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Abstract

We propose the use of parametric bootstrap methods to investigate the finite
sample distribution of the maximum likelihood estimator for the parameter vec-
tor of a stochastic mortality model. Particular emphasis is placed on the effect
that the size of the underlying population has on the distribution of the MLE in
finite samples, and on the dependency structure of the resulting estimator: that
is, the dependencies between estimators for the age, period and cohort effects in
our model. In addition, we study the distribution of a likelihood ratio test statistic
where we test a null hypothesis about the true parameters in our model. Finally,
we apply the LRT to the cohort effects estimated from observed mortality rates for
females in England and Wales and males in Scotland.
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1 Introduction

Stochastic mortality models are widely used as risk management tools in the insurance
and pensions industry with the main application being the generation of plausible scenar-
ios for future mortality rates. Many stochastic mortality models have been introduced in
the last few decades. When new models have been developed the objective was mostly
to improve the goodness of fit of the model to mortality data observed in relatively large
populations: the Lee-Carter model and its refinements (e.g. Lee and Carter (1992); Ren-
shaw and Haberman (2003); and Booth et al. (2006)) have been developed to provide a
good fit to the mortality rates observed in the United States, England and Wales and the
population of UK male assured lives; while the Cairns-Blake-Dowd (Cairns et al. (2006))
model was introduced for modelling the England and Wales males population.

In contrast, actuaries will often face the problem of modelling the mortality experience
of much smaller populations, for example, the members of a pension scheme. Empirical



research has found that mortality rates of smaller populations exhibit significantly more
variability compared to the observed rates in larger populations. Furthermore, models
that fit large countries well, might not be appropriate for smaller populations, for example,
Booth et al. (2006) showed that the Lee-Carter model provides a rather poor fit to the
mortality experience of smaller populations. A related issue is that empirical data from
smaller populations might only be available for a relatively short period, which makes
mortality projections rather uncertain. As a result, a number of recent papers have aimed
to develop models specifically for smaller populations: for example, the Saint Model of
Jarner and Kryger (2011).

A common assumption for many of the proposed models is that the observed num-
bers of deaths are realisations of random variables with a Poisson distribution given the
underlying mortality rates. The estimation of parameters of any such model is therefore
based on samples from a Poisson distribution, and, as always in statistics, parameter un-
certainty is related to the sample size. Furthermore, many results about the distribution
of estimators and corresponding confidence intervals rely on the Maximum Likelihood
theorem and large sample sizes.

The increased uncertainty about estimated parameters for small populations results
in high levels of uncertainty about projected mortality rates. As a consequence future
realised mortality rates will not only diverge from projected rates due to future sampling
variation caused by the Poisson distribution, but might also diverge from projections
since the projections themselves are uncertain.

In the actuarial literature, simulation techniques have been proposed for dealing with
uncertain parameters and projected mortality rates. For example, Liu and Braun (2011)
investigated mortality uncertainty by applying a block bootstrap method on the Lee-
Carter model, and Brouhns et al. (2005) proposed Poisson bootstrap methods for mor-
tality forecasting.

However, to the best of our knowledge, bootstrap methods have not been applied in
a systematic way to investigate the impact of the size of a population on parameter and
projection uncertainty. This is the focus of our research in this paper. We firstly apply
Poisson parametric bootstrap methods to investigate how the variation of parameter
estimates and projections is affected by the size of a population. The specific mortality
model that we consider is a second generation CBD model with added cohort effect: see
section 2 for details. We vary the size of the population by assigning weights to a chosen
benchmark population, e.g. England and Wales males. In simulation studies we find that
the size of the population has a significant effect on the variation of parameter estimates
and projections.

By assigning weight to the benchmark population, we assume that the constructed
small populations have the same underlying mortality rates as the benchmark population.
In such a situation the uncertainty about projected mortality rates will be reduced if
the information from the "true” benchmark parameter estimates can be used for fitting
smaller populations. This raises the question of how we can test for systematic differences
between the parameters driving mortality rates in a small population and a given null
hypothesis about those parameters, where the null hypothesis might have been obtained
from a model fitted to a much larger population. If no significant differences can be
found then it seems reasonable to use mortality projections from the large population to
generate scenarios for the small population. We therefore investigate the properties of a
likelihood ratio (LR) test for all or some of the estimated parameters, and, in particular,
consider the distribution of the test statistic based on the bootstrap simulations. This



allows us to investigate the power of the LR test and the effect of varying population
sizes on the rejection rates. We find that the population size has a strong effect on the
probability of a type II error.

In an empirical study, we apply the LR-test to test a null hypothesis about the cohort
effect estimated for mortality rates of females in England and Wales and males in Scot-
land. The null hypothesis for both populations is the cohort effect estimated for males
in England and Wales, and we find for both populations a significant divergence of the
estimated cohort effect from that in the null hypothesis.

The remainder of the paper is organised as follows. Section 2 introduces the model,
assumptions and the notations we apply. Section 3 discusses the process of simulation
and investigates the distribution of the maximum likelihood estimates, the correlation
between the estimates and how these will be affected by changing the population size.
In Section 4, we investigate the effect of the population size on forecasting by projecting
the parameters as well as the mortality rates. Section 5 introduces a likelihood ratio test
for testing systematic deviations of the true parameters from a given null hypothesis.
The power of the likelihood ratio test is also analysed and we then investigate how
significant the impact of shifting and scaling parameters is on the fitted mortality rates
and corresponding annuity prices in Section 6. Finally, Sections 7 and 8 include the LRT
for testing a null hypothesis about the cohort effect only, and an empirical example for
this test is provided. Section 9 provides our final conclusions.

2 The Model

We denote by D(t,x) the number of deaths during calendar year t = ¢y, ..., %,
T =, ..., Ty, and by E(t,z) the corresponding central exposure to risk.

We will fit the following Poisson model to the observed death data, see Cairns et al.
(2009):

, at age

D(t,z)|0 ~ Pois(m(0,t,z)E(t,x)) (1)
m(f,t,x) = —log(l—q(0,t, x)) (2)
logit q(6,x,t) = 1{1(51) + m?)(a: — )+ /{f’)((m —7)? — 63) + %@m (3)

where the parameter vector 6 is given by

1 2 3
0= (r" k) my? AY)

with the following interpretations:
. mgi) is a period effect in year t = 1y, ..., t,, for each i = 1,2, 3,

° %4) is the cohort effect for the cohort born in year ¢ =t — z,

e 7 is the mean of the age range we use for our analysis, and

e 52 is the mean of (z — 7)2

It is well known that the parameters in model (3) are not identifiable without impos-
ing constraints on their values. We follow Cairns et al. (2009) and apply the following

constraints on 0:
S0 el =0 Y=o ()
ceC ceC ceC



where C' =1y — @y, ..., t,, — o1 is the set of all years of birth in a given dataset.
To estimate the parameters in (3) we apply maximum likelihood estimation. The
log-likelihood function in our model is

1(0;D, F) ZD (t,x)log[E(t,x)m(0,t,x)] — E(t,x)m(0,t,x) — log[D(t, x)!| (5)

where m(0,t, ) is given by (2) and (3).

As mentioned earlier, in this paper we are concerned with the consequences of small
exposures, or population sizes, on the distribution of the maximum likelihood estimator
(MLE) 6 of 6. To study the distribution of the MLE 6 we will simulate death data D(t, z)
from the model in (1)—(3) using a given parameter vector 6y and different exposure sizes.

To ensure that our results are relevant for typical values of 6 we first fit our model to
death and exposure data observed in England and Wales during the years 1961 to 2011
for males aged 50 to 89. We then fix 6, to be equal to the estimated parameter vector
05V for this data. Note that this is only an example for the true parameter vector ¢, and
our analysis can be applied to other choices of . Mortality data for England and Wales
are obtained from the Human Mortality Database.! Note that we do not exclude short
cohorts from the estimation (different, therefore, from Cairns et al. (2009)).

The different exposure sizes used to simulate data in the remainder of this paper will
be relative to the exposure Fy(t,x) for a benchmark population. For reasons of practical
relevance and consistency with our choice of 6, the benchmark population is the male
population in England and Wales unless stated otherwise.

3 Distribution of MLE in Finite Samples

For any given parameter vector 6, and benchmark exposure Ey(t, ) we define the small-

sample exposure as
E¥(t,z) = wEy(t,x)

for a constant w < 1.

We then simulate N scenarios for the death counts D" (¢, x) using the model in (1)—(3)
with 6 = . Through our simulation we obtain N independent scenarios D¥ (¢, ) for the
death counts with

DY(t, ) ~ Pois(m(0y, t, x)wEqy(t, x)) forall j=1,...,N. (6)

3.1 MLE

To obtain MLEs for é;” for each simulated scenario 7 and each w we maximise the log-
likelihood function [(0; DY, E*) as given in (5) subject to the constraints in (4), that
is,
07 = arg max,l(0; Dy, E*) (7)
Classical sampling theory tells us that

ﬁ(éw 00> Disg N(0,H) as w — oo

"Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute
for Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data
downloaded on [date]).



for some positive semi definite matrix H (see Appendix A for further discussion).
Therefore, we would expect that, even in a finite sample, the co-variance of the distri-
bution of 6 is approximately to w1 H and the correlations between different components
of é;” are apperximat(ily independent of the relative population size w. Using the simu-
lated sample 07, ..., 0% we can investigate the finite-sample covariance and correlation

matrices of 6. In Figure 1 we plot a graphical representation of the correlation matrices
of %' that we obtain for two values of w.
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Figure 1: The empirical correlation matrix of the simulated parameter estimates 6v for
different values of the population size w = 1 and w = 0. 001 The r1d hnes at 51.5, 102.5
and 153.5 are used to visually separate the parameters Ht , , % ) from each other
in both dimensions. For instance, the bottom left rectangle contams the correlations for
£ for the 51 years from 1960 to 2011.

We conclude from Figure 1 that there are no significant differences between the empir-
ical correlation matrices obtained from different population sizes, as predicted. However,
individual components of 6 are not independent from each other as we would expect
given the model in (1)—(3).

To investigate the finite-sample distribution of the MLE 6 further we plot the em-
pirical mean together with 90% confidence intervals for each of the components of v in
Figure 2.

We find for all population sizes considered that the empirical means of the simulated
estimates fluctuate around the true parameter values 6, (solid line), which indicates
that the MLE is approximately unbiased for all considered population sizes. However,
the standard deviation of the estimator depends strongly on the size of the population,
increasing significantly as the exposures get smaller as can be seen from the width of the
confidence intervals.

The graphs on the right hand side of figure 2 show that the level of fluctuation increases
approximately by a factor y/n if the population size is reduced by a factor 1/n, which
is consistent with the asymptotic covariance matrix being proportional to 1/w. It also
suggests that the variance is generally stable for all the period effects over years, which is
not the case for the cohort effect with wave shaped pattern. We notice that the standard
deviation of 7&43, widens out considerably at both ends, reflecting the reducing number of
observations that we have of the younger and older cohorts.
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Figure 2: The distribution of MLEs: The mean and confidence interval of the MLEs of
mg}w, /iiif,, mﬁiﬂ, 757412,, with respect to year t and year of birth ¢ respectively, of populations
with w = 1 (dashed line), 0.01 (dotted line), 0.001 (dot dashed line), together with the
parameter estimates for the England and Wales population (solid line). Note: The upper
bound of the CI in the left column is the 95% quantile of the distribution and the lower

bound is the 5% quantile



4 Mortality Projections

While fitting the model in (1)—(3) to observed mortality data only requires the estimation
of the period effects k; = (/-#), KJ§2), /4;,53))’ and the cohort effect fy£4), projecting mortality
rates into the future requires a model for values of s, for ¢ > ¢, where t,, is the last year
for which mortality data are available. Similarly, future values of the cohort effect %)
are also required.

The most common approach to obtain future values of x and Y is to consider these
parameter vectors as observed trajectories of stochastic processes and fit a parametric
time series model to each trajectory. In the following we will fit a three-dimensional
random walk to x and a stationary AR(1) model to ¥, as in Cairns et al. (2009). We
will then discuss the estimation of the parameters of those models based on the values
of 6y and é}" for different values of w. This will allow us to investigate the impact of
the relative population size w on the estimators for the parameters of the x and ~*
processes.

For the estimation of those parameters and the projections of the period effects and
the cohort effect we will consider two approaches. Firstly, we will use a frequentist
approach to obtain point estimates of the process parameters ignoring any uncertainty
about those estimates. In our further analysis we will follow a Bayesian approach to
incorporate parameter uncertainty into our mortality projections.

4.1 Projecting Period Effects

As mentioned above, we model the period effects x as a three-dimensional normal random
walk.

Ak = i+ Le, (8)

where Ak, = k; — k41 and the ¢ = (egl), GEQ), e,@)’ are independent random vectors with

a multivariate standard normal distribution. The parameter vector p is the 3 x 1 drift
vector of the random walk and L is the 3 x 3 Cholesky decomposition of the covariance
matrix V = LL'.

4.1.1 Point Estimators

Having generated N scenarios for the number of deaths according to (6) and having
estimated the parameter vector 67 in each scenario as in (7), we can now apply the
random walk model to the period effects in 6y and é;” for every generated scenario 7. We
then apply the usual (i.e. maximum likelihood) point estimators i} and V;* for each
simulated scenario of DY (¢, z). The estimators for the three components of fi¥ (scenario
j) are

) = —— DR RO i=1,23 (9)

and the entries of the estimated 3 x 3 covariance matrix \7jw are

tny

I 3 [ (Agﬁf}w - g;f(z')) (A;%Ef;)’w - ﬂ;.v(k;)) ]; ik=1,2,3. (10)

—1
ny t=t1




The corresponding estimators for ;o and V' for the true trajectory 6y are defined similarly.

4.1.2 Bayesian Estimation — Parameter Uncertainty

As mentioned earlier we model uncertainty about the parameters p and V' by applying a
Bayesian approach to estimation. We denote by p the density of the prior joint distribu-
tion of the two parameters. Assuming that we have no prior knowledge about the true
values of u and V', we use the Jeffreys prior density

p(p, V) o [V] 72,

where |V| is the determinant of V' (see for example, Gelman et al. (1995)). Using this
prior distribution in each scenario j, the posterior distribution is given by the inverse
Wishart distribution for V' and a multivariate normal distribution for u, that is,

~ -1 >
(ij) |ARY ~ Wishart(n, — 2, (n, — 1)_1(‘/;@)—1) (11)
BV ARY ~ NG (n, = 1) V) 12

where i and \7jw are the estimates obtained from é;” as defined in (9) and (10).

4.1.3 Empirical comparison

For our empirical study we simulate N = 1000 scenarios for different values of w and plot
the empirical density of the point estimator 4" in (9) based on the sample Y, ..., 4% on
the left hand side of Figure 3. To incorporate parameter uncertainty we draw a further
sample of size M = 100 from the posterior distribution of ¥ in (12) in each scenario
J =1,...,N. The empirical density of 4} from these N x M realisations is shown on
the right hand side of Figure 3.

By comparing the densities in the two columns of that figure we observe that the
additional parameter uncertainty increases the variance of the empirical distributions of
the drift estimators. This can be explained by investigating the source of uncertainty to
the drift. The variation to the point estimator (i) with no allowance for parameter
uncertainty comes from the Poisson noise in the number of deaths from the bootstrap
simulations, while the variance of the Bayesian estimator (i) with allowance for extra
parameter uncertainty also includes the uncertainty (equation 12) from the posterior
distribution given the Poisson noise.

We also find in Figure 3 that the size of a population affects the uncertainty about the
drift vector p. The variance of the empirical finite sample distribution of both estimators,
it and fi decreases significantly when the population size increases, although the difference
between w = 1 and w = 0.01 is rather small as is particularly obvious for the Bayesian
estimator /.

However, for smaller values of w we find that the population size has a much more
pronounced effect on the variance. For example, the range of likely values of i%%? is
significantly wider than the range of values of %! and fi! reflecting the uncertainty about
u* that we have already observed in Figure 2 top left). The same argument applies to
the point estimators f.

To investigate parameter uncertainty further we calculate the standard deviations
for the distributions of i and i in Figure 3. Those standard deviations are shown in
Table 1. We observe that the standard deviation of the point estimator fi is increased

8



approximately by a factor /10 if the population size is reduced by a factor 10. The
situation becomes more complicated when for the Bayesian estimator fi since the variance
of the posterior distribution affects the finite sample variance of the estimator. There is no
obvious proportional relationship between population size and variation, which suggests

that the size of the population is not the only determinant of the variance of fi.

1=1 1=2 1=3

Point estimator " (7) w=1 0.0000966 0.0000071 0.00000113
w=0.1 0.0003050 0.0000217 0.00000343

w=0.01 0.0009777 0.0000727 0.00001068

w=0.001 0.0028787 0.0002206 0.00003387

Bayesian estimator ji*(7) w=1 0.00369  0.000173 0.00000936
w=0.1 0.00396  0.000222  0.0000162

w=0.01 0.00620  0.000505  0.0000458

w=0.001 0.01689  0.001566  0.0001478

Table 1: The finite sample standard deviation of i and ji.

To investigate the impact of the relative population size w and the inclusion of pa-
rameter uncertainty on the empirical distribution of the estimated co-variance matrix V'
of the random walk in (8) we compare the empirical means of V and V obtained for
different values of w. The means of the estimated co-variance matrix V are:

) 6.82 x 107" 2,12 x 107> 5.42 x 1077
EVY=[ 212x107° 1.41x107% 2.99 x 1078
542 x 1077 2.99 x 1078 4.30 x 107°
) 18.7 x 107*  —1.52x 107°  4.61 x 107°
B[V = —-152x107° 1.25x 107 —1.89 x 1077
461 x107% —1.89 x 1077 0.99 x 1077
and the mean values of the Bayesian estimator V are
) 7.58 x 107* 2.37 x 107> 6.06 x 1077
E[VY= | 237x107° 158 x 107¢ 3.35 x 1078
6.06 x 1077 3.35 x 1078 4.79 x 10~
) 20.90 x 10~ —1.74 x 10™° 5.11 x 107°
EVo = —1.74x107° 1.39x107° —2.10x 1077
511 x107%  —2.10x 1077  1.11 x 1077

The corresponding estimated covariance matrices, VEW, for England and Wales based
on the single sample paths of x; and 7. and the mean of Bayesian estimator are

6.70 x 1074 2.16 x 107° 4.94 x 1077
2.16 x 107® 1.31 x107% 3.18 x 108
494 x 1077 3.18 x 1078 3.30 x 107*
549 x 1074 1.80 x 107° 1.05 x 1077
1.80 x 107° 1.07 x 107% 2.19 x 108
1.05 x 1077 2.19 x 10~% 3.06 x 107°

VEW —

E[VFY] =

Comparing the mean values of V and V with the estimates obtained from the England
and Wales data we find significant differences in the estimated covariances. In particular,

9
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Figure 3: The impact of population size on the distribution of the random walk drift,
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for smaller populations (e.g. w=0.01) sampling variation pushes up significantly estimates
of the covariance matrix. In addition, sampling variation also widens the distribution of
V' around these mean values for smaller values of w. On the other hand, for a given value
of w, the inclusion of full Bayesian parameter uncertainty moving from V to V has rather
less of an impact.

Finally, the projected parameters based on the Bayesian estimates fi and V are shown
in Figure 6. As we expected, the prediction intervals reflecting the uncertainty about
future values of the period effects are very wide for small populations. The plots also
suggest that the mean of the co-variances are right biased from the England and Wales.
The variance of projection for all the populations are much higher than the estimates, due
to the additional normal randomness added in the forecasting model. However, the left
column shows that there is no obvious proportional relationship between the population
size and projection variance. By investigating the mean co-variance matrices, we find

that the increase of E[V33] from w = 0.01 to w = 1 is of the highest among the three

period effects, which suggests that the standard deviation of projection for mgl) and /@Ez)

is not as sensitive as /@53) to the change of population size.

4.2 Projecting the Cohort Effect

As mentioned earlier we fit an AR(1) model to the cohort effect. We will not investigate
how additional parameter uncertainty influences mortality projections, but will only use
point estimates for the parameters in the AR(1) model. To be precise, our model is given

by

’V(Ei)l = o+, (’Y£4) - 040) + €ct1 (13)
Figure 2 shows that the variance of the estimated cohort effect is very large for the
very early and very late years of birth, in particular, for w = 0.01 and 0.001. This is a
consequence of the very few observations available for those cohorts. We therefore remove
the cohorts with six or less observations.

However, removing short cohorts could significantly influence the estimated values of
the parameters. To investigate the effect of removing short cohorts in more detail we plot
the empirical densities for the parameters in (13) based on the estimated parameters in
each simulated scenario j for w = 1. We find that the distribution of &y is not significantly
affected by removing cohorts which is also the case for the estimated variance of €, when
more than 4 cohorts removed. In contrast, &, is shifted to the left as more cohorts are
removed. Further we notice that the variance of the estimators for all three parameters
stays approximately unchanged regardless of how many cohorts are removed.

After having removed cohorts with six or less observations from the data, we fit
the AR(1) model in (13) to the rest of the cohort effects. The resulting density of the
parameter estimates of the model are shown in Figure 5. All of the parameter estimates
and the standard deviation of error terms appear to be biased relative to the estimate for
England and Wales, regardless of the size of population. However, we find that reducing
the population size will greatly increase the mean bias as well as the uncertainty.

We now forecast the cohort effect from %(jz’fm_(i = %‘;Qg” instead of %3)6’1“’ and the
result is shown in Figure 6d. The variation in the projected cohort effects for the years
1956 to 1961 now comes from the Poisson and Normal randomness, which is not as great
as variation at the two tails of the estimates observed in Figure 2 where no cohorts have
been removed. Within the sample, the confidence intervals are narrower for cohorts with

11
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greater numbers of observed years (ranging from 7 to 40) and greater numbers of deaths
since variance is reduced by having more number of observations.
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Figure 6: The comparison of twenty-year forward projection of /@E}J,, nﬁﬁ,mﬁi},yﬁfﬁ, of

weight w = 1,0.1,0.01,0.001 with England and Wales. Note: We forecast the cohort
effect from the last sixth cohort instead of the very last one due to the cohort removal.
The upper bound of the CI is the 95% quantile of the distribution and lower bound is
the 5% quantile. Parameter uncertainty is allowed in the projection.
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4.3 Projected Mortality Rates

Based on the projected period and cohort effects we can now turn to the projection
of mortality rates using our model in (1)—(3). Figure 7 shows the twenty-year forward
projections of mortality rates at ages 65 and 85. We compare the predicted rates with and
without the allowance for parameter uncertainty for all the constructed populations with
the projections based on the England and Wales data. Unsurprisingly, the uncertainty
about future mortality rates increases as the forecast horizon increases. The other two
factors which significantly influence the projection uncertainty are age and population
size.

It seems that the projection variation for large populations is more effected by the
age than the variation of projected rates for smaller populations. The variance of the
two larger populations (w = 1,0.1) and England and Wales increases as the age increases
from 65 to 85. At age 65 (and also at age 85), these three populations have prediction
intervals which are of similar width. However, the much wider prediction intervals for
the two smaller populations seem to be less affected by age.

Reducing the population size results in greater uncertainty about mortality forecasts
for both ages. For example, the uncertainty is much greater for the smaller popula-
tions (w = 0.01,0.001) at both ages 65 and 85. This means that there is considerable
uncertainty about future mortality scenarios for a relatively small pension scheme with
significant implications for the risk management of such a scheme.

Comparing parts (a) and (b) of Figure 7 we find that the inclusion of parameter un-
certainty for the drift parameter p adds further uncertainty about the projected mortality
rates. This reflects the additional randomness from not having a sufficiently long period
of observed rates. We notice that the difference of variance between including and ex-
cluding parameter uncertainty increases as time increases. Thus parameter uncertainty
becomes much less important when only relatively short forecast horizons are considered.
A similar results can be found in Figure 6 in Cairns et al. (2006) which shows the log
scaled variance of both with and without parameter uncertainty for the survival index.
This supports our conclusion that the differences in the variances are tiny when ¢ is very
small, and become more significant for long term projection.

We are also interested in how much of the forecast variation is due to the impact
of sampling variation and parameter uncertainty on the covariance matrix, V', and the
drift, u. To investigate this, we consider four experiments outlined in Table 2. Note that
we still projected the cohort effect, given the point estimates for population w with the
method introduced in Section 4.2 and we sample from the empirical distribution of i and
V without considering the Bayesian posterior. The results are shown in Figure 8. We find

1. Project mortality rates for each constructed population, while fixing the parameters p and V' of
the random walk to the estimates obtained from the England and Wales data.

2. Project mortality rates for each constructed population, while fixing only the drift p to the cor-
responding EW estimates and sample realisations of V' from its empirical distribution.

3. Project mortality rates for each constructed population, while fixing only the variance matrix V' to
the corresponding EW estimates and sample the drift parameter from the empirical distribution
of .

4. Project mortality rates when both V' and p are samples from the empirical distribution of V and

fL.

Table 2
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(a) Projected mortality with allowance for Parameter Uncertainty
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Figure 7: The log-scaled prediction intervals of twenty-year forward mortality rate pro-
jections with (upper plot) and without (lower plot) allowance for parameter uncertainty
at ages 65 and 85, for population size w = 1 (dashed line), 0.1 (long dashed line), 0.01
(dotted), 0.001 (dot dashed line) and England and Wales (solid line). Note that the solid
line at the left end is the estimated mortality rate of the England and Wales population,
with length of 20 years. The upper bound of the prediction interval is the 95% quantile
of the distribution and lower bound is the 5% quantile.
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that fixing parameters has a significant effect on mortality forecasting when populations
are very small (w=0.001) in Figure 8a. We can see that the widths of prediction intervals
for our experiments 1 and 3 are much narrower than for experiments 2 and 4, and the
difference of variance is greater for long term projections. The major difference between
these two scenarios is that we fix the co-variance matrix V' to its estimate obtained from
England and Wales data in experiments 1 and 3. Thus we conclude that a major source
of uncertainty for our mortality forecasts comes from the bias in the estimated covariance
matrix for small populations.

4.4 Summary

To summarise, forecasts levels of uncertainty in future mortality are biased upwards for
two reasons. First, and most obvious, the Poisson noise in the data biases up estimates
of the random walk covariance matrix to a significant extent (Figure 8). Second, when
we include a Bayesian analysis of parameter uncertainty, uncertainty in the random walk
drift resulting from observation over a relatively small number of years is pushed up by
the small population bias in the covariance matrix, V. This has its greatest impact in
longer term forecasts, and less impact in the short term.

(a) Projected Mortality for w = 0.001 (b) Projected Mortality for w = 0.1
° :
o~ N
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o
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Figure 8: The projected mortality rates at age 65 and 85 for population sizes w = 0.001
(left), w = 0.1 (right) for the four experiments outlined in Table 2. The upper bound
of the prediction interval is the 95% quantile of the distribution and the lower bound is
the 5% quantile. Note that the solid line at the left end is the true mortality rate of the
England and Wales population, up to year 2011.
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5 Likelihood Ratio Test for Systematic Parameter
Difference

We have seen that the size of a population has a substantial impact on the level of un-
certainty about the parameters of the model in (1)—(3) when this model is fitted to the
population’s mortality data. This raises the question whether the estimated period and
cohort effects in 6 = (Kél), HEZ), /@53), 754)) for a small a population are significantly differ-
ent from those in a given, typically much larger, reference population. To address this
question we apply a likelihood ratio test to test for significant deviations of estimated pa-
rameters from a given null hypothesis using the maximum likelihood estimator é;” defined
in (7) for simulated mortality data D} as in (6). We are particularly interested in the
finite sample distribution of the test statistic as compared to its asymptotic distribution.
As in section 3 we will use simulated deaths scenarios to investigate the finite sample
distribution and the power of the likelihood ratio test (LRT) applied to mortality data.
We will start with a short review of the LRT.

5.1 Review of Likelihood Ratio Test

The LRT used in this study follows the generalized form of the LRT as defined in Kendall
et al. (1987). For a random variable X with a distribution that depends on a parameter
vector 6, the likelihood function is defined as usual:

L(x|0) = Hfz‘(xiW)

where f;(.|0) is the probability density function of X; given the parameter vector 6.
We assume that 0 = (6,,6;) is a vector of r 4+ s parameters. The null hypothesis and
alternative for the LRT concern only the parameters in 6,., that is,

HO : QT = 97,0; H1 : GT # ero. (14)

In order to calculate the test statistic, we first find the MLE of (6,,6;), which leads to
the unconditional maximum of the likelihood function

0 = (0,,0,) = arg maxy_o,L(z | 0,,05). (15)

We then find the MLE of 6, assuming that the null hypothesis is fulfilled, that is,

0, = arg maxy L(x | Or0,0;). (16)

In general 0, = és(ero) =+ 0,.
We now define the test statistic in the usual way:

L(ill' ‘ ero, és)

[' = —2log —
L(z | 0,,05)

(17)

Wilks (1938) proved that when Hy holds, T' asymptotically follows a central x? distri-
bution with r degrees of freedom. From the central limit theorem, it follows that the
x? distribution can be approximated by a normal distribution with mean r, given r is
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sufficiently large.? Thus we expect that the distribution of I" should approximately be

symmetric around r.

In the reminder of this section we will consider a null hypothesis about the entire
parameter vector 6 setting s = 0. In section 7 we will then consider a null hypothesis
about the cohort effect v only, that is s > 0.

5.2 Finite Sample Distribution of LRT

As mentioned above, we now consider a test for systematic parameter differences involving
all period effects and the cohort effect, that is, s = 0 and 0 = 0, = (/@51), mﬁz), nf’), 24)).
The null hypothesis and alternative are given in (14), and the LRT statistic is defined in
(17) which simplifies to

L($ ’ ero)

I' = —2log ~
Lz | 6:)

(18)
since s = 0.

As in section 3, we choose the male population in England and Wales as our base case
and set 6y = gEv

To investigate the finite sample properties of the LRT in small populations we apply a
parametric bootstrap procedure in which we simulate N mortality scenarios, estimate the
parameter vector 6 as in section 3 and apply the LRT in each scenario. More precisely we
use the following steps to find a bootstrap approximation of the finite sample distribution
of I': For different values of w and for each scenario j =1... N we

1. simulate D" as in (6),

2. find the estimate é;” as in (7),
3. calculate the realisation of the LRT statistic I'{ as in (18) and

4. calculate the p-value P}’ based on the asymptotic x2-distribution as P = P[X >
F;"} where X is has y?-distribution with a degrees of freedom.

The degrees of freedom of the y? distribution in step 4 should be the effective number
of parameters denoted by «, which is the total number of parameters r less the number
of constraints, that is

a=3n,+n.—3

where n, is the number of years, and n. = n, + n, — 1 is number of cohorts in a given
dataset. In our case, n, = 51, n, = 51 +40 — 1 = 90, hence a = 240. After applying the
parametric bootstrap method we can generate the distribution of the test statistic. We
expect that the distribution of I should be approximately symmetric around 240.

For any population size w we can now find the empirical distribution function of 'V’
based on the sample T'¥,... T%. Furthermore, if the asymptotic x? approximation is
accurate, the p-values P}, ..., Py should be independent and uniformly distributed on
[0,1]. The cumulative distribution of the test statistic I'” and the p-values P for all
considered population sizes w are shown in Figure 9 for N = 1000. Figure 9a shows
that the empirical distribution of I'* is indeed centred around a = 240. We also observe
in Figure 9b that the cumulative distribution function of the p-values resembles the

2See Kendall et al. (1987) for more details about the likelihood ratio test and the asymptotic distri-
bution of the LRT statistic
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distribution function of the uniform distribution on [0, 1]. Both results indicate that the
x? approximation for the distribution of I'* under the null hypothesis is very good for all
values of w considered.

(a) Test Statistics, I (b) P-values, Py,
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Figure 9: Likelihood ratio test: (a) empirical CDF’s of test statistics for sample size
N = 1000. (b) empirical CDF’s of asymptotic p-values. Results shown for populations
of w =1 (solid line), w = 0.1 (dashed line), w = 0.01 (dotted line) and w = 0.001 (dot
dashed line). The mean of the asymptotic x3,, distribution is also shown as the vertical
dashed line in plot (a).

5.3 Power of the Likelihood Ratio Test

In last section, we carried out the likelihood ratio test for the parameter difference and
found that the x? approximation does not fail to capture the feature of the test statistic
I when Hj holds. We will now investigate how the population size affects the power of

LRT.
As usual the power of a test is defined as

Prob (Reject Hy | Hy is True).

To evaluate the power of the LRT with a parametric bootstrap procedure similar to the
one used in the previous section we need to generate scenarios under the alternative. So
far we have considered a very general alternative 6, # 6,5. We will now need to specify
this alternative further. To this end we define four alternative models and investigate the
power assuming that the “true” data generating model is one of those alternatives. The
four models we consider for the alternative shift or scale one of the period effects or the
cohort effect estimated from the England and Wales data.
More specifically, the alternatives we consider are:

o 00 = (Rg" + X 46, A6, 467)
o 00 = (R, 457 + A A6, 46”)
o 09 = (kg k57 kG + 2, 467)

o 60 = (R0 D 4D 2a)
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We then evaluate the power of the LRT against each of those alternatives with different
values of A\. Note that we scaled the cohort effect by A units instead of shifting it since

shifting the cohort effect would result in the same fitted mortality rates as shifting /#’

in (1.

We can now proceed as in the previous section with simulating death counts and then
apply the LRT for different alternatives and different values of \. We define D;”-U’(Z) (t,x)
to be the simulated deaths in scenario j = 1...N for the population of size wEy(t,x)
using the parameter 8% in our model, that is,

DY W (¢, 2) ~ Pois(m (0, t, x)wEy(t, x))

for any i = 1,2,3,4, where m is defined in (2) and (3). Note that death counts also
depend on A. ‘ A

Using the simulated death counts D;U’(Z) we obtain the MLE é;)’(z) as in (7). We then
use the asymptotic y2-distribution to test the null hypothesis that the parameters of our
model are equal to the parameters obtained from the England and Wales populations.

The p-values P;TU’(Z) = P;U’(i)()\) are then calculated as in step 4 in the previous section,

and the null hypothesis is rejected in any scenario j for which P;”’(i) < 0.05, that is, the
significance level of the test is 0.05.

The power of the LRT for any fixed alternative i, relative population size w and fixed
A is the proportion of the simulated p-values which are less than 0.05, that is, we count
the number of scenarios for which the null hypothesis is rejected. More specifically, we
define the random variables

Ry),(z’)()\) _ { 1 if P;”’(i)(/\) < 0.05 (Hy rejected)

7 0 otherwise

REO0) = SR (19)

N
N : J

7j=1
so that R™(()) is the proportion of scenarios in which the null hypothesis is rejected

among N simulated scenarios. We call R”(®()) the empirical rejection rate. Since we
are considering independent scenarios, R**(”(\) has a Binomial distribution,

NR“®()\) ~ Bin (N, pw’(i)()\)> (20)

where p*()(\) is the (unknown) power of the LRT if alternative ) with parameter X is
the true parameter set for the simulated death counts. Therefore, the empirical rejection
rate R ()) is an unbiased estimator for the power p*>(?(\) and the estimated standard
deviation of R ()) can easily be found from (20) in the usual way.

Then we investigate sensitivity of the power with respect to the size of A and the size
of population w. for each of the four cases, 8, . .., ™, we consider a set of values for A
that are regularly spaced. .

Figure 10 shows the obtained estimates R;-"’(z)()\) for the power as a function of \ for
different relative population sizes w. Note that for each alternative %) and any fixed
we have simulated N = 100 scenarios, which is less than in the previous section. The
reason is that we need to simulate those scenarios for each combination of i (alternative)
and A, which makes the total number of simulated scenarios very large.

Unsurprisingly, the power of the LRT is increasing in A for any 6% and relative
population size w; the more we shift/scale the null hypothesis, the easier it is for the
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(a) The Power of LR test when (") shifted (b) The Power of LR test when #(?) shifted
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Figure 10: The empirical rejection rates R (\) under the LRT together with error bars
for relative population sizes w = 1 (dashed line), w = 0.1 (long dashed line) and w = 0.01
(dotted line). The width of the error bars is one standard error based on (20).

test to detect any shift/scaling. For the three period effects, decreasing the population
size will greatly reduce the capability of LRT to detect the same amount of shift to
a single parameter. We can also compare these plots with the earlier Figure 2 which
includes distributions of parameter estimates resulting from sampling variation. By way
of example, for w = 0.01 the width of the confidence interval in Figure 2 (e) for /-if’u)} is
about 0.005. This is much larger than the shifts that are considered in the power plot
in Figure 10. The reason why the latter values are so much lower is because we apply
a systematic adjustment to all of the nﬁi,)), in contrast to random adjustments (due to

sampling variation) in the former.

6 Impact of Parameter Misspecification on Mortality
Rates and Annuities

We now investigate how significant the impact of shifting and scaling parameters is on
the fitted mortality rates and corresponding annuity prices. We consider again the four
alternatives in the previous section. For each of those and for each relative population
size w we determine the value of A\ that results in a power of 50% of the LRT, that is,
there is a 50% probability that the LRT will detect the wrong model and reject the null
hypothesis. Those values are denoted by /\EU_})(Z) and shown in Table 3.
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Parameter shifted w=1 w=01 w=0.01

AL 0.003  0.006 0.02
AL2) 0.0003  0.0006 0.002
A 0.0000025 0.000005  0.00018
AL 1.03 1.09 1.32

Table 3: The table contains the size of shift required for 50% power when each parameter
is shifted separately, with respect to population w = 1,0.1,0.01

We then calculate fitted mortality rates using the model in (2) and (3) with the
following parameter constellations

A

w,(2 1) A2
‘90.5() (() ()"‘)‘05 8)7(())>
(4
Yo

)

o 05" = (6" ARGV, ARG + X557, A
(

o 55" = (R, A6,A67 M55V 46Y)

To quantify the change in fitted mortality rates we calculate the following ratio

w,(1
pw7(i) _ m(90.5( ),t,I')
m(007t7x)

for each ¢« = 1,2,3,4 and different values of w. We expect that shifting /{,E”, /4;752) and

( ) will result in a parallel shift upwards, tilting rates in an anti clockwise direction and
add some concavity to the rates respectively. This can indeed be seen in Figure 11 where
we plot the ratio p**(® for the year t = 2011. Figure 11d suggests that scaling ’y§4) tilts
and introduces more fluctuation to the ratio. For all the four parameters reducing the
relative population size w increased the relative change p**( since \; 51 increases. This
confirms the intuitive idea that even misspecified parameters which produce significant
changes in the fitted mortality rates are hard to detect with an LRT when the exposures
are small.

From a financial point of view the effect on fitted mortality rates is only relevant in
so far as annuity prices are affected. We will therefore consider the following annuities
and discuss the effect of the four alternatives specified above on their values:

e A temporary annuity of £1 per annum payable annually in arrears to a life now
aged 65 exactly, starting at the beginning of year 2012 with term of 25 years. Its
expected present value is calculated as:

25
Qg5.25] = Z S(T + ja 65)vj

j=1

e An annuity of £1 per annum payable annually in arrears to a life now aged 55
exactly, deferred for 10 years, starting at the beginning of year 2012 with term of
25 years. Its expected present value is:

35
10|A55.25] = Z S(T + ja 55)Uj
j=11
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Figure 11: The impact of shifting each parameter separately on the estimated death rate
of England and Wales. The shift is determined when it results in 50% power for each
population w = 1 (solid line), w = 0.1 (dashed line) and w = 0.01 (dotted line).

where v is the discount factor, S(T' + t, z) is the survival index for the probability of an
individual aged x exactly at the start of year 7', that will survive for the next ¢ years. We
assume the interest rate of i = 2%. The reason for investigating the deferred annuity is
that Figure 2g suggests that the estimates of cohort effect at ¢ = 1946 is approximately
zero and the effect of scaling cohort estimates may not be obvious on the annuity price
535 but more obvious for 19ja5.35).

We project the period and cohort effects in 6 gfi) (1=1,2,3,4) and 6EW forward for
35 years as in Section 4 where we use the point estimates defined in (9) and (10) for the
parameters of the random walk for the shifted period effects, that is, we do not consider
uncertainty about the drift and variance matrix of the random walk. Annuity prices are
calculated for each sample path and we then calculate the average annuity price for each
w with the i*" parameter shifted or scaled. The results are shown in Table 4 and Table
5.

The effects of shifting the period effects and scaling the cohort effect are somewhat
varied. As might be expected, the impact on prices is most obvious for w = 0.01. The
impact on both types of annuity is straightforward to see for xM: the shift pushes up
mortality rates at all ages and lowers prices. For £® there is more impact on the age-65
annuity than the age-55 deferred annuity as the shift lowers mortality at younger ages and
raises it at higher ages. For k®), also, the impact is different at different ages. Finally,
for v, the impact of scaling simply depends on the sign and magnitude of the value of
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@ for the cohort being priced.

Generally shifting or scaling the parameter estimates has no obvious effect on the
annuity price and smaller populations can be affected more. Thus for testing a null
hypothesis Hy : 0°=001 = §EW if we accept Hy when, in fact, they are actually different
(type II error) the financial consequence of this type II error will be small in our case. In
other words, the fact that we have accepted Hy means that =091 while not identical,
must be very close to 6EW  and that, therefore, any error in pricing will also be very
small.

Parameter shifted England and Wales w=1 w=01 w=0.01

e 14.67466 14.66393 14.65318 14.60280
K2 14.67466 14.66887 14.66307 14.63588
K 14.67466 14.67500 14.67534  14.69850
@ 14.67466 14.66997 14.66056 14.62441

Table 4: The impact of shifting each parameter separately on the price of a twenty five-
year temporary annuity for an individual aged at 65. The shift is determined when it
results in 50% power for each population w = 1,0.1,0.01, which are shown in Table 3.
We assume an interest rate of 2%.

Parameter shifted England and Wales w=1 w=01 w=0.01

k™ 11.96545 11.95599 11.94652 11.84214
k@ 11.96545 11.96358 11.96169 11.95266
k3 11.96545 11.96565 11.96584 11.97920
@ 11.96545 11.96815 11.97355 11.99411

Table 5: The impact of shifting each parameter separately on the price of a ten-year
deferred twenty five-year temporary annuity for an individual aged at 55. The shift is
determined when it results in 50% power for each population w = 1,0.1,0.01, which are
shown in Table 3. We assume an interest rate of 2%.

7 Likelihood Ratio Test for the Cohort Effect

The general form of the LRT as reviewed in section 5.1 allows us to test a null hy othesm
about parts of the parameter vector 6 rather than the entire § = (mgl ,/it , ,% )
Testing parts of # is particularly relevant if mortality rates in a rather small populatlon
are modelled using estimated period or cohort effects from a larger population. Setting
one or more of the components of # equal to the corresponding parameters estimated from
the large population reduces the dimension of the parameter vector which needs to be
estimated from the small population where parameter uncertainty is rather strong as we
have seen in section 3. The example we have in mind is a pension fund that uses national
mortality data to improve its mortality models, or when the mortality experience in a
small country is modelled based on the combined experience of other similar countries.

In the reminder of this section we will use the LRT to test a null hypothesis about
the cohort effect . In our general setting of section 5.1 this means that

0, =~ and 0, = (v{", 517, k7).
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Our null hypothesis is then that v = v, where 7, is a given vector of cohort effects,
for which we later use an estimated cohort effect from a different population. We can
now write the hypotheses as in (14) and proceed as in section 5.2 to find the distribution
of the LRT statistic in (17) for a finite sample of death counts from a small population.

For practical relevance we base our simulation study on the female and male popula-
tions in England and Wales. We choose vy = 4", which is the estimated cohort effect
from the mortality data for males in England and Wales. To investigate finite sample
properties of I" we will need to specify a full parameter vector # to simulate scenarios for
the death counts. Having fixed the cohort effect vy we choose the period effects to be
the estimated period effects from data for the female population in England and Wales
assuming that the cohort effect for those data is actually vy. As we are mainly inter-
ested in small populations we will consider deaths count scenarios for populations which
have exposures equal to wFEy where Ej is here the exposure for the female population in
England and Wales.

More specifically, we first find the MLE 0, = arg maxy L(z | 0,0 = 7,0s) of the
period effects 05 = (/{gl), /{%2), /{ES) ) from data for females assuming that the cohort effect
is indeed 7o (which is the estimated cohort effect for males), see (16). We then generate
N realisations of the value of the test statistic I for different values of the relative
population size w using the following algorithm:

1. Simulate death counts D} as in (6) using the parameter vector
b= (0:.000) = (V.57 57 0)

to obtain scenarios DY for different values of the relative population size w. The
period effects & are estimated from data for females with the cohort effect fixed to

Yo- The exposure is wE, where FEj is the exposure for the female population in
England and Wales.

2. Find the MLE és,j of period effects x in scenario j assuming that the null hypothesis
holds, as in (16).

3. Find the unrestricted MLE 6; as in (15).
4. Calculate the value of the test statistic I'Y in (17) in each scenario j.

5. Calculate the p-values P}" based on the asymptotic x2-distribution with o degrees
of freedom, where « is the number of parameters (cohorts) » minus the number of
constraints as in section 5.2. For our data set we obtain o = 87.

The simulated distribution functions of the LRT statistic I'* and the p-values P" are
shown in Figure 12. The results suggest that changing the size of the population has no
significant impact on the distribution of I'* and that the p-values are roughly uniformly
distributed for all w, which is an indication that the y?-approximation works well for our
data set as we have also found in section 5.2 where the full parameter vector was tested.

8 Empirical Examples

We apply the LRT for the cohort effect in two empirical studies.
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Figure 12: The results of likelihood ratio test, with distributions of test statistics (a) and
p-values (b), for the population of w = 10 (solid line), w = 1 (dashed line), w = 0.1
(dotted line), w = 0.01 (dashed dotted line) and w = 0.001. The left vertical dashed line
is the mean of normal approximation for the y2,, at x = 87. The right dashed line at
x = 110 is the true 95% quantile of population w = 1.

8.1 Females vs. Males in England and Wales

The population for which we wish to test the cohort effect first is the female population
in England and Wales that we already considered in our simulation study. Our null
hypothesis is therefore that the true cohort effect for the female population in England
and Wales is equal to the estimated cohort effect for males in England and Wales. Note
that this is different from testing the hypothesis that the male and female population
share the same (true) cohort effect since we ignore the uncertainty about the estimated
cohort effect for males.

To illustrate the difference between the two cohort effects we plot in figure 13 the
estimated cohort effects for females and males. We notice that males and females have a
similar pattern after about 1900.

We also find visually in figure 13 that substantial differences between the two cohort
effects exist. This difference can be confirmed more formally using the LRT with the null
hypothesis that the females have the same cohort effect as the previously estimated males
cohort effect. The test statistic I' is approximately 6311, which is an extremely high value
for a y2-distribution with 87 degrees of freedom and is also very high compared to the
values of I' observed in our simulation study, see Figure 12. The p-value is therefore very
close to zero, and we reject the null hypothesis that the cohort effect fro the mortality of
the female population is the same as the previously estimated cohort effect for the male
population.

8.2 Male Mortality in Scotland vs. England and Wales

A second, and more intriguing, empirical example concerns the cohort effects estimated
from mortality data for the male population in England and Wales versus the male
population in Scotland. Figure 14 compares the independently-estimated cohort effects
with a confidence interval added around the Scottish estimates. Compared to Figure 13,
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Figure 13: The estimates of cohort effect, for England and Wales males (solid line) and
females (dashed line), age 50 to 89 last birthday, over year 1961 to 2011

the two curves here look much more similar. On the other hand, we find that most of
the cohort effects for males in England and Wales lie outside of the confidence interval
calculated for Scottish males. This suggests that although the two populations have
similar pattern for the cohort estimates, the difference might still be significant.

For the LRT we again choose 79 = 4¥" and then test the hypothesis that the true
cohort effect for Scottish males is equal to 7. The 99% quantile of a y2-distribution
with 87 degrees of freedom is approximately 121. For the test statistic we find I' =
193.37 and we therefore reject the null hypothesis and conclude that the cohort effect in
Scotland is significantly different from the estimated cohort effect for England and Wales.
This indicates that there might be factors in the Scottish male population that result in
significant differences throughout time. However, we might speculate that there is a
common cohort effect, that is, for some reason, magnified in Scotland. Investigating this
in detail is beyond the scope of this paper, but we speculate that a magnified effect might
be the result of socio-economic differences between the two populations: for example,
cohort effects might be greater in lower socio-economic groups.

9 Conclusion

In this paper, we investigated the finite sample distribution of the maximum likelihood
estimators for the parameters of a stochastic mortality model. We found that the size of a
population has a significant effect on the uncertainty about the estimated parameters and
mortality projections. In particular, we found that there exists a bias in the estimated
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Figure 14: The estimates of cohort effect, for the males of England and Wales (solid line)
and Scotland (dotted line), age 50 to 89 last birthday, over year 1961 to 2011. The dashed
lines are the CI for the cohort effect of Scotland. The upper bound is 95% quantile of
the distribution and the lower bound is 5% quantile.

covariance matrix of the random walk fitted to the period effects when the size of the
underlying population is small. As a consequence, prediction intervals are rather wide
for small populations even when parameter uncertainty is ignored.

To investigate if parameters estimated from larger populations can be used to gener-
ate scenarios for smaller populations we investigated how a likelihood ratio test performs
when applied to the mortality experience of a small population. We found that the finite
sample distribution of the test statistic is very close to the asymptotically correct x? dis-
tribution and, therefore, the observed rejection rates are close to the chosen signifcance
level. However, we also found that the power of the test depends strongly on the popu-
lation size with the ability of the test to detect deviations from the null hypothesis being
significantly reduced when the size of the underlying populations is small.

In our empirical analysis we then applied the LRT, and found that neither of the
mortality rates of the female population in England and Wales and the male population
in Scotland should be modelled with a cohort effect estimated from the male population
in England and Wales.
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A Derivation of the asymptotic distribution of 6,
Recall the log likelihood function

16, D}, B thx@ g(t,2,0,) + h(t, 2)

where

f(t,z,0,) = Dy loglm(t, z, 0,)]
g(t,x,0,) = wE,m(t, z,0,)

and h(t,x) is the function with no respect to 6,. The form of the column vector 6,, with
4ny + na — 1 dimensions is

1 1 2 2 3 3
ur = (i s ooy Ry s B ooy By s B s oos By 00 Vo o3 Tomy 1)
The second derivative of (6., D,, E}",) is
*l O*f 9%

002 =002, 00

For every pair of (t,z), m(t,z,0,) is a single value, thus the second derivative of f and
g with respect to 6,, is a Hessian matrix with 4ny + na — 1 rows and columns, with the
form as

2 __r 021
O gi)u? R Bng)wan( o) e angn a'yéi?y-;-na i
0 f B
80121} . . : . .
&f o _er
8’y£i)y+na71 wa”ii)w B’Y‘gi)ernafl wangn) w o 8’Y§i);+na_1,w

Thus the form of the element at row m and column n is

O*f  _ DP om(t,x,60.)0m(t,x,0,) D 0Pmit x,6.)
8/1%)@8&5321,— m(t,x,0,)? 8/4:%)@ 8/4;%7'21} m(t,x,0,) 8&%)11,8/@(320

where 7,5 € (1,2,3,4) and are not necessarily the same. Note that £® represents the
cohort effect for convenience. Same derivation can be done for g, and we have

P, Pmltn0,)
85%)11,8/#20 B b (9/4;%)1“8&,(32”

Thus for each pair of (¢, x), the expected value of the element of the second derivative of

[is
p|EU=9) | __,_Fo_onita.0) onltsbu)
8/1%),108’17(1];20 m<t7 T, ew) 8/'{1(7?,11) Ok gw

éEW

Thus we have the fisher information matrix given

om(t, z,0,) [ Om(t,z,0,)\"
EW _ ) ) Ly
16 “’Z bz, eEW [ 20, ( 20,

29

as

O _pEW



Further, given t = t,,, v = x,,

Om(ty, x,0,) (am(tm,:cn,ew)aq(tm,a:n,ew) Om(tm, T, 0y 8q(tm7xm9w)ﬂ )
B Bl AL D) al
where
— { 1 t=t,
=tm = 1 0 otherwise.
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