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Abstract

This paper discusses the use of parametric models for the term structure of interest rates
and their uses. The paper focuses on a potential problem which arises out of the use of
certain models. In most cases the process of parameter estimation involves the minimiza-
tion or maximization of a function (for example, least squares or maximum likelihood).
In some cases this function can have a global minimum/maximum plus one or more local
minima/maxima. As we progress through time this leads to a process under which param-
eter estimates and the fitted term structure can jump about in a way which is inconsistent
with bond-price changes.

Here a number of models are identified as susceptible to this sort of problem. A new
descriptive model (the restricted-exponential model) is proposed under which it is proved
that the likelihood and Bayesian posterior functions have unique maxima: both in a zero-
coupon bond market and in a low-coupon bond market. A counterexample shows that this
result can break down for larger-coupon bond markets. An alternative Bayesian estimator
in combination with the restricted-exponential model is shown to be free from the problem
of catastrophic jumps in all coupon-bond markets.
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1 Introduction

1.1 Descriptive models

A descriptive model takes a snapshot of the bond market as it is today. Generally, there is
no reference to price data from other dates. The sole aim is to get a good description of
today’s prices: that is, of the rates of interest which are implicit in today’s prices.

A descriptive model, on its own, gives us no indication of how the term structure might
change in the future. We know that there is randomness in the future but this sort of model
does not describe this feature. The description of the dynamics of the term structure falls
into the domain of arbitrage-free equilibrium and evolutionary models (for example, see
Baxter and Rennie, 1996, Rebonato, 1996, or Jarrow, 1996) or more general actuarial and
econometric models which are not necessarily arbitrage free but which pay more attention
to past history (for example, see Wilkie, 1995, or Mills, 1993).

Descriptive models have a number of uses:

They give us a broad picture of market rates of interest which are implied by market
prices (and, in particular, if there is only a coupon-bond market) (for example, see
Nelson & Siegel, 1987, Svensson, 1994, and Dalquist & Svensson, 1996).

They can be used to price forward bond contracts.

They can assist in the analysis of monetary policy (Dalquist & Svensson, 1996).

A forward-rate curve can be used as part of the input to a model based on the Heath,
Jarrow & Morton (1992) framework or the more recent positive interest framework
of Flesaker & Hughston (1996). Of course, here, it is also necessary to specify a
volatility structure (for example, see Jarrow, 1996). Once this has been added to the
descriptive model we have a full model which describes the dynamics of the term
structure. The input forward-rate curve is often recalibrated each day.

They can be used in the construction of yield indices (Feldman et al., 1998).

Finally descriptive models provide sufficient information for us to get a precise
market value of a non-profit insurance portfolio or to price, for example, annuity
contracts.

1.2 Parametric models

This paper will concentrate on the use of parametric models.

The alternative to such models is spline graduation (for example, see McCulloch, 1971,
1975, Mastronikola, 1991, Deacon & Derry, 1994, or Vasicek & Fong, 1982). Paramet-
ric curves aim to give a parsimonious description of the term structure (Svensson, 1994)
providing a broad picture which shows the main features of the term structure. Spline
graduations aim to give a detailed and highly-parametrized picture of the market: warts
and all. It is questionable, however, if all this detail is accurate. For example, splines can
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overcompensate for small but genuine differences between observed prices and underly-
ing theoretical prices (for example, due to liquidity problems, small variations in taxation
or, simply, the bid/offer spread). Furthermore, the results of a spline graduation seem
to be sensitive to the number and the location of the knots (Dalquist & Svensson, 1996,
and, for example, see Deacon & Derry, 1994, Figures 3.2 to 3.5). In terms of confidence
intervals for rates of interest this is likely to result in a relatively wide band at all matu-
rities (that is, a relatively wide margin of error). Parametric models, on-the-other-hand,
display a relatively wide margin of error only at the very short and the very long end of
the maturity spectrum (Cairns, 1998). At all other maturities estimates of par yields, spot
rates and forward rates are all relatively robust.

With parametric curves, the aim is to get a parsimonious description of the term structure:
that is, we wish to use a model which captures as much of the detail of the market as
possible. These two requirements clearly conflict: it is always possible to improve the
fit of the model by increasing the number of parameters. For an additional parameter to
be worthwhile the improvement in fit must exceed a specified amount (for example, ac-
cording to the Schwarz-Bayes Criterion discussed in Wei, 1990, and Cairns, 1995, 1998).
Such curves avoid the lumpiness of spline models. However, they can still be biased at
certain maturities if there are small heterogeneities in the market not accounted for in the
model and if bonds with certain characteristics are clustered. For example, in the UK
there is a cluster of strippable gilts at the long end of the market.

1.3 Existing parametric models

1.3.1 Gross redemption yields

Dobbie & Wilkie (1978) proposed the model which is currently used in the construction of
the UK yield indices published in the Financial Times. It is a model for gross redemption
yields: that is,

y t t s b0 b1e c1s b2e c2s

is the gross-redemption-yield curve at time t for a coupon bond maturing at time t s.
This curve is fitted to low-, medium-, and high-coupon bands separately to take account
of the old, UK coupon effect. Since 1996, however, income and capital gains on UK
gilts have been taxed on the same basis making this yield curve approach obsolete and
forward-rate curves more relevant.

1.3.2 Forward-rate curves

Nelson & Siegel (1987) proposed the following curve:

f t t s b0 b10 b11s e c1s

The curve is of the form of a constant plus a polynomial-times-exponential term. It allows
for a single hump or dip in the curve.
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Svensson (1994) generalised this by adding a further polynomial-times-exponential term:

f t t s b0 b10 b11s e c1s b21se c2s

This curve can have up to two turning points.

Wiseman (1994) proposed another model of exponential type:

f t t s b0 b1e c1s bne cns

The order of the model n varies from one country to the next. The curve can have up to
n 1 turning points.

Bjørk & Christensen (1997) generalised all of the previous forms of forward-rate curves
by describing the exponential-polynomial class of curves:

f t t s L0 s
n

i 1
Li s e cis

where each of L0 s Ln s is a polynomial in s:

Li s bi0 bi1s bikis
ki

In the unrestricted case all parameters (the bi j and the ci) are estimated. This is the case,
for example, in Nelson & Siegel (1987), Svensson (1994) and Wiseman (1994).

1.4 Estimation

The parameters in a descriptive model are fitted by talking, first, a snapshot of the data.
For example, this may give us a set of price data, P. For a given model, let be the set
of parameters. For a given model and value for we have, for each i, a theoretical price
Pi in addition to the observed price Pi. can be estimated by a number of means: for
example, weighted least squares (Dobbie & Wilkie, 1978, Wiseman, 1994); maximum
likelihood (Cairns, 1998); or Bayesian methods (Cairns, 1998). Least squares methods
can be demonstrated to have a sound statistical basis (Cairns, 1998) but only the likelihood
and Bayesian approaches can give a complete picture of the results. In particular, they give
not only parameter estimates but also an indication of the level of parameter uncertainty
and of the level of uncertainty in the estimates of various interest rates.

Let us take a specific example. Suppose that we are considering a zero-coupon bond mar-
ket and that we wish to fit the Nelson & Siegel (1987) model using maximum likelihood.

For maximum likelihood we must specify a full statistical model. Here we assume for
simplicity that the logarithm of the price of a zero-coupon bond has a Normal distribution
with mean log P̂i and with a variance which depends upon the term to maturity:

logPi N log P̂i
2 ti

where ti term of stock i
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It is not necessary for us to specify the form of 2 t here. For possible definitions see
Svensson (1994), Wiseman (1994) or Cairns (1998).

Now the form of the forward-rate curve in the Nelson & Siegel (1987) model means that
log P̂i has the following simple form:

log P̂i c1 b b0 ti b10
1 e c1ti

c1
b11

1

c2
1

1 1 c1ti e c1ti

There are three components to this formula. Each component is of the form of a linear
b-coefficient times a non-linear term involving ti and c1.

Because of this linearity in b it is easy to estimate b b0 b10 b11 for this statistical
model given a specific value of c1.

We call the b’s linear parameters and c1 a non-linear parameter.

If we go back to the log-likelihood function this is a function of c1 and b given P

l c1 b;P
1
2

n

i 1
log 2 2 ti

logPi log P̂i c1 b 2

2 ti

and we have to maximise this over c1 and b. This function is quadratic in b so that, for
a given value of c1, the estimate b̂ c1 is unique. For simplicity we write l̂ c1 when the
function has been maximised over b. l̂ c1 is the profile log likelihood.

We then have to maximise this over c1. This function has to be maximised numerically.
Sometimes we have a problem with this because l̂ occasionally can have more than one
maximum: say one global maximum and another local maximum.

The same problem arises within a coupon-bond market. However, the so-called linear
parameters, b̂ c1 , are no longer simple to estimate. Generally, b̂ c1 is uniquely defined,
while l̂ c1 can still have more than one maximum.

In Figure 1 we give an example of this from the close of business on 31 May, 1995, in the
UK coupon-bond market. The function l̂ has a global maximum at about c1 0 6 but it
also has a local maximum at about c1 2 7. The difference in likelihoods is not too large
implying that the local maximum gives almost as good a fit as the global maximum.

1.5 Instability of parameter estimates

Let us think now about the consequences of having more than one maximum as we move
through time.

Figure 2 gives a simple scenario of what might happen. As we go from one day to the
next, the likelihood curve will gradually evolve. In particular, the two maxima will go up
and down. From time to time one of them might disappear totally and from time to time
the global maximum might jump from one location to the other as we see here. We start on
day 1 with a unique maximum at A. Suppose also that the maximisation algorithm starts
at yesterdays maximum and finds the local maximum. From days 2 to 5 there is a second
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Figure 1: 31 May, 1995. UK coupon bond market. Profile log-likelihood function l̂ c1

for the Nelson & Siegel model.
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Figure 2: Possible development of the profile log-likelihood function through time.
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maximum at B and indeed on days 3 and 5 this is the global maximum. The algorithm will
continue until day 5, however, at maximum A. It is not until day 6 when the maximum at
A disappears totally that the algorithm moves across to B. Other algorithms might jump
more frequently, in particular if they are designed to find the global maximum.

What are the consequences of this problem?

We have identified that as we move from one day to the next the location of the maximum
might jump. This is sometimes referred to as a catastrophic jump. When such a jump
occurs, the size of the jump will typically be much larger than would be consistent with
the corresponding changes in prices. For example, if prices follow a diffusion process then
the parameter estimates should also follow a diffusion process and in particular should be
a continuous process: this continuity will clearly be violated if there is a catastrophic
jump.

If parameter estimates jump then a published yield index will also jump in an equally
obvious way and the indices will start to lack credibility and fall into disuse. Equally if
the curve is used as input to a Heath-Jarrow-Morton model with frequent recalibration
it is essential that the recalibrated curves evolve in a way which is consistent with price
changes. This is not the case if catastrophic jumps occur which will cause unexpected
jumps, for example, in derivative prices.

The existence of more than one maximum can also lead to potential mispricing of such
things as bonds, interest-rate derivatives or the pricing of annuities or other life insurance
contracts.

All of the Dobbie & Wilkie (1978), Svensson (1994) and Wiseman (1994) models exhibit
the same problem with multiple maxima (for example, see Cairns, 1998). In particular,
this problem can arise in a zero-coupon bond market as well as in a coupon-bond market.
In each case estimates for the linear, polynomial coefficients are unique and simple to
derive while the multiple maxima show up in their profile log-likelihood functions. The
problem arises on different dates, however, for different models and with varying degrees
of magnitude.

In Figure 3 we return to the previous example. Here we have plotted forward-rate, spot-
rate and par-yield curves for each of the two maxima in Figure 1. The largest differences
occur between the two forward-rate curves. This is because these rates are the furthest
from what we actually observe: which is coupon-bond prices. Par yields are closest to
what we see on the market so the errors are smallest. The maximum difference here is
about only 0.03% which does not sound very much. But if we take the issue of a long-
dated stock with a duration, say, of 10 years, then this leads to an error of £3 million per
£1 billion issued, which is not trivial. On other dates and for other models these errors
can be bigger.

2 The restricted-exponential family

Given the shortcomings of the models described in the previous section, an alternative
model is therefore appropriate. Here we describe the the restricted-exponential family.
This is a simple family of forward-rate curves:
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Figure 3: Forward rates, spot rates and par yields for the global maximum (solid line) and
for the local maximum (dotted line).
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f t t s b0 b1e c1s bme cms

b c

The curve is a sum of a constant plus m constant-times-exponential terms and is super-
ficially the same as the Wiseman (1994) model. The parameter set is divided up into
subsets of linear terms b b0 bm and non-linear terms c c1 cm . This sug-
gests that there is likely to be the same problem as before. However, the approach taken
here is a bit different.

In the previous models we estimated all of the parameters: linear and non-linear. In
contrast, here we only estimate a subset of the parameter set. Thus, we fix the exponential
parameters c at the outset and at no future point do we estimate their values. At any point
in time we only estimate the linear parameters b.

2.1 Maximum-likelihood estimation

Proposition 2.1

Under the statistical model proposed in Section 1.4:

(a) In a zero-coupon bond market the resulting maximum-likelihood estimate b̂ is unique.

(b) In a low-coupon bond market the log-likelihood function is concave within required
region containing all possible maxima. Hence, the maximum-likelihood estimate b̂
is unique.

Proof: See Appendix A. In particular, we define what we mean by a low-coupon bond
market.

2.1.1 A counterexample for larger coupons

The likelihood and Bayesian posterior-density functions have been shown to have a unique
maximum in a low-coupon bond market. Unfortunately, the result does not extend, at
least theoretically, to markets with higher coupons as the following simple counterexam-
ple shows.

Suppose that we take a very simple case where m 1: that is, f t t s b0 b1 exp c1s .
Our market consists of two stocks:

Stock 1: annual coupon, rate g, term t1 to maturity.

Stock 2: zero-coupon, term t2 to maturity.

Stock 1 has an actual price of P1 and a theoretical price given b0 b1 of P̂1 b0 b1 . Let L1

be the set b0 b1 : P̂1 b0 b1 P1 . This is a downward sloping and convex curve (see
Appendix A).

Stock 2 has an actual price of P2 and a theoretical price of P̂2 b0 b1 . Let L2 be the set
b0 b1 : P̂2 b0 b1 P2 . L2 is a straight line with a negative gradient.
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Given the details of stock 1 it is possible to choose P2 and t2 such that L1 and L2 intersect
in two points within the feasible region b : f t t s 0 for all s 0 . (With
m 2, b : b0 0 b0 b1 0 .) Let the points of intersection be b10 bb11 and
b20 bb21 . At each point the theoretical prices equal the observed prices so clearly the

likelihood function will be maximised at both points of intersection. These maxima will
also, of course, be of the same height.

Numerical example:

Suppose that c1 0 2. For stock 1 we have P1 1, t1 20 and g 0 08, and for stock 2
we have P2 0 352478, t2 13 3562.

The there are two solutions in b b0 b1 : b 0 03 0 137958 and b 0 11 0 091620 .

The experience of the UK gilts market suggests, however, that there is no problem with
multiple maxima. The counterexample above just shows that we cannot rule out the possi-
bility altogether. This is possibly because the problem diminishes as the number of stocks
increases.

2.2 Bayesian estimation

2.2.1 Maximum-posterior-density estimation

Suppose instead we wish to use Bayesian methods with a prior distribution g b for b and
a 0-1 loss function. Then the log-posterior density function is g b P g b l b;P
constant, and the Bayesian estimator is the mode of the posterior distribution. (The 0-1
loss function thus gives an estimator which gives the best fit which is consistent with the
prior distribution.)

There are two principal reasons for using Bayesian methods:

We have introduced a constraint that the forward-rate curve should be positive at
all maturities, on the basis that the risk-free rate will be non-negative at all times.
If f t t s is equal to zero for any value of s then this means that r t s 0
with probability 1. If we wish to exclude this possibility then we must require that
f t t s is strictly positive for all s. It is unreasonable to require that f t t s has
a minimum value higher than 0. However, if we use maximum likelihood and this
finds that the maximum is at some b for which the forward-rate curve is negative
at some maturities then the introduction of a constraint will mean that the forward-
rate curve is still equal to 0 for some s. This problem can be avoided if we use
Bayesian methods. In particular, if the prior density function, g b , tends to zero
on the boundary of the feasible region (in which f t t s remains positive) then
the maximum of the posterior will give a strictly positive forward-rate curve at all
maturities.

Bayesian methods provide a coherent framework within which we can analyse pa-
rameter risk and construct confidence intervals for specified interest rates and so
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on.

Corollary 2.2

If the log-prior distribution function is concave then:

(a) In a zero-coupon bond market the resulting Bayesian estimate b̂ is unique.

(b) In a low-coupon bond market the log-posterior density function is concave within
required region containing all possible maxima. Hence, the Bayesian estimate b̂ is
unique.

2.2.2 Squared-error loss functions

Suppose instead that the loss function is of the form

L b b̃
0

s f t t s;b f t t s; b̃ 2ds

where 0 s ds , f t t s;b bTd s , and d s T 1 exp c1s exp cms .
The best estimator is b̂ which maximizes the posterior expectation of the loss function.
Thus:

E L b b̂ P inf
b̃

E L b b̃ P

Now

e b̃ E L b b̃ P E
0

s bT d s b̃T d s
2

ds P

E
0

s b b̃ T d s d s T b b̃ ds P

e

b̃
b̃ E 2

0
s d s d s T b b̃ ds P

2
0

s d s d s T dsE b b̃ P

Thus e b̃ is minimized at b̂ E b P . This estimator is well defined relative to the prob-
lem of maximizing a function with more than one maximum. The estimator will also
evolve without the risk of catastrophic jumps, since the form of the posterior distribution
evolves in a way which is consistent with price changes. Interestingly, this estimate does
not depend upon the form of s .

If, on-the-other-hand, we are considering one of the models in the unrestricted exponential-
polynomial class we have the same problems of non-linearity in the exponential parame-
ters. This arises from the fact that the minimization problem here is essentially the same
as the maximization problem described in Sections 1.4 and 1.5 for a zero-coupon bond
market.

Clearly any loss function which is quadratic in b and b̃ will also have the same properties:
for example, if we replace the forward-rate curve by the spot-rate curve.
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3 Further remarks

3.1 Choice of m

To get a consistently good fit in the UK gilts market we require m 4: that is, 4 expo-
nential terms. Inevitably we require more terms than if we estimate both the linear and
non-linear parameters. The new approach with 4 exponential terms is roughly equivalent
to estimating b and c in a model with only 2 exponential terms (but in each case we are
still only estimating 5 parameter values). However, the restricted exponential model has
the advantage that it will fit much better on dates where more than one turning point in
the forward-rate curve is apparent.

With m 4 we can have a very rich or wide range of yield curves with up to 3 turning
points.

3.2 Choice of c

The restricted-exponential fixes c at the outset. It is relevant, therefore, to ask the ques-
tions what is an appropriate choice for c and what quantities are sensitive to the choice of
c?

One point that can be made at the outset is that it is reasonable to think of variation of the
parameters c as variation within a continuous spectrum of models rather than parameter
values. Normally we consider a collection of models to be a discrete and possibly finite
collection. Here different values of c can be thought of as representing different models.

First, goodness of fit can be seen to be not sensitive to changes in c (Cairns, 1998). On
the other hand, fitted very short and very long rates are sensitive. In between, fitted rates
hardly vary if the value of c is changed. This, in fact, is an artefact of the data rather than
the model since we are exptrapolating beyond the range of the data. The same would be
true of other models.

Other quantities, for example, swaps or spreads might be sensitive to the choice of c but
this is beyond the scope of this paper.

3.3 A more general family of curves

Bjørk and Christensen (1997) consider what families of curve are consistent with the
evolution of certain models for the term structure. They describe a more general class
of model: the restricted-exponential-polynomial family. Any curve in this family in
which the polynomials are all of degree 0 is in the restricted-exponential family. A sim-
ple example is the Vasicek (1977) model. This is a one-factor model under which the
forward-rate curve evolves within the family of curves f t t s b0 b1 exp c1t
b2 exp c2t b0 b1 b2 where c1 and c2 are fixed and c2 2c1. There are of course fur-
ther restrictions on the parameters b0, b1 and b2 but the curve does evolve within this
higher-dimensional family.
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Appendix A

A.1 Zero-coupon bond market

Define Z b; t Z b Z b; t exp bT d t where bT b0 bm , d t T d0 t dm t ,
d0 t t and dk t 1 exp ckt ck for k 1 m.

For a bond maturing at ti write di d ti and dik dk ti .

Suppose that the observed prices are P1, P2, ..., PN . The likelihood function is

l b;P
1
2

N

i 1
log2 2 ti logPi logZ b; ti

2 2 ti

1
2

N

i 1
i logPi dT

i b 2 constant

where i 1 2 ti

Maximising the likelihood is thus equivalent to minimising the function

g P b
1
2

N

i 1
i logPi dT

i b 2

d2g
db i

idid
T
i

The matrix of second derivatives is constant and positive definite.

Proposition 2.1(a)

Hence g P b is convex and has a unique minimum in b.

If we wish instead to use Bayesian methods it is necessary for us to specify also a prior
density function. Suppose that the log-prior density function is denoted by p b . The
log-posterior density function is then

p b P p b g P b constant

Corollary 2.2(a)

If p b is convex then 2 p b b2 is positive semi-definite. Thus the matrix of second
derivatives of minus the log-posterior density function 2 p b P b2 is positive definite
and there is a unique value of b for which p b P b 0.

A.2 Coupon-bond market

Suppose that there are N bonds each with a nominal value of 1. Bond i has cashflows
ci1 cini at times 0 ti1 tini respectively. Given b, the theoretical price of each
bond is then:
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P̂i b
ni

j 1
ci jZ b; ti j

ni

j 1
ci j exp bT d ti j

Write di j d ti j

di jk dk ti j

g b
1
2

N

i 1
i logPi log

ni

j 1
ci jZ b; ti j

2

(Recall that the log-likelihood is l b;P g b constant.)

Now

Z b; t exp bT d t
dZ b; t

db
Z b; t d t

d2Z b; t
db2 Z b; t d t d t T

Thus g b
i

i logPi log
j

ci jZ b; ti j
j ci j

dZ b;ti j
db

j ci jZ b; ti j

i
i logPi log

j
ci jZ b; ti j

j
fi j b di j

i
i logPi log

j
ci jZ b; ti j d̄i b

where d̄i b
j

fi j b di j

and fi j b
ci jZ b; ti j

j ci jZ b; ti j

g b
i

i
j ci j

dZ b;ti j
db

j ci jZ b; ti j

j ci j
dZ b;ti j

db

j ci jZ b; ti j

T

i
i logPi log

j
ci jZ b; ti j Vi b

i
ib̄i b b̄i b T

i
i logPi log

j
ci jZ b; ti j Vi b

where Vi b
d
db

j ci j
dZ b;ti j

db

j ci jZ b; ti j

j ci jZ b; ti j di jdT
i j j ci jZ b; ti j j ci jZ b; ti j di j j ci jZ b; ti j dT

i j

j ci jZ b; ti j
2

j
fi j b di jd

T
i j

j
fi j b di j

j
fi j b di j

T
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j
fi j b di j d̄i b di j d̄i b T

0

Now write Xi b logPi log j ci jZ b; ti j log Pi P̂i b .

g b
i

iXi b d̄i b

g b
i

i d̄i b d̄i b T Xi b Vi b

Now in a zero-coupon bond market Vi b 0 and the d̄i b are constant and do not depend
on b. Thus g b is constant and positive definite confirming the simpler derivation above.

A.3 Assumptions

We make the following assumptions:

The range of acceptable values for b is denoted by . Each b must satisfy the fol-
lowing criterion: for all 0 t s, 1 Z b; t Z b;s . This criterion is equivalent to
the assumption that the forward-rate curve f t t s is non-negative for all t and for all
s 0: that is,

b : bT d t 0 for all t

where d t T 1 exp c1t exp cmt

Suppose that u 0 and that b . For any 0 t s we note that 1 Z b; t Z b;s
and therefore 0 bT d t bT d s . Thus

0 u bT d t u bT d s

1 exp ubT d t exp ubT d s

1 Z bu; t Z bu;s

Thus b if and only if bu for all u 0. That is, is a cone.

Furthermore, suppose that bA and bB are in . Then for any such that 0 1, and
for any 0 t s:

0 bT
Ad t bAd s

and 0 bT
Bd t bBd s

0 1 bT
Ad t bT

Bd t 1 bT
Ad s bT

Bd s

0 1 bA bB
T d t 1 bA bB

T d s

1 bA bB

Thus is a convex cone.
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A.4 Locality of possible minima

We define the following sets:

B0 b : Pi P̂i b for all i

B1 b : Pi P̂i b for all i

B2 B1

Clearly for all b B0, P̂i bs Pi for all 0 s 1. That is, b B0 implies that bs B0

for all 0 s 1.

Similarly, b B1 implies that bs B1 for all 1 s .

Lemma A.1

There does not exist b B0 or b B1 such that g b 0 is positive definite.

Proof Suppose that there exists such a b B1.

Let s0 inf s : bs B1 . Thus P̂i bs Pi for all s s0 and P̂i bs is decreasing with s
for s s0. Hence g bs is an increasing function of s for s s0 which indicates that there
cannot be a minimum at b.

Similarly there does not exist such a b B0.

Lemma A.2

B1 is convex.

Proof

Note that P̂i b is convex in b for all i.

Suppose bA and bB are members of B1.

Then P̂i bA Pi and P̂i bB Pi.

For 0 1: since P̂i b is convex,

P̂i 1 bA bB 1 P̂i bA P̂i bB Pi

Thus bA bB B1 1 bA bB B1.

Given bA bB B1 this is true for all i. Thus B1 is convex.

Proposition 2.1(b)

For small coupon rates there is a unique maximum.

Proof

We proceed as follows:

(a) Establish a means of moving continuously and smoothly from zero-coupon bonds, via
a new parameter, ( 0 giving a zero-coupon bond market and 1 giving us the true
coupon-bond market).

(b) Establish that B2 B1 is finite, and let B3 be some finite expansion of B2 and which
contains B2 for all values of : 0 1.
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(c) Within B3, the shape of the log-likelihood function g b can only deform slightly as
we increase from 0. In particular, for small there will still only be one maximum.

(a) We start with a coupon-bond market with N stocks. For stock i we have an observed
price Pi. The ni future cashflows under this stock are ci1 cini at times ti1 tini . The
final payment is made up of nominal capital of 1 and a final coupon payment of cini 1.

Now specify an arbitrary forward-rate curve f̃ t t s : for example, the curve fitted to
yesterday’s prices. This has a corresponding set of zero-coupon bond prices Z̃ s for
maturity in s years.

The actual coupon bond prices are Pi which we can write as

Pi

ni

j 1
ci jZ̃ ti j e i

for some 1 N.

We define the -coupon bond market as follows. For each stock we multiply the original
coupon payments for each stock by but retain the full redemption payment. Thus the
cashflows for stock i are ci1 cini where

ci j
ci j 1 j ni 1

1 cini 1 j ni

The price of stock i in the hypothetical -coupon bond market is defined as

Qi

ni

j 1
ci j Z̃ ti j e i

Clearly 0 represents a zero-coupon bond market while 1 returns us to the original
coupon-bond market.

Proof of (b):

Let R t t s;b bT d s s be the spot rate at time t for maturity at time t s.

Let t0 be the shortest dated time to a coupon or a redemption payment.

Let rm inf R t t t0;b : b 1 b and let Bm b : R t t t0;b rm .

Let E b : b b , Ẽ b : b b .

E 1 is a closed set so that rm is attainable: that is, Bm is non-empty.

rm 0. Otherwise there exists b such that R t t t0;b 0. This implies that f t t
s;b 0 for 0 s t0. This can only be true if b 0.

Let ˜ supi
1

rmt0
log Fi

Qi
where Qi is the price of stock i in the -coupon bond

market and Fi
ni
i 1 ci j is the total amount of the future payments under that stock.

Consider the -coupon bond market. For all b b ˜ , for all i, the theoretical price
of stock i is:
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Q̂i b
ni

j 1
ci j exp R t t ti j;b ti j

ni

j 1
ci j exp R t t ti j;b b ti j b

ni

j 1
ci j exp rmt0 b

Fi exp rmt0˜

Qi

Thus B2 B1 Ẽ ˜ .

Choose some such that sup0 1
˜ .

Let B3 Ẽ .

Write g b for the log-likelihood function for the -coupon bond market.

Clearly g b is infinitely differentiable.

For any (0 1), for any i and for any b B3, Q̂i b Qi .

Thus, by Lemma A.1, there can be no b outside Ẽ such that g b b 0 at b.
Hence no local maxima can come sliding in from infinity as soon as 0.

Let b̂ B3 be the unique value of b such that

g
b

b̂ 0 0

Note that 2g b2 b 0 is constant and strictly positive definite. (This leads to the
unique maximum b̂ mentioned above for the zero-coupon bond market.)

Hence there exists 1 0 such that 2g b2 b is strictly positive definite for all
0 1 and for all b B3 (since g is C and B3 is finite).

Thus for each (0 1) there is a unique b̂ B3 (and hence ) which maximises
g b .

Corollary 2.2(b)

Furthermore, if a prior distribution for b is such that -1 times the log-prior density func-
tion is positive semi-definite then -1 times the log-posterior density function is also posi-
tive definite within B3.
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