) - m^N(t, x)]s_i(t, x) + C_i(t, x). \]

(5)

We can now estimate \(m^N(., x) \) and \(m^S(x) \) for any fixed age \(x \) using Least-Squares Estimation where it is our aim to minimise the impact of country-specific effects. We now define the mean squared error as

\[
\text{MSE}(m^S, m^N) = \sum_t \sum_{i \in C(t)} (C_i(t, x))^2
\]

(6)

\[
= \sum_t \sum_{i \in C(t)} (m_i(t, x) - m^N(t, x) - [m^S(x) - m^N(t, x)]s_i(t, x))^2
\]

(7)

where it should be noted that \(m^N = (m^N(1), \ldots, m^N(T)) \). We now choose \(m^S \) and \(m^N \) such that \(\text{MSE}(m^S, m^N) \) is minimised. We should note here that the mean squared error as defined in (6) is not the mean of individual mean squared errors in single years, as this would require to divide each year-specific mean squared error by the number of countries considered in the particular year, which is not the same for all years. The MSE in (6) is the mean square error (up to a constant) for all years and countries. We have chosen this definition to avoid over weighting errors in years where data for only a few countries are available. Since the estimates for \(m^S \) and \(m^N \) obtained from minimising (6) are specific for a fixed age \(x \) we will suppress the depends on \(x \) in the following equations.

Differentiating \(\text{MSE}(m^S, m^N) \) in (7) with respect to \(m^S \) and \(m^N(t) \) for all years \(t \) shows that an explicit solution for a fixed age \(x \) is given by the solution of the following linear system of equations:

\[
0 = \frac{\partial}{\partial m^S} \text{MSE}(m^S, m^N)
= 2 \sum_t \sum_{i \in C(t)} (-s_i(x))(m_i(t) - m^N(t) - [m^S - m^N(t)]s_i(t))
\]

\[
0 = \frac{\partial}{\partial m^N(t)} \text{MSE}(m^S, m^N)
= 2 \sum_{i \in C(t)} (s_i(t) - 1)(m_i(t) - m^N(t) - [m^S - m^N(t)]s_i(t))
\]

or, equivalently,

\[
m^S = \frac{1}{\Sigma_i \Sigma \in C(t) s^2_i(t)} \sum_t \sum_{i \in C(t)} s_i(t)\left[m_i(t) - m^N(t)(1 - s_i(t))\right]
\]

(8)

\[
m^N(t) = \frac{\Sigma_i \Sigma \in C(t)(1 - s_i(t))m_i(t)}{\Sigma_i \Sigma \in C(t)(1 - s_i(t))^2} - m^S \frac{\Sigma_i \Sigma \in C(t)(1 - s_i(t))s_i(t)}{\Sigma_i \Sigma \in C(t)(1 - s_i(t))^2}
\]

(9)

Inserting (9) into (8) and solving the resulting equation for \(m^S \) using the notation

\[
A = \frac{1}{\Sigma_i \Sigma \in C(t) s^2_i(t)} \left\{ \Sigma_i \Sigma \in C(t) s_i(t)m_i(t) - \Sigma_t \frac{(\Sigma_i \Sigma \in C(t)(1 - s_i(t))s_i(t)}{\Sigma_i \Sigma \in C(t)(1 - s_i(t))^2} \right\}
\]

459
we obtain the estimator \(\hat{m}^S \) for \(m^S \):

\[
 m^S = A + m^S B \Rightarrow \hat{m}^S = \frac{A}{1-B}.
\]

The estimator \(\hat{m}^N(t) \) for \(m^N(t) \) is then given by (9) where \(m^S \) is replaced by \(\frac{A}{1-B} \).

5 Empirical Results

In the following we provide empirical estimates for \(m^S \) and \(m^N \), and investigate the country effect. We start with investigating the fit of the model in (5) excluding the country effect. That is, we compare the observed death rates \(m_i(t,x) \) with \(\hat{m}^N(t,x) + [\hat{m}^S(x) - \hat{m}^N(t,x)]s_i(t,x) \). As examples we show the rates for the United Kingdom (GB) and Canada (CA) for ages 50, 60 and 70 in figure 3. In these plots, the solid straight line at the top of each plot is the age specific smokers’ death rate, \(\hat{m}^S(x) \), which does not change over time according to our assumption (CSM). The bottom solid line in each plot is the non-smokers’ death rates, \(\hat{m}^N(x,t) \). Both of these rates are not country specific.

The circles and triangles represent the observed death rates \(m_i(t,x) \) for the United Kingdom and Canada, respectively, and the solid and dashed lines in the center of each plot are the fitted values \(\hat{m}^N(t,x) + [\hat{m}^S(x) - \hat{m}^N(t,x)]s_i(t,x) \) for the UK and Canada, respectively, where \(s_i(t,x) \) is the country-specific smoking prevalence.

We can see in these plots that the estimated death rates follow the actual death rates rather closely, but the observed death rates cannot be explained completely by smoking prevalence alone. The difference between the estimated and actual death rates is the country effect \(C_i(t,x) \) which we can now estimate by

\[
 \hat{C}_i(t,x) = m_i(t,x) - (\hat{m}^N(t,x) + [\hat{m}^S(x) - \hat{m}^N(t,x)]s_i(t,x)).
\]

Rather than considering the country effect on its own, we are more interested in the relative country effect, that is, the ratio \(\hat{C}_i(t,x)/m_i(t,x) \). We plot these ratios for ages 50, 60 and 70 in figure 4.

From these plots it is apparent that the country effect typically counts for about 5% to 20% of observed death rates in the UK and Canada. It is therefore a rather important factor. However, this also shows that the smokers’ and non-smokers’ death rates, which do not depend on the specific country, together with country-specific smoking prevalence data explain observed death rates to a large extent. We think these findings are rather surprising, taking into account the strong assumption we made about constant smokers’ mortality.

To use the proposed estimates to project death rates into the future would require to model the non-smokers’ death rate \(m^N(t,x) \) as well as the country effect. However, our empirical results indicate that the country effect could be modelled by a multi-dimensional stationary process, and that the non-stationary part, which is typically found in mortality models is here only present in the country-independent non-smokers’ death rate. Applying particular models to \(m^N \) and \(C_i \) is not in the focus of
Figure 3. Observed and estimated death rates for the United Kingdom and Canada for different ages. The straight line at the top of each graph shows the estimated death rates for smokers, and the line at the bottom the rates for non-smokers. Circles and triangles correspond to the observed death rates for the UK and Canada, respectively. The solid and dashed line represent the fitted rates for the UK and Canada, respectively.
this paper, and we therefore defer such an analysis to future research. To investigate the effect of smoking we will rather consider shocks to smoking prevalence observed in the past. This is done in the following section.

Figure 4. Relative country effects for the United Kingdom (solid line) and Canada (dashed line). The graphs show the estimated country effect relative to the observed death rates, that is, $\hat{C}_i(t, x)/m_i(t, x)$.

Relative Country specific differences
GB, CA – age 50

Relative Country specific differences
GB, CA – age 60

Relative Country specific differences
GB, CA – age 70
Scenarios and Annuity values

With the empirical estimates obtained in the last section we can now investigate the impact of smoking and country effects on survival rates and annuity values, starting with the impact of the country effect on the rate of survival. To this end we calculate the rate of survival to age x for the cohort aged 35 in 1961:

$$S(x, 1961, 35) = \prod_{j=1}^{x-35} (1 - m_i(1961 + j, 35 + j))$$

(11)

based on actually observed death rates m_i and compare it with the rate of survival based on estimated death rates, where we replace $m_i(t, x)$ in (11) by $\hat{m}^N(t, x) + [\hat{m}^S(x) - \hat{m}^N(t, x)]s_i(t, x)$. These indexes are plotted for the UK and Canada in figure 5. In these plots the solid lines refer to the survival rates based on non-smokers’ (top line) and smokers’ (bottom line) death rates. The dashed line corresponds to the survival rates obtained from estimated death rates, and the circles are the survival rates based on actual death rates. The numbers are the survival rates at ages 50, 60, and 70. We see in these plots that the country effect has only a small impact on the survival rates since the dashed line is very close to the circles, in particular, for Canada.

To investigate the impact of smoking we now consider a shock to smoking prevalence assuming that smoking prevalence from 1961 onwards was only 75% of its actual value, that is we consider an estimated death rate of

$$\hat{m}(t, x) = \hat{m}^N(t, x) + 0.75[\hat{m}^S(x) - \hat{m}^N(t, x)]s_i(t, x)$$

for the cohort aged 35 in 1961. Note that we ignore the country effect here completely.

Figure 5. Survival rates from age 35 in 1961 for the UK and Canada. The topmost line represents the survival rate for non-smokers, and the bottom line the rates for smokers. The dashed line corresponds to the survival rates obtained from fitted death rates, and the circles are the survival rates for observed death rates. The numbers represent the values at age 50, 60 and 70. The middle numbers correspond to survival rates based on fitted death rates.

6 Scenarios and Annuity values
In figure 6 we plot the survivor rates for this scenario. It is apparent that survival rates to age 70 increased from 65 (GB) and 66 (CA) to 70. From these figures we can also see that survival rates would have increased to 79 for both countries if smoking prevalence had been 0. Comparing these differences to the differences caused by the country effect (see figure 5) shows the importance of smoking on survival rates.

To investigate the impact on annuity values we again consider a shock to smoking prevalence by assuming that actual smoking prevalence is multiplied with a factor K, that is, we consider the following estimated death rates:

$$\hat{m}_i(t, x) = \hat{m}^N(t, x) + K[\hat{m}^S(x) - \hat{m}^N(t, x)]\tilde{s}(t, x).$$

Since we are interested in life annuities from retirement age, we consider these death rates for the cohort aged 65 in 1961.

We then calculate the rate of survival to age $x > 65$ for the cohort aged 65 in 1961:

$$S(x, 1961, 65) = \prod_{j=1}^{x-65} (1 - m_i(1961 + j, 65 + j))$$

and based on these survival rates we find the values of life annuities in 1961 (max age $= 110$):

$$A(K, 1961, x = 65) = \sum_{j=1}^{45} S(65 + j, 1961, 65)\exp(-rj)$$

depending on the “smoking shock” K used for calculating the death rates \hat{m}_i.

Figure 6. Survival rates from age 35 in 1961 for the UK and Canada assuming a shock to smoking prevalence. The topmost line represents the survival rate for non-smokers, and the bottom line the rates for smokers. The dashed line corresponds to the survival rates obtained from fitted death rates assuming a reduced smoking prevalence (see section 6), and the circles are the survival rates for observed death rates. The numbers represent the values at age 50, 60 and 70. The middle numbers correspond to survival rates based on fitted death rates.
These annuity values are plotted in figure 7 as functions of K for the UK and Canada assuming an interest rate of 4% and a payment of £100.00 per annum in arrears. As expected any increase in smoking prevalence, results in a decreasing value of a life annuity since survival rates are lower. We also find that the values of life annuities would increase from around 900 to 1100 if smoking prevalence had been 0 since 1961.

7 Conclusions

We have found empirical evidence for the importance of smoking prevalence for observed death rates in developed countries, and we have shown how the link between smoking and mortality can be used to develop a model for the death rates in multiple countries.

Let us mention here that all these results are preliminary and that future research is required to study the impact of smoking on mortality rates in more detail. In particular, the assumption of constant smokers’ mortality is rather strong, and alternative assumptions should be investigated.

References

developed countries: indirect estimation from national vital statistics. *The Lancet*, **339**(8804),
1268–1278.

Mortality Database. University of California, Berkeley (USA), and Max Planck Institute
for Demographic Research (Germany), Available at www.mortality.org or www.
humanmortality.de, Last Revised: May 31, 2007 (Version 5).