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Abstract

It is now widely accepted that stochastic mortality – the risk that aggregate mor-
tality might differ from that anticipated – is an important risk factor in both life
insurance and pensions. As such it affects how fair values, premium rates, and risk
reserves are calculated.

This paper makes use of the similarities between the force of mortality and interest
rates to examine how we might model mortality risks and price mortality-related
instruments using adaptations of the arbitrage-free pricing frameworks that have
been developed for interest-rate derivatives. In so doing, the paper pulls together
a range of arbitrage-free (or risk-neutral) frameworks for pricing and hedging mor-
tality risk that allow for both interest and mortality factors to be stochastic. The
different frameworks that we describe – short-rate models, forward-mortality models,
positive-mortality models and mortality market models – are all based on positive-
interest-rate modelling frameworks since the force of mortality can be treated in a
similar way to the short-term risk-free rate of interest. While much of this paper is
a review of the possible frameworks, the key new development is the introduction of
mortality market models equivalent to the LIBOR and swap market models in the
interest-rate literature.

These frameworks can be applied to a great variety of mortality-related instruments,
from vanilla longevity bonds to exotic mortality derivatives.
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1 Introduction

A large number of products in life insurance and pensions by their very nature
have mortality as a primary source of risk. By this we mean that products are
exposed to unanticipated changes over time in the mortality rates of the appropriate
reference population. For example, annuity providers are exposed to the risk that
the mortality rates of pensioners will fall at a faster rate than accounted for in
their pricing and reserving calculations, and life insurers are exposed to the risk of
unexpected increases in mortality (a recent example being those due to HIV/AIDS).
On the asset side of their balance sheets, insurance companies are also exposed
to investment risks and, since their investment portfolios are predominantly fixed
income, this means that they are heavily exposed to interest-rate risk.

However, there is a huge gap in the tools available to model these two types of risk.
On the one hand, the theory and practice of interest-rate modelling is very well
developed (see, for example, Vasicek, 1977, Cox, Ingersoll and Ross, 1985, Heath,
Jarrow and Morton, 1992, Miltersen, Sandmann and Sondermann, 1997, Brace,
Gatarek and Musiela, 1997, Jamshidian, 1997, Brigo and Mercurio, 2001, James
and Webber, 2002, Rebonato, 2002, and Cairns, 2004b). On the other hand, the
state and practice of mortality risk modelling is relatively primitive.

Previous authors (see, for example, Milevsky and Promislow, 2001, Dahl, 2004, and
Biffis, 2005) have observed that there are important similarities between the force
of mortality and interest rates. In particular, both are positive processes, have term
structures, and are fundamentally stochastic in nature. Milevsky and Promislow
(2001) and Dahl (2004) exploited these similarities to model mortality risk using
methods developed in interest-rate modelling. In a similar fashion, Biffis (2005)
exploited the similarities between mortality risk and credit risk. This paper seeks to
develop their insights further. In particular, it makes use of the similarities between
mortality and interest rate risks to show how we can model mortality risks and
price mortality-related instruments using adaptations of the arbitrage-free pricing
frameworks that have been developed for interest-rate derivatives. In so doing, it
develops a range of arbitrage-free frameworks for pricing and hedging mortality risk
that allow for both interest and mortality factors to be stochastic.

1.1 Evidence that mortality is stochastic

To motivate our discussion, we will first summarise some evidence that confirms that
mortality improvements are indeed stochastic. We then briefly discuss the state of
the art in mortality modelling, and go on to consider some financial instruments
whose values depend on mortality and where it is therefore important to model
mortality risk factors in an appropriate way.

The idea that mortality is stochastic is not a new one, and it has been evident for
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many years that mortality rates have been evolving in an apparently stochastic fash-
ion. The uncertainty of mortality forecasts is illustrated in recent work by Currie,
Durban and Eilers (2004) (hereafter CDE) which analysed historical trends in mor-
tality using P-splines. The fitted surface of values for the force of mortality1 µ̂(t, x)
is plotted on a log scale in Figure 1.1 while the development of the force of mortality
for specific ages over time relative to values in 1947 is plotted in Figure 1.2. Figure
1.2 reveals some detail that we cannot easily see in Figure 1.1: specifically that
the rate of improvement has varied significantly over time, and that the improve-
ments have varied substantially between different age groups. CDE also constructed
confidence bounds for the future development of mortality rates. Inevitably, these
confidence bounds get wider as the forecast horizon lengthens and CDE found that
even 15-20 years ahead the bounds are very wide. In general terms, the analysis
of CDE, as well as other analyses using the stochastic mortality models discussed
below, indicates that future mortality improvements cannot be forecast with any
degree of precision. Other studies (e.g., Forfar and Smith, 1987, Macdonald et al,
1998, Willets, 1999, and Macdonald et al, 2003) have come to similar conclusions.

We focus in this paper on systematic mortality risk: the risk that aggregate mortal-
ity rates differ from those anticipated. Mortality risk can manifest itself in different
ways and to help differentiate between them we will employ the following taxonomy.
The term mortality risk will be used to cover all forms of deviations in aggregate
mortality rates from those anticipated at different ages and over different time hori-
zons. Longevity risk will be used to refer to the risk that, in the long term, aggregate
survival rates for identified cohorts are higher than anticipated. Short-term, catas-
trophic mortality risk will refer to the risk that, over short periods of time, mortality
rates are very much higher than would normally be experienced.

1.2 Recent models of mortality

A number of recent studies have sought to model mortality as a stochastic process.
We shall see presently that all these studies bar one (Lin and Cox, 2005a) can be
seen as belonging to one of the more general frameworks that we will describe later in
this paper. We will describe these briefly here and in the Appendices. The majority
of work in this field has concentrated on what we describe as short-rate models for
mortality: that is, they are modelling the spot mortality rates2, q(t, x), or the spot
force of mortality, µ(t, x).

The most coherent group of papers that use the short-rate-modelling framework in

1For an individual aged x at time t and still alive at that time, the force of mortality µ(t, x)
represents the instantaneous death rate: that is, for a small interval of time dt, the probability of
death between t and t + dt is µ(t, x)dt + o(dt) as dt → 0 (that is, approximately µ(t, x)dt for small
dt). The force of mortality µ(t, x) is described in more detail at the start of Section 2.

2The spot mortality rate q(t, x) is the probability at time t that an individual who is aged x
and still alive at time t will die before time t + 1.
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Figure 1.1: Fitted values using P-splines for the force of mortality µ̂(t, x) for the
years t = 1947 to 1999 and for ages x = 11 to 100 from Currie, Durban and Eilers,
2004. (Data: UK males, assured lives.)
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Figure 1.2: µ̂(t, x)/µ̂(1947, x): Fitted values using P-splines for the force of mortality
µ̂(t, x), relative to the 1947 value for the years t = 1947 to 1999 and for ages x =
21, 31, 41, 51, 61, 71 and 81 from Currie, Durban and Eilers, 2004. Note that the
pattern of improvements is different at different ages. (Data: UK males, assured
lives.)
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discrete time build on the original work of Lee and Carter (1992) (see, also, Lee,
2000b). This study introduced a simple model for central mortality rates involving
both age-dependent and time-dependent terms and applied it to US population
data (see Appendix A for further details). The time-dependency is modelled using
a univariate ARIMA time-series model implying that changes in the mortality curve
at all ages are perfectly correlated. Brouhns, Denuit and Vermunt (2002) applied
the same model to Belgian data and also improved some of the statistical aspects of
Lee and Carter’s work. The possibility of imperfect mortality correlation was then
investigated by Renshaw and Haberman (2003) who extend the Lee and Carter
approach by adding a second time-dependent set of changes.

A second approach that also uses the short-rate-modelling framework in discrete
time has been proposed by Lee (2000a) and Yang (2001). They take a deterministic
projection of the spot mortality rates, q̂(t, x), as given, and then apply an adjustment
that evolves over time in a stochastic way. (For further, brief details, see Appendix
B.) Lee and Yang’s approach has been continued in later work by Cairns, Blake and
Dowd (2006) and Lin and Cox (2005b).

Short-rate models for the development in continuous time of the force of mortal-
ity have been proposed by Milevsky and Promislow (2001), Dahl (2004), and Biffis
(2005). Milevsky and Promislow (2001) take a more theoretical approach in contin-
uous time which assumes that the force of mortality µ(t, x) has a Gompertz form
ξ0(t) exp(ξ1x) where the ξ0(t) term is modelled using a simple mean-reverting diffu-
sion process (see Appendix C). Dahl (2004) works initially in a much more general
setting than Milevsky and Promislow. He starts by considering a general diffusion
process for the force of mortality before focusing on the parsimonious, affine class of
processes and we discuss his approach further in Appendix D. Biffis (2005) extends
Dahl’s approach to cover jump-diffusion affine processes.

In contrast to the papers mentioned above, Lin and Cox (2005a) do not propose a
specific model for stochastic mortality. Instead, they apply the Wang (1996, 2000,
2002, 2003) transform to convert deterministic projected mortality rates into what
might be described as risk-adjusted probabilities. The use of the Wang transform
is gaining in popularity in non-life insurance applications where there is a lack of
liquidity in the instruments subject to the underlying risks. However, it is not clear
from Lin and Cox (2005a) how different transforms for different cohorts and terms
to maturity relate to one another to form a coherent whole.

Another approach to the pricing problem in incomplete financial markets has been
proposed by Froot and Stein (1998). They discuss how the capital structure of
a financial institution affects the price they are prepared to pay to take on or to
offload a non-hedgeable risk. Typically this takes the form of an over-the-counter
deal between two institutions. Amongst other results, they demonstrate that the
price at which an institution is willing to trade these instruments also depends on
how well capitalised it is.
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1.3 Applications of stochastic mortality models

There are many financial applications in which it is necessary to take account of
the stochastic behaviour of mortality. One example is the calculation of quantile (or
value-at-risk) reserves for life-office portfolios, where the uncertain future pattern of
liability payments will depend, amongst other things, on the future evolution of the
force of mortality µ(t, x). It is also important to take account of stochastic mortality
when reserving for policies that incorporate certain types of guarantee.

Taking account of stochastic mortality is also critical when pricing mortality deriva-
tives. Below we provide some examples of mortality derivatives that have been
proposed in the literature, not all of which exist in practice at the time of writing:

• Longevity bonds (where coupon payments are linked to the number of sur-
vivors in a given cohort). Long-dated longevity bonds (also referred to as
survivor bonds: Blake and Burrows, 2001) intended to manage longevity risk
have recently been revived by Cox, Fairchild and Pedersen (2000), Blake and
Burrows (2001) and Lin and Cox (2005a). Their origin dates back to Ton-
tine bonds issued by a number of European governments in the 17th and 18th

centuries. The first modern issue of a longevity bond, with a maturity of 25
years, was announced in November 2004 by the European Investment Bank
and BNP Paribas. However, Cox, Fairchild and Pedersen (2000) commented
that a number of insurers were proposing to issue longevity bonds as early as
1997. The fact that issues of such bonds were so long in coming suggests that
there are substantial practical problems which need to be overcome or that
the market is not yet ready to invest in such long-term bonds. (For further
details of the EIB/BNP bond, see Cairns, Blake, and Dowd (2006), Cairns,
Blake, Dawson and Dowd (2005) and Blake, Cairns and Dowd (2006).)

• Short-dated, mortality-linked securities (market-traded securities whose pay-
ments are linked to a mortality index). The first, widely-marketed, bond of
this type was issued by Swiss Re at the start of 2004, and it shares charac-
teristics with traditional catastrophe bonds in the non-life insurance markets
(see, for example, Schmock, 1999, Lane, 2000, Wang, 2002, and Muermann,
2004). It involves a three-year contract (maturing on 1 January 2007) which
allows the issuer to reduce its exposure to short-term catastrophic mortality
risk. The repayment of the principal is linked to a combined mortality index
of experienced mortality rates in five countries (France, Italy, Switzerland, the
UK and the USA). Under the contract, the principal will be at risk “if, during
any single calendar year in the risk coverage period, the combined mortality
index exceeds 130% of its baseline 2002 level”. The credit spread at issue of
135 basis points (1.35%) equates to a risk-neutral probability of about 0.04
(that is, 1−(1−0.0135)3 ≈ 0.04) that the principal would not be repaid at all.
This is equivalent to a catastrophic event that would happen, on average, once
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every 75 years (treating individual years as being independent). The types of
catastrophic mortality events that are large enough to breach the threshold
include (but are not restricted to) an influenza pandemic, or a natural catas-
trophe. However, the Swiss Re bond addresses a different type of mortality
risk (short-term catastrophic mortality risk) from that considered in this paper
(unanticipated long-term changes in population mortality). The catastrophe
risks being covered by the Swiss Re bond might be correlated with financial
markets (past examples – albeit on a “smaller” scale – include 9/11 or the Kobe
earthquake in 1995). In contrast, we assume for convenience that systematic
mortality risks are independent of the financial markets: an assumption that
simplifies the mathematical developments that follow. However, we do discuss
briefly how this assumption might be relaxed.

• Survivor swaps (where counterparties swap a fixed series of payments for a
series of payments linked to the number of survivors in a given cohort). A
small number of survivor swaps have been arranged on an over-the-counter
basis. They are not traded contracts and therefore only provide direct benefit
to the counterparties in the transaction. The case for survivor swaps is made
by Dowd et al (2006).

• Annuity futures (where prices are linked to a specified future market annuity
rate). As an example, suppose that a(t, x) represents the market price at time
t of a level annuity of £1 per annum payable monthly in arrears to a male
aged x at time t. (This might, for example, be a weighted average of the top
5 quotes in the market.) It has been suggested by AFPEN (the association
of French Pension Funds) that a traded futures market be set up with a(t, x)
(or its reciprocal) as the underlying instrument for selected values of x and
with a selection of maturity dates stretching out many years into the future.
For a given maturity date, the market could be closed out some months or
even a year before the maturity date itself, to reduce the impact, for example,
of moral hazard, changes in expensing bases, or the movements of individual
annuity providers in and out of the market. For further discussion of annuity
futures, see Blake, Cairns and Dowd (2006).

• Mortality options (a range of contracts with option characteristics whose payoff
depends on an underlying mortality table at the payment date). For example,
a guaranteed annuity option is an investment-linked deferred-annuity contract
that gives a policyholder the option to convert his accumulated fund at re-
tirement at a guaranteed rate rather than at market annuity rates. Market
annuity rates are set with reference to both interest rates at retirement and on
the mortality table in current use by the annuity provider, and this table, of
course, depends on mortality forecasts at that time. Contracts of this type are
discussed further in Section 4.2. Previous analyses of the role of systematic
mortality risk in guaranteed annuity contracts include those of Yang (2001)
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and Biffis and Millossovich (2004). Milevsky and Promislow (2001) consider
both pricing and hedging of contracts involving annuity options. Dahl (2004)
applies his model to problems involving insurance contracts with mortality-
linked cashflows.

For a more detailed discussion of the types of security that might be issued and the
practical issues associated with these contracts, see Blake, Cairns and Dowd (2006).

The more general impact of systematic mortality risk on life insurance has been con-
sidered at a theoretical level by Dahl and Møller (2005), while Marocco and Pitacco
(1998) and Pitacco (2002) discuss the risk in more general terms. Cowley and Cum-
mins (2005) consider securitisation of life insurance portfolios that incorporate a
mixture of risks including mortality.

A final application is the development of optimal asset-allocation strategies in the
presence of systematic mortality risk. This type of problem is considered by Dahl
and Møller (2005) (who examine optimal hedging) and Yang and Huang (2005) (who
examine optimal strategies for defined contribution pension plans).

It is, of course, essential that the evolution of the prices of these derivative contracts
should accurately reflect the stochastic evolution of µ(t, x). The evolution of µ(t, x)
can affect prices in several ways. Most obviously, stochastic mortality has an impact
on the value of mortality options: the greater the volatility in mortality rates, the
greater is the value of a mortality option (as with financial options). However,
the second effect is more subtle and relates to the fact that the ‘true’ values of
financial contracts are often non-linear functions of underlying factors. This point
often manifests itself through Jensen’s inequality, and an example in the present
context would be that the price of a contract based on expected cash flow may not
be equal to the value of the contract assuming that mortality follows some central
projection. Also (in line with the pricing of financial options) it might manifest
itself in our calculating expectations using a different probability measure (denoted
below by Q) from the real-world or true measure (denoted by P ) as, for example, is
the case in Dahl (2004). We do not discuss in this paper the many practical issues
related to the securitization of mortality risks. These issues are discussed elsewhere
(see Cowley and Cummins, 2005, Dowd et al., 2006, Lin and Cox, 2005a, and Blake,
Cairns and Dowd, 2006).

1.4 Choice of reference population

It is important to note that the reference population underlying the calculation of
the mortality rates is critical to both the viability and liquidity of these contracts.
Some investors (for example, life offices) will wish to use such contracts to help hedge
their mortality risk, but if the reference population is inappropriate, they will be
exposed to significant basis risk and the mortality derivative might not provide an
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adequate hedge. Other investors, such as hedge funds, will be attracted to mortality-
linked securities because their lack of correlation with other assets helps with the
diversification of risk on a general portfolio of investments (see, for example, Cox,
Fairchild and Pedersen, 2000). These investors might be less interested in using these
derivatives for hedging mortality risk but will be interested in liquidity (liquidity
being a key issue as well for speculators). Adequate liquidity will then require a
small number of reference populations, but these will need to be chosen carefully
to ensure that the level of basis risk is relatively small for those hoping to use the
contracts for hedging purposes. For more detail, see Section 2.1.

1.5 Requirements of a good stochastic mortality model

Given that mortality is best modelled as a stochastic process, it is reasonable to
suppose that any ‘plausible’ mortality model would meet the following criteria:

• The model should keep the force of mortality positive.

• The model should be consistent with historical data.

• The long-term future dynamics of the model should be biologically reason-
able. For example, one might rule out the possibility of an ‘inverted’ mortality
curve (that is, one in which mortality rates for the elderly fall with age). An
‘inverted’ curve is not only unreasonable a priori, but also conflicts with the
normal upward-sloping curves that are always observed in historical data.

• Long-term deviations in mortality improvements from those anticipated should
not be mean-reverting to a pre-determined target level, even if this target is
time dependent and incorporates mortality improvements. In contrast, short-
term deviations from the trend due to local environmental fluctuations might
be mean-reverting around the stochastic long-term trend. (We comment fur-
ther on this below.)

• The model should be comprehensive enough to deal appropriately with the
current pricing, valuation or hedging problem.

• It should be possible to value the most common mortality-linked derivatives
using analytical methods or using fast numerical methods. However, we stress
that this criterion is one of convenience only, and should not be allowed to
override the other criteria, which are more important because they are criteria
of principle. In other words, we should not drop one of the other criteria
merely to obtain an easy (for example, analytical) solution to the problem at
hand.
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It is worth commenting further on why, specifically, we take the view that long-
run stochastic improvements in mortality, µ(t, y), should not be strongly mean-
reverting to some deterministic projection, µ̂(t, y). The inclusion of mean reversion
would mean that if mortality improvements have been faster than anticipated in
the past then the potential for further mortality improvements will be significantly
reduced in the future. In extreme cases, significant past mortality improvements
might be reversed if the degree of mean reversion is too strong. Such extreme mean
reversion is difficult to justify on the basis of previous observed mortality changes
and with reference to our perception of the timing and impact of, for example, future
medical advances. Short-term trends might be detected by analysing carefully recent
developments in healthcare and in the pharamaceutical industry, but even then the
precise, long-term effects of such advances are difficult to judge. As we peer further
into the future, it becomes even more difficult to predict what medical advances there
might be, when they will happen, and what impacts they will have on survival rates.
All of these uncertainties rule out strong mean reversion in a model for stochastic
mortality.

Given this list of criteria, it is readily apparent that no one framework dominates
the rest: some frameworks fare better by some criteria, and worse by others. There
is therefore no strong reason why we should prefer models within any one modelling
framework over models in another.

We described above a number of studies that propose specific stochastic models
for the future evolution of mortality rates. With the exception of Section 4, this
paper does not offer a new model type. Instead, we seek to set down the general
formulation of the problem in continuous time and suggest a range of frameworks
for the pricing and valuation of mortality-linked derivatives. Our aim in doing
so is to provide, in one place, extensive foundations for the development in the
future of further stochastic models for mortality and to ensure that they are used
in appropriate ways in pricing problems. To make the exposition easier to follow,
we focus our discussion on the problem of pricing new securities. However, we
emphasize that the same basic approaches apply to related problems. For example,
they apply to the valuation of insurance liabilities that incorporate mortality-linked
derivatives, and they also apply (with appropriate changes from risk-neutral to real-
world probabilities) to the estimation of risk measures (for example, value at risk)
for mortality-related positions.

1.6 Layout of the paper

The layout of the paper is as follows. In Section 2, we introduce the fundamental
processes for mortality (the force of mortality process µ(t, x)) and for the risk-free
rate of interest (r(t)). These processes feed into survivor indices S(u, y) and a risk-
free cash account C(t) that play central roles in our analysis. We work with two
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fundamental types of financial contract:

• pure endowment contracts (zero-coupon longevity bonds) for a full range of
ages and terms to maturity; and

• default-free zero-coupon bonds for a full range of terms to maturity.

By noting parallels with interest-rate and credit-risk theory, we then describe how
pure endowment contracts should be priced if they trade in a perfectly liquid, fric-
tionless and arbitrage-free market.3

In this paper we use the terms framework and model in a precise way. Frameworks
provide us with general approaches to modelling, and it is frameworks that are the
main focus of this paper. We use the word model to mean a particular formulation
developed within a given framework. For example, we have the Vasicek (1977),
Cox, Ingersoll and Ross (1985), and Black and Karasinski (1991) models within the
short-rate modelling framework. The framework normally defines what we can use
as the basic building blocks in the modelling process.

In Section 3 we go on to describe briefly different frameworks that could be employed
to build up models for stochastic mortality with further detail given in the Appen-
dices. Subsection 3.1 pulls together all of the short-rate models described above
under the one short-rate-modelling framework and discusses how these models can
be used to build an arbitrage-free market in mortality derivatives. Subsections 3.2
to 3.4 then discuss various other modelling frameworks that have received much less
attention. From these, the most novel contribution in this paper is contained in
the separate Section 4 where we propose a number of different market models for
mortality. Section 5 concludes.

Each of these frameworks is drawn from the field of interest-rate modelling but with
the risk-free rate of interest replaced by the force of mortality. These are all described
in theoretical terms: and, with the exception of Section 4, no specific models are
proposed or analysed. Rather, the aim is to give readers a choice of frameworks
within which they can build their own continuous-time stochastic mortality models.
Most models built up within one framework can be reformulated within any of the
other frameworks (in the same way, for example, that the Vasicek, 1977, short-rate
model for r(t) can be re-expressed as a forward-rate model). This said, it is also
the case that most models rest naturally within one particular framework, and are
awkward to express within the others.

3Naturally, we do not claim that real-world markets are perfectly liquid or frictionless. However,
we can state that if prices are calculated in the way proposed then even an illiquid market with
frictions will be arbitrage-free. Conversely, if we were to propose a pricing framework that violates
the conditions in Section 2, then the possibility of arbitrage would emerge over time as the market
becomes more liquid or trading costs begin to fall.
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2 The term structure of mortality

In this section, we will define the basic components of a model for stochastic mor-
tality. We start by considering the force of mortality, µ(t, x), at time t for individ-
uals aged x at time t. Traditional static mortality models implicitly assume that
µ(t, x) ≡ µ(x) for all t and x, while deterministic mortality projections imply that
µ(t, x) is a deterministic function of t and x. By contrast, the models we will consider
here will treat µ(t, x) as a stochastic process.

There are two types of stochastic mortality (see, for example, Dahl, 2004):

• The first is specific (or unsystematic) mortality risk – the risk that the actual
number of deaths deviates from the anticipated number because of the finite
number of lives in a given cohort. This type of risk can largely be diversified
by investors under the usual assumption that future lifetimes for different
individuals are independent random variables. Specific mortality risk does not
lead to a risk premium in the price of mortality derivatives.

• Systematic mortality risk – the risk that the force of mortality evolves in a
different way from that anticipated. This type of risk cannot be diversified
away and therefore leads to the incorporation of a risk premium.

By drawing parallels with the pricing of financial contracts, we might expect that
with mortality derivatives systematic mortality risk should be priced using a risk-
neutral probability measure, Q, which is different from the real-world probability
measure, P (sometimes also called the objective or physical measure). This intuition
turns out to be correct: we will argue below that mortality derivatives need to be
priced with reference to such a measure in order for the market to be arbitrage
free. We stress at this point, though, that the risk-neutral measure Q might not
be uniquely determined due to market incompleteness. Instead the choice of Q
becomes part of the modelling process. An important additional observation is that
the explicit use of a risk-neutral measure, Q, for pricing – even if the market is
highly illiquid or has high transaction costs – ensures that the market the market
will be free from riskless arbitrage (Fundamental Theorem of Asset Pricing). As
mortality-linked securities begin to emerge and as we gather market price data we
can then test for the validity of our assumptions about Q. For further discussion
of the relationship between P and Q, the reader is referred to Dahl (2004), Cairns,
Blake and Dowd (2006) and Biffis (2005).

One example where prices might be calculated with reference to a risk-neutral mea-
sure is the Swiss Re mortality bond. The 135 basis point spread equates to a risk-
neutral probability, approximately, of 0.0135 per annum of default: that is, that the
principal will not be paid out. However, the real-world probability is thought to be
rather less than this (see, for example, Beelders and Colarossi, 2004).
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2.1 Basic building blocks

We have previously indicated that our aim is to develop a set of theoretical frame-
works to price mortality derivatives. In order to do so, we will make the convenient
but over-simplifying assumption that the force of mortality at time t, µ(t, y), is ob-
servable at time t for all y. In reality, we can only estimate µ(t, y) from a finite
amount of data, and this estimate is only calculated and published some months
or years after the event. The length of this delay also depends considerably on
the reference population: for example, the UK industry-wide Continuous Mortality
Investigation tables take longer to compile than tables relating to one specific life
office. We recognise that these are important practical issues but we will leave them
for future work.

2.1.1 The survivor index

We will use as our basic building block a family of index-linked zero-coupon longevity
bonds. The indices we will employ are related to survival probabilities for different
ages. Thus we define the survivor index

S(u, y) = exp

(
−

∫ u

0

µ(t, y + t)dt

)
. (2.1)

If µ(t, x) is deterministic then S(u, y) is equal to the probability that an individual
aged y at time 0 will survive to age y+u. Similarly, the probability that an individual
aged x at time t1 will survive until a later time t2 is S(t2, x− t1)/S(t1, x− t1).

In this paper, we are mainly concerned with models in which µ(t, x) is stochastic.
Looking forward from time 0, this means that S(u, y) is now a random variable. In
this case, S(u, y) can still be regarded as a survival probability, albeit one that can
only be observed at time u rather than at time 0. However, it is straightforward
to extract a survival probability by taking the expectation of the random variable
S(t, x) (equation (2.2) below). We prove this by using a combination of indicator
random variables and conditional expectation. Thus, consider an individual aged
x at time 0. Let Yx(u) be a Markov chain which is equal to 1 if the individual is
still alive at time u. Also let Mt be the filtration (or information) generated by the
evolution of the term-structure of mortality, µ(u, x), up to time t (that is, Mt gives
us full information about changes in mortality up to and including time t, but no
information about how mortality rates will develop after time t). The real-world or
true survival probability measured at time 0, that an individual aged x at time 0
survives until time u is

pP (0, u, x) = EP [Yx(u)] = EP [EP{Yx(u)|Mu}] = EP [S(u, x)]. (2.2)

Remark 2.1.1 Note that EP [S(u, x)] > exp
[− ∫ u

0
EP (µ(t, y + t))dt

]
by Jensen’s

inequality. Also, if µ̄(t, y + t) is a deterministic best estimate at time 0 of future
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mortality (for example, the median) then we will still usually have EP [S(u, x)] 6=
exp

[− ∫ u

0
µ̄(t, y + t)dt

]
.

More generally, we can define the survival probabilities at time t as follows. Let
pP (t, u, x) be the probability under P that an individual aged x at time 0 and still
alive at the current time t survives until time u:

pP (t, u, x) = EP [Yx(u)|Yx(t) = 1,Mt] = EP

[
S(u, x)

S(t, x)

∣∣∣∣ Mt

]
.

For the alternative risk-neutral probability measure Q, we can define the correspond-
ing survival probabilities:

pQ(t, u, x) = EQ[Yx(u)|Yx(t) = 1,Mt] = EQ

[
S(u, x)

S(t, x)

∣∣∣∣ Mt

]
.

Remark 2.1.2 In deriving this last expression, we have relied on the conventional
assumption that non-systematic mortality risk does not attract a risk premium. Even
when S(u, x)/S(t, x) is known, there is a range of equivalent probability measures for
the Bernoulli random variable (Yx(u)|Yx(t) = 1,Mu). However, only one of these is
consistent with the absence of a risk premium for the non-systematic mortality risk:
specifically PrQ[Yx(u) = 1|Yx(t) = 1,Mu] = S(u, x)/S(t, x).

2.1.2 Zero-coupon longevity bonds

We are now in a position to consider the pricing of index-linked zero-coupon longevity
bonds. There is (potentially) a different bond for each maturity date T and for each
age x at time 0. We refer to a specific bond as the (T, x)-bond for compactness.

The (T, x)-bond pays the amount S(T, x) at time T . This payment is well defined
in the sense that S(T, x) is an observable quantity at time T . The (T, x)-bond is
an example of what financial mathematicians call a tradeable asset (also known as
a pure-discount asset to some financial economists): that is, an asset that pays no
coupons or dividends and whose price, relative to the issue price, at any time t < T
represents the total return on an investment in that asset. For an asset that does pay
dividends or coupons a tradeable asset can be created by reinvesting the dividends
in the underlying asset itself.

To price such bonds, we need to use the term-structure of interest rates. Let P (t, T )
represent the price at time t of a zero-coupon bond that pays 1 at time T . The
instantaneous forward rate curve at time t is given by

f(t, T ) = − ∂

∂T
log P (t, T )
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and the instantaneous risk-free rate of interest is

r(t) = lim
T→t

f(t, T )

(see, for example, Cairns, 2004b).

A cash (or money-market) account accrues at the risk-free rate of interest. Its value
at time t is denoted by C(t) with

dC(t) = r(t)C(t)dt

⇒ C(t) = C(0) exp

(∫ t

0

r(u)du

)
. (2.3)

Let Ft be the filtration generated by the term-structure of interest rates up to time
t, and Ht be the combined filtration for both the term-structure of interest rates
and mortality.

Now let B̃(t, T, x) represent the price at time t of the (T, x)-bond that pays S(T, x)
at time T . If there exists a measure Q (the risk-neutral measure) equivalent to the
real-world measure P with

P (t, T ) = EQ

[
C(t)

C(T )

∣∣∣∣ Ft

]
(2.4)

and B̃(t, T, x) = EQ

[
C(t)

C(T )
S(T, x)

∣∣∣∣ Ht

]
(2.5)

for all t, T and x (which implies that P (t, T )/C(t) and B̃(t, T, x) are Q-martingales)
then the dynamics of the combined financial market are arbitrage free. Equation 2.5
matches those of Milevsky and Promislow (2001) and Dahl (2004) and encompasses
the full range of models including those with more than one source of randomness.

Assumption 1

We now make the convenient assumption that, under the risk-neutral measure Q,
the dynamics of the term structure of mortality are independent of the dynamics
of the term-structure of interest rates. This assumption simplifies the discussion
and allows us to present the modelling analogies with the maximum possible clarity.
However, it is not essential that we make this assumption and it can be relaxed.

Whether interest rates and mortality rates are related is a topic for debate: many
economists are sceptical, but others point to anecdotal evidence that suggests some
form of relationship. Should one believe that interest and mortality rates are de-
pendent, one might model it along lines such as those pursued by Miltersen and
Persson (2005), who present a forward-mortality framework that explicitly allows
for interest and mortality to be related.

A key consequence of this independence assumption is that it allows us to separate
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the pricing of mortality risk from the pricing of interest-rate risk. It follows that

B̃(t, T, x) = EQ

[
C(t)

C(T )

∣∣∣∣ Ft

]
EQ [S(T, x) | Mt]

= P (t, T )B(t, T, x)

where B(t, T, x) = EQ [S(T, x) | Mt] .

Thus B(t, T, x) is a martingale under Q. We can also assume that the B(t, T, x)
processes are strictly positive (which is equivalent to ruling out the possibility of
catastrophic events that wipe out the entire population).

This allows us to make three further observations:

• B(t, T, x)/B(t, t, x) = pQ(t, T, x). Since we can regard the B(t, T, x) as spot
estimates, we will refer to the pQ(t, T, x) as spot survival probabilities.

• We can use the B(t, T, x) to define the forward force of mortality surface
(see, for example, Milevsky and Promislow, 2001, and Dahl, 2004) (we will
sometimes shorten this to forward mortality surface):

µ̄(t, T, x + T ) = − ∂

∂T
log B(t, T, x). (2.6)

Conversely, knowledge of the forward mortality surface allows us to price the
bonds:

B(t, T, x)

B(t, t, x)
= exp

[
−

∫ T

t

µ̄(t, u, x + u)du

]
.

If we take T = t, we get the spot force of mortality:

µ(t, x + t) = µ̄(t, t, x + t).

(A more general form for the forward force of mortality surface has been
defined in the parallel work of Miltersen and Persson (2005). In their for-
mulation, interest and mortality rates are allowed to be dependent, so that
separation of B̃(t, T, x) into P (t, T )×B(t, T, x) is not possible without resort-
ing to the use of forward measures equivalent to Q. They define µ̄(t, T, x +
T ) = − ∂

∂T
log B̃(t, T, x) − f(t, T ), where f(t, T ) is the forward interest rate

− ∂
∂T

log P (t, T ). If Assumption 1 holds then Miltersen and Persson’s defini-
tion is equivalent to that in equation (2.6).)

It is also convenient at this point to define the forward survival probability:
pQ(t, T0, T1, x) = the probability, based on the information about mortality
rates available at time t, Mt, that an individual alive and aged x + T0 at time
T0 will survive until time T1. This definition implies that

pQ(t, T0, T1, x) = exp

[
−

∫ T1

T0

µ̄(t, u, x + u)du

]
=

B(t, T1, x)

B(t, T0, x)
. (2.7)
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• Let us assume that the dynamics of the term structure of mortality are gov-
erned by an n-dimensional Brownian motion W̃ (t) under Q. The martingale
property of B(t, T, x) together with its positivity now allows us to write down
the stochastic differential equation for B(t, T, x) in the following form

dB(t, T, x) = B(t, T, x)V (t, T, x)′dW̃ (t)

where V (t, T, x) is a family of previsible4 vector processes that specify the
volatility term structure of the B(t, T, x).

We will now consider the possible frameworks which we can use to model the dy-
namics of the B(t, T, x) processes. These correspond to a variety of frameworks used
in modelling interest rates (see, for example, Cairns, 2004b):

• short-rate modelling framework for the dynamics of µ(t, y) (which correspond
to short-rate models for the risk-free rate of interest, r(t), including those of
Vasicek, 1977, Cox, Ingersoll and Ross, 1985, and Black and Karasinski, 1991);

• forward-mortality modelling framework for the dynamics of the forward mor-
tality surface, µ̄(t, T, x+T ) (corresponding to the framework of Heath, Jarrow
and Morton, 1992);

• positive-mortality modelling framework for the spot survival probabilities,
pQ(t, T, x) (corresponding to the positive-interest framework developed by Fle-
saker and Hughston, 1996, Rogers, 1997, and Rutkowski, 1997);

• market modelling framework for forward survival probabilities or forward an-
nuity prices (corresponding to the LIBOR and swap market models of Brace,
Gatarek and Musiela, 1997, and Jamshidian, 1997).

We also include a short section that discusses the parallels between pricing mortality
and credit derivatives. In doing so, we also review the similarities that allow us to
apply some of the intensity-based models that have been developed in the credit-
pricing literature to mortality problems.

We stress that the purpose of the following sections is to pull together the theoretical
foundations of this relatively new field. We leave for further work the development
of specific new models within the different frameworks considered here. We also
leave for others the process of fitting these models to historical and market data:
such a task requires the use of estimation techniques that are tailored to individual
models and goes well beyond the scope of the present paper.

4To describe a process, X(t), as previsible means that the value of X(t) is known or observable
by time t.
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3 Review of existing modelling frameworks

3.1 Short-rate modelling framework

Models built up within this framework specify directly the dynamics of µ(t, y).
Existing models for the term-structure of mortality within this framework include
Lee and Carter (1992), Lee (2000a), Yang (2001), Brouhns, Denuit and Vermunt
(2002), Renshaw and Haberman (2003), and Cairns, Blake and Dowd (2006) in
discrete time, and Milevsky and Promislow (2001) and Luciano and Vigna (2005)
in continuous time. Milevsky and Promislow (2001) exploit the completeness of the
market in their model to calculate both prices and hedging strategies for an annuity
option. Dahl (2004) develops the general one-factor version of equation (3.1) below
and then focuses on the affine class of processes as one that gives an analytical
solution for pQ(t, T, x). In continuous time, we model the force of mortality which
will have the general stochastic differential equation

dµ(t, y) = a(t, y)dt + b(t, y)′dW̃ (t) (3.1)

where a(t, y) and b(t, y) (an n × 1 vector) are previsible processes and W̃ (t) is a
standard n-dimensional Brownian motion under the risk-neutral measure Q.5 We
then have (see, for example, Milevsky and Promislow, 2001, or Dahl, 2004)6

B(t, T, x)

B(t, t, x)
= pQ(t, T, x)

= EQ

[
exp

(
−

∫ T

t

µ(u, x + u)du

) ∣∣∣∣ Mt

]
. (3.2)

We can make the following observations about this framework:

• We have specified that W̃ (t) and b(t, y) are n × 1 vectors. This means that
we can allow for the possibility that short-term changes in the term-structure
of mortality can be different at different ages: that is, mortality changes at
different ages are not perfectly correlated. Different rates of change at different
ages can also be achieved through the a(t, y) drift function.

• a(t, y) and b(t, y) might depend on other diffusion processes which are them-
selves adapted to Mt. Note that this dependence allows b(t, y) ≡ 0, in which
case the force of mortality curve evolves in a smooth fashion over time. How-
ever, the evolution of the force of mortality curve is still stochastic because of

5The dynamics expressed in (3.1) have been extended by Biffis (2005) to include jumps as well
as a diffusion.

6If we are modelling the spot survival probabilities, pQ(t, t + 1, x), or the spot mortality rates,
qQ(t, t+1, x) = 1− pQ(t, t+1, x) in discrete time, then the equivalent of equation (3.2) in discrete
time is pQ(t, T, x) = EQ [pQ(t, t + 1, x)× . . .× pQ(T − 1, T, x)|Mt].
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its dependence on the stochastic drift rate a(t, y). Other models might assume
that b(t, y) 6= 0, in which case the force of mortality curve exhibits a degree of
local volatility.

• The assumption that b(t, y) ≡ 0 is equivalent to the assumption that the
volatility function V (t, T, x) for the B(t, T, x) processes, and their first deriva-
tives with respect to T , tend to zero as T → t. Thus, the shortest-dated bonds
will have a very low volatility.

• This framework also includes models that assume that µ(t, y) takes some para-
metric form (for example, the Gompertz-Makeham model µ(t, x) = ξ0(t) +
ξ1(t)e

ξ2(t)x). We can model the parameters in this curve as diffusion processes.
This class is a specific example of the type noted above where a(t, y) and b(t, y)
themselves depend on other diffusion processes.

The framework includes the affine class of models for µ(t, x) considered by Dahl
(2004) (with mean reversion around a deterministic projection) under which the
spot survival probabilities have the closed form

pQ(t, T, x) = exp [A0(t, T, x)− A1(t, T, x)µ(t, x + t)]

with n = 1 dimension. Dahl provides sufficient conditions on a(t, y) and b(t, y)
(equation (3.1)) that result in this affine representation for pQ(t, T, x). These con-
ditions mimic those of Duffie and Kan (1996) for interest-rate models.

An approach that generalises equation (3.1) to what is more truly a bidimensional
process has been proposed by Biffis and Millosovich (2005). Their model for µ(t, y)
is driven by a Markov random field (within which our finite-dimensional Brownian
motion is a special case). A specific example for µ(t, y) suggested by Biffis and Mil-
lossovich is linked to a Markov-random-field version of the autoregressive quadratic
term structure model investigated by Ahn, Dittmar and Gallant (2002) and Rogers
(1997) (see also Cairns, 2004b).

3.2 Forward mortality modelling framework

The next set of models are forward mortality models.

3.2.1 Risk-neutral dynamics

Suppose that we have the two stochastic differential equations:

dB(t, T, x) = B(t, T, x)V (t, T, x)′dW̃ (t) (3.3)

and dµ̄(t, T, x + T ) = α(t, T, x + T )dt + β(t, T, x + T )′dW̃ (t) (3.4)
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where V (t, T, x), α(t, T, x + T ) and β(t, T, x + T ) are previsible processes. Now
we might ask if we can specify V (t, T, x), α(t, T, x + T ) and β(t, T, x + T ) freely.
However, by drawing parallels with the forward-interest-modelling framework of
Heath, Jarrow and Morton (1992) (HJM), we can see that there will need to be some
form of relationship between V (t, T, x), α(t, T, x + T ) and β(t, T, x + T ) to be sure
that we have an arbitrage-free framework for pricing mortality-linked derivatives.
Before we develop the mathematical form of this relationship we can remark that
the presence of age as an additional dimension means that our framework provides
a richer and more complex modelling environment than does the classical HJM
framework.

One can use a similar argument to Heath, Jarrow and Morton (1992) to show that
for the model dynamics to be arbitrage free we require

α(t, T, x + T ) = −V (t, T, x)′β(t, T, x + T ). (3.5)

The mathematical argument that leads to this identity focuses on a single age x at
time 0. However, since the mortality dynamics of all cohorts are driven by the same
n-dimensional Brownian motion dW̃ (t), we can see that (3.5) must apply to all ages
x, otherwise there would be arbitrage between cohorts.

As already noted, a more general approach to modelling of the forward mortality
surface has been taken by Miltersen and Persson (2005) which includes dependence
between interest and mortality rates. This results in a more complex expression for
the drift α(t, T, x + T ) than that in (3.5).

As with the other frameworks, the challenge is to specify an appropriate form for
β(t, T, x+T ) or V (t, T, x). The chosen formulation needs to ensure that the forward
mortality surface remains strictly positive. This requirement is most easily achieved
by making β(t, T, x + T ) explicitly dependent on the current forward mortality sur-
face. In addition, the chosen form needs to ensure that the spot force of mortality
curve, µ(t, y), retains an appropriate shape (for example, that it is increasing with
age).

An alternative approach to modelling forward mortality rates has been developed
by Olivier and Smith (see Olivier and Jeffery, 2004, and Smith, 2005). They work
with the one-year forward survival probabilities pQ(t, T − 1, T, x) and exploit the
martingale property of EQ[S(T, x)|Mt] and the analytical properties of the Gamma
distribution to derive arbitrage-free dynamics.

3.2.2 Real-world dynamics

In Sections 3.1 and 3.2.1, we considered dynamics under the risk-neutral measure.
This is appropriate for pricing but it is not appropriate for risk measurement pur-
poses where we require true or real-world probabilities. This can be achieved by
incorporating a market price of risk γW (t), a previsible process. In the forward
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modelling context this means we replace dW̃ (t) in equations (3.3) and (3.4) by

dW (t) + γW (t)dt to get, for example, dB(t, T, x) = B(t, T, x)V (t, T, x)′
(
dW (t) +

γW (t)dt
)
. Besides allowing us to measure risk using real-world probabilities, it also

allows us to separate the risk premium on a mortality-linked security into risk pre-
miums linked to interest-rate risk and mortality risk. Where there is dependence
between interest and mortality rates (Miltesen and Persson, 2005) this risk premium
might even be decomposed into three parts: the pure interest-rate risk premium as
a result of the discount factor, a risk premium resulting from correlation between
the underlying and interest rates, and a risk premium resulting from independent
(specific) mortality risk.

3.3 The positive-mortality framework

We now turn to our third class of models, the positive mortality framework (see, for
example, Rogers, 1997, and Rutkowski, 1997).

Let P̃ be some measure equivalent to Q, and let A(t, x) be some family of Mt

adapted, strictly-positive supermartingales.

Define

pQ(t, T, x) =
B(t, T, x)

B(t, t, x)
=

EP̃ [A(T, x)|Mt]

A(t, x)
. (3.6)

The strict positivity of A(t, x) means that pQ(t, T, x) is positive. The supermartin-
gale property of A(t, x) ensures that the pQ(t, T, x) are less than or equal to 1 and
decreasing in T > t (so the force of mortality is always positive). It is straightfor-
ward to demonstrate (for example, through the application of the Radon-Nikodym
derivative dQ/dP̃ ) that the resulting dynamics of B(t, T, x) are appropriate for an
arbitrage-free pricing model (see, also, Rogers, 1997, and Rutkowski, 1997). Within
this pricing framework, the drift of A(t, x) under P̃ is equal to −µ(t, x+ t)×A(t, x).
(In the corresponding positive-interest model the drift of A(t) is equal to −r(t)×A(t)
– see, for example, Cairns, 2004b.)

Equation (3.6) appears deceptively simple as a pricing formula. However, the ef-
fort comes in specifying a model for the processes A(t, x) and in calculating the
expectations. In particular, besides the requirement that, for each x, A(t, x) be a
supermartingale, all of the A(t, x) must evolve in a way that results in a biologically
reasonable form for µ(t, x+t) at each t. (For examples in interest-rate modelling, see
Flesaker and Hughston, 1996, Rogers, 1997, Cairns, 2004a, and Cairns and Garcia
Rosas, 2004.)

A special case of this framework is an adaptation of Flesaker and Hughston (1996)
(FH). Let N(t, s, x), for 0 < t < s, be a family of strictly-positive martingales under
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P̃ . Define

A(t, x) =

∫ ∞

t

N(t, s, x)ds.

The martingale property of N(t, s, x) means that

EP̃ [A(T, x)|Mt] =

∫ ∞

T

N(t, s, x)ds (3.7)

< A(t, x). (3.8)

It follows from (3.8) that A(t, x) satisfies the Rogers/Rutkowski requirements for a
strictly-positive supermartingale.

Combining equations (3.7) and (3.6) we now get

pQ(t, T, x) =

∫∞
T

N(t, s, x)ds∫∞
t

N(t, s, x)ds
.

From a computational point of view this involves, at worst, the numerical evaluation
of a one-dimensional integral, no matter what the model for N(t, s, x) or the number
of factors involved. Our problem is now one of devising an appropriate model for
the family of martingales N(t, s, x).

It is common in interest-rate-derivatives markets to calibrate the initial term struc-
ture of the model to the observed interest-rate term structure, and we can apply
this approach to the mortality term structure too. Suppose then that we take as
given at time 0 the market prices of the zero-coupon bonds, P (0, T ), and the (T, x)-
bonds, B̃(0, T, x), for all x and T > 0. From this, we can derive the implied spot
survival probabilities pQ(0, T, x) = B̃(0, T, x)/P (0, T ). The initial values for the
family N(t, T, s) can then be calibrated as follows:

N(0, T, x) = − ∂

∂T
pQ(0, T, x) = µ̄(0, T, x + T )pQ(0, T, x).

This initial calibration is unique up to a strictly-positive, constant scaling factor.

By analogy with interest-rate modelling, this framework might contain natural
model formulations that are difficult to identify in other frameworks. For exam-
ple, the Cairns (2004a) interest-rate model can be reformulated as a short-rate
model. However, the short-rate formulation is rather clumsy compared with the
positive-interest formulation.

3.4 Credit-risk modelling framework

In this review section we consider, finally, credit-risk models.

Artzner and Delbaen (1995), Milevsky and Promislow (2001) and Biffis (2005) noted
that the zero-coupon longevity bond with price B̃(t, T, x) at time t is similar to a
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zero-coupon corporate bond that pays 1 at T if there has been no default and 0 if
the bond has defaulted. There are many models that address the problem of how to
price such bonds (see, for example, the textbooks by Schönbucher, 2003, or Lando,
2004). In the present context, the most useful models for default risk that could
be translated into a stochastic mortality model are intensity-based models (see, for
example, Schönbucher, 2003, Chapter 7). In these models the default intensity, λ(t)
corresponds to the force of mortality µ(t, x+ t). This similarity between the force of
mortality and the default intensity allows us to apply intensity-based models from
the credit-risk literature to the pricing of mortality instruments.

However, there are some differences between mortality risk and credit risk that will
be reflected in the type of model used:

• In a credit risk context different companies are equivalent to different cohorts
in the mortality model. In mortality modelling there is a natural ordering of
the different cohorts (that is, by current age) with strong correlations between
adjacent cohorts. In contrast, there is no natural ordering of individual compa-
nies and consequently, although defaults may be correlated, there is no natural
counterpart to the additional age-related structure in a mortality model.

• The default intensity in a credit model is likely to be modelled as a mean-
reverting process that is also possibly time-homogeneous. In contrast, mor-
tality models are certainly time inhomogeneous and need to incorporate non-
mean-reverting elements. This has the important implication that Cox, Inger-
soll and Ross (1985)-type models can be used for credit-risk models, but not
for mortality-based models.

• The default intensity is likely to be correlated with the interest-rate term
structure, whereas the force of mortality is unlikely to be.

We can conclude that credit-risk modelling does have something to offer us in the
mortality context. However, we need to use models that reflect the differences de-
scribed above, or else we must adapt suitable credit-risk models to handle mortality
risk.

Remark 3.4.1 In Remark 2.1.2, we noted that once the development of µ(t, x + t)
is known, the date of death of an individual does not attract a further risk premium
since this risk is diversifiable. In considering credit risk, we cannot assume that
default timings are independent and that this risk (once the default intensities have
been established) is diversifiable. Credit risk is, therefore, more general than stochas-
tic mortality modelling in that the modelling of the default event can be subject to a
risk premium, even when the default intensity is known.
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4 Mortality market modelling framework

We turn now to the mortality market models. This section describes the first devel-
opment of a stochastic mortality mortality model in the same spirit as the market
models used in interest-rate modelling. We begin with some preliminaries about the
types of model covered by this framework.

As with the previous frameworks, market models are formulated in continuous time.
However, in contrast to the previous frameworks, market models give us the dynam-
ics for a restricted set of assets or forward rates (for example, the prices B̃(t, T, x) for
T ∈ {1, 2, 3, . . .}). The prices of other assets not modelled might be inferred by in-
terpolation. However, these inferences are not exact, since the market is incomplete
outside of the market variables that are modelled explicitly.

Within an interest-rate context, one of the key steps in the development of a mar-
ket model (see, for example, Miltersen, Sandmann and Sondermann, 1997, Brace,
Gatarek and Musiela, 1997, and Jamshidian, 1997) is making a change from the tra-
ditional risk-neutral probability measure Q to a different and more-suitable pricing
measure. This is done by changing the numeraire from cash to a different tradeable
asset. For example, with the LIBOR market model, we use a zero-coupon bond,
P (t, T ) as the numeraire. In this section we will discuss first a possible change of
numeraire in the mortality-modelling context and then show how this change of
numeraire can be used to develop mortality market models.

4.1 Change of numeraire

To begin our discussion, we simplify matters by placing ourselves in a zero-interest
environment. In this case, the B(t, T, x) represent the price processes for a set of
tradeable assets, since B(t, T, x) = B̃(t, T, x). Recall that the processes B(t, T, x)
are martingales under Q with SDE’s

dB(t, T, x) = B(t, T, x)V (t, T, x)′dW̃ (t)

for appropriate previsible volatility functions V (t, T, x).7

Now consider some, strictly-positive, tradeable assets as numeraires. As a specific
first example, consider B(t, τ, y) as the numeraire. We then consider processes of
the type

Z(t, T, x) =
B(t, T, x)

B(t, τ, y)
.

7Readers who are familiar with interest-rate market models can consider the cash (or money-
market) account (equation 2.3) as being the numeraire when pricing under Q. In this zero-interest-
rate environment, the cash account is equal to 1 for all time.
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For most problems, it is likely that the most productive choice of y will be x itself
(since then Z(τ, τ, x) = pQ(τ, T, x)). If we then apply Ito’s formula and the product
rule, we find that

dZ(t, T, x) = Z(t, T, x)
(
V (t, T, x)− V (t, τ, x)

)′(
dW̃ (t)− V (t, τ, x)dt

)
.

Now define a new process W τ,x(t) = W̃ (t)− ∫ t

0
V (s, τ, x)ds. Provided that V (t, τ, x)

satisfies the Novikov condition we can use the Girsanov theorem (see, for example,
Karatzas and Shreve, 1998) to infer that there exists a measure Pτ,x equivalent to
Q under which W τ,x(t) is a standard Brownian motion. In this case

dZ(t, T, x) = Z(t, T, x)
(
V (t, T, x)− V (t, τ, x)

)′
dW τ,x(t),

so that Z(t, T, x) is a martingale under Pτ,x.

In what follows, we will make more sophisticated choices for the numeraire, but the
basic techniques described above will remain the same.

4.2 The annuity market model

In this section we will consider how to model the price processes underpinning a
specific type of insurance contract, the deferred annuity. In its simplest form a
deferred annuity contract promises to pay a fixed annuity for life from some future
date in return for the payment of a single premium at the commencement of the
policy.

Variations on this basic contract are better described as savings contracts that are
used at a future date to purchase an annuity at the prevailing rates at that time.
The simplest form of this contract promises to deliver a lump sum of, say, £1000
at time T which is then converted at market rates into an annuity. In the UK and
many other countries, contracts of this type were often accompanied in the late
20th century by a guarantee that the resulting annuity would be no less than some
guaranteed minimum. We will consider in this section how to value this contract.
The approach that we take here is also in the spirit of the Pelsser (2003) analysis
of the pricing of guaranteed annuity options. However, Pelsser concentrates on the
inherent interest-rate and equity risks, whereas we concentrate here on mortality
and interest-rate risks.

To begin, we consider the following linear (that is, option-free) forward annuity
contract:

• The contract is issued at time t to N(t) identical individuals (the policyholders)
who are all age x + t at time t.

• No money is exchanged at time t.
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• At time T > t, there are N(T ) survivors out of the original N(t).

• Each surviving policyholder at T must pay £1 and in return each will receive a
level annuity of £F per annum payable at times T +1, T +2, . . . for as long as
the policyholder is still alive (that is payments cease immediately on death).

• If a policyholder dies before time T , then the contract immediately expires
worthless.

When t = T the forward annuity rate F (T, T, x) is equal to the immediate annuity
rate: that is, each £1 of premium at T buys an annuity of F (T, T, x) per annum.

The forward annuity rate is set at time t and is denoted by F (t, T, x). The fair value
of F is

F (t, T, x) =
P (t, T )B(t, T, x)∑∞

s=T+1 P (t, s)B(t, s, x)
=

B̃(t, T, x)

X(t)

where X(t) =
∞∑

s=T+1

B̃(t, s, x).

Note that B̃(t, T, x) = P (t, T )B(t, T, x) and X(t) are tradeable assets, and that
X(t) > 0 for all t.

Now there exists a measure PX equivalent to the real-world measure P under which
V (t)/X(t) is a martingale for any tradeable asset with price process V (t). It follows
that F (t, T, x) is such a martingale with stochastic differential equation

dF (t, T, x) = F (t, T, x)
[
γP (t, T, x)′dZ(X)(t) + γB(t, T, x)′dW (X)(t)

]
. (4.1)

In this SDE:

• Z(X)(t) is a standard nZ-dimensional Brownian motion under PX which drives
the interest-rate process.

• W (X)(t) is a standard nW -dimensional Brownian motion under PX , indepen-
dent of Z(X)(t), which drives developments in the mortality rates.

• γP (t, T, x) and γB(t, T, x) are Ht-previsible volatility processes which indicate
how the process F (t, T, x) reacts to changes in the term structures of interest
rates and mortality.

If we assume that γP (t, T, x) and γB(t, T, x) are deterministic processes then F (s, T, x)
for t < s ≤ T is log-normal under PX with

EPX
[F (s, T, x)|Ht] = F (t, T, x)

V arPX
[log F (s, T, x)|Ht] = σF (t, s, x)2

=

∫ s

t

(|γP (u, T, x)|2 + |γB(u, T, x)|2) du.
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We now consider the impact of option-like guarantees. Under a contract with an
annuity guarantee, the annuity payable from T is equal to

max{K, F (T, T, x)}.
An annuity of £1 per annum from time T has value 1/F (T, T, x) so the value at T
of the guaranteed contract is, per survivor at T ,

max{K, F (T, T, x)}
F (T, T, x)

= 1 + G(T )

where G(T ) = max{K − F (T, T, x), 0}/F (T, T, x) represents the value at T of the
option component of the contract.

As noted above this is the value at T per survivor at T . For policyholders who
die before T , the contract expires worthless. Suppose then that we start with N(0)
policyholders at time 0. In using a model which refers to individual policyholders
we need to augment our filtration from Mt (which tells us about the development
of µ(s, x + s) up to time t) to M∗

t which provides additional information about the
actual number of survivors out of the original N(0).

Let G(t) denote the value at t of the option to policyholder i, assuming that he is
one out of the N(t) who are still alive at t. This option will pay off G(T ) at T if the
policyholder is still alive at T or zero if he is dead at T : equivalently the payoff at T
can be denoted by G(T )Ii(T ), where Ii(s) = 1 if policyholder i is still alive at time s

and zero otherwise. We can observe that
∑N(0)

i=1 Ii(t)G(t) = N(t)G(t) represents the
price at t of a tradeable asset that promises to pay N(T )G(T ) at T . The martingale
property of PX then implies that

N(t)G(t)

X(t)
= EPX

[
N(T )

G(T )

X(T )

∣∣∣∣ Ht, N(t)

]

= EPX

[
N(T )

(K − F (T, T, x))+

F (T, T, x)

1

X(T )

∣∣∣∣ Ht, N(t)

]

= EPX

[
N(T )

(K − F (T, T, x))+

(B̃(T, T, x)/X(T ))

1

X(T )

∣∣∣∣ Ht, N(t)

]

= EPX

[
N(T )

(K − F (T, T, x))+

S(T, x)

∣∣∣∣ Ht, N(t)

]

= EPX

[
EPX

(
N(T )

(K − F (T, T, x))+

S(T, x)

∣∣∣∣ HT , N(t)

) ∣∣∣∣ Ht, N(t)

]

= EPX

[
EPX

(N(T ) | HT , N(t))
(K − F (T, T, x))+

S(T, x)

∣∣∣∣ Ht, N(t)

]
(4.2)

= EPX

[
N(t)S(T, x)

S(t, x)

(K − F (T, T, x))+

S(T, x)

∣∣∣∣ Ht, N(t)

]
(4.3)

=
N(t)

S(t, x)
EPX

[ (K − F (T, T, x))+ | Ht] .
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In developing this identity, note that the equality (4.2) arises from the fact that
F (T, T, x) and S(T, x) are MT -measurable random variables whereas under PX

N(T )|MT , N(t) ∼ Binomial
(
N(t), S(T, x)/S(t, x)

)
(recalling Remark 2.1.2) lead-

ing to (4.3).

The lognormal property of F (T, T, x) then implies that

G(t) =
X(t)

S(t, x)
(KΦ(−d2)− F (t, T, x)Φ(−d1))

where d1 =
log F (t, T, x)/K + 1

2
σF (t, T, x)2

σF (t, T, x)

d2 = d1 − σF (t, T, x)

where Φ(z) is the cumulative distribution function of the standard normal random
variable.

4.3 The SCOR market model: model 1

It is clear from this development that the annuity market model is very useful for
tackling the specific problem of how to price a guaranteed annuity option. However,
for other problems, the model ceases to provide similarly elegant, analytical solu-
tions. The same problem exists with the swap market model (Jamshidian, 1997):
the Jamshidian approach provides an elegant solution for the price of a swaption,
but is awkward to use in other situations. With interest-rate modelling, the LIBOR
market model (Brace, Gatarek and Musiela, 1997) tends to be the market model of
choice for more general applications. In this section, we will develop the mortality
equivalent of the LIBOR market model.

We will introduce this model by describing first a flexible form of annuity contract.
Consider a cohort of identical policyholders who were aged x at time 0. Under this
contract, for policyholder i:

• Let Fi(t
−) be the policyholder’s assets just before any transactions at time t.

• At time t, the policyholder draws an income of Pi(t). This might be chosen
at the discretion of the policyholder based upon information available up to
time t, or it might be a prespecified proportion of Fi(t

−).

• At time t, the insurer backing the contract undertakes to provide a return of
s̃(t, t + 1, x) (which we call the survivor credit) at t + 1 per unit at t provided
policyholder i is still alive at that time. In return for this survivor credit, if
the policyholder dies between t and t + 1, his assets will be retained by the
insurer.
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From the above description, the policyholder has no discretion over the choice of
investment strategy. The funds that a surviving policyholder will have at time
(t + 1)− are then

Fi((t + 1)−) = (Fi(t
−)− Pi(t))

(
1 + s̃(t, t + 1, x)

)
.

The fair value for s̃(t, t + 1, x) requires that the value at t of the payoff at (t + 1)−

to the policyholder is equal to Fi(t
−)− Pi(t). Thus

EQ

[
C(t)

C(t + 1)
Ii(t + 1)(1 + s̃(t, t + 1, x))

∣∣∣∣ Ht, Ii(t) = 1

]
= 1

where Ii(t + 1) = 1 if policyholder i is still alive at t + 1 and zero otherwise.

Now we can follow a similar argument to that used with the annuity market model
to replace Ii(t + 1) in this expression with S(t + 1, x)/S(t, x). Noting also that
s̃(t, t + 1, x) is set at time t, this implies that

B̃(t, t + 1, x)

B̃(t, t, x)
(1 + s̃(t, t + 1, x)) = 1

⇒ s̃(t, t + 1, x) =
B̃(t, t, x)− B̃(t, t + 1, x)

B̃(t, t + 1, x)
.

Now the construction of the survivor credit, s̃(t, t + 1, x), is reminiscent of how
LIBOR rates are calculated. Indeed, if we set mortality rates to zero then s̃(t, t+1, x)
is equal to the 12-month LIBOR rate

L(t, t, t + 1) =
1− P (t, t + 1)

P (t, t + 1)

(using the forward LIBOR notation L(t, T0, T1) = (P (t, T0) − P (t, T1))/P (t, T1)).
For this reason we choose to refer to s̃(t, t + 1, x) as the Survivor Credit Offer Rate,
or SCOR.

Now let us define the forward SCOR. At time t, a contract is entered into between
policyholder i (age x + t at time t) and the insurer that specifies that the survivor
credit payable between the future dates T and T + 1 will be s̃(t, T, T + 1, x). Under
this contract:

• No payment is made at t.

• If policyholder i is still alive at time T , he will pay £1 to the insurer at T .

• If policyholder i is still alive at time T +1, he will receive £1+ s̃(t, T, T +1, x)
from the insurer at T + 1.
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The value at t to the policyholder of this transaction is

(
1 + s̃(t, T, T + 1, x)

)B̃(t, T + 1, x)

B(t, t, x)
− B̃(t, T, x)

B(t, t, x)
.

The fair forward SCOR is thus

s̃(t, T, T + 1, x) =
B̃(t, T, x)− B̃(t, T + 1, x)

B̃(t, T + 1, x)
.

Following the development of the LIBOR market model, we note that B̃(t, T, x) −
B̃(t, T + 1, x) and B̃(t, T + 1, x) for t ≤ T are both tradeable assets. Since B̃(t, T +
1, x) is also strictly positive we can use it as a numeraire. Thus there exists a
measure, PT+1,x under which U(t)/B̃(t, T + 1, x) is a martingale for any tradeable
asset with price process U(t). Specifically s̃(t, T, T + 1, x) is a martingale under
PT+1,x.

Now positive interest and positive mortality imply that 0 < B̃(t, T+1, x)/B̃(t, T, x) <
1. It follows therefore that 0 < s̃(t, T, T + 1, x) < ∞, so we have the possibility to
model s̃(t, T, T + 1, x) as a lognormal process. Thus we can write

ds̃(t, T, T+1, x) = s̃(t, T, T+1, x)
(
φP (t, T, T + 1, x)′dZ(T+1,x) + φB(t, T, T + 1, x)′dW (T+1,x)

)

for suitable previsible volatility vectors φP and φB and where Z(T+1,x)(t) and W (T+1,x)(t)
are Brownian motions under PT+1,x.

Remark 4.3.1 It should be noted that while 0 < s̃(t, T, T + 1, x) < ∞ does guar-
antee that 0 < B̃(t, T + 1, x)/B̃(t, T, x) < 1, it does not guarantee that pQ(t, T +
1, x)/pQ(t, T, x) < 1: that is, there is a possibility that forward survival probabilities
might exceed 1.

We will address this drawback in model 2 below. However, the particular parametri-
sation of the model may mean that the risk that this ratio exceeds 1 is very small.
However, whatever the risk is, its consequences need to be carefully investigated.

Remark 4.3.2 If the volatility functions φP and φB are deterministic, s̃(u, T, T +
1, x) for t < u ≤ T has a log-normal distribution under PT+1,x with

EPT+1,x
[s̃(u, T, T + 1, x)|Ht] = s̃(t, T, T + 1, x)

and

V arPT+1,x
[log s̃(u, T, T + 1, x)|Ht] =

∫ u

t

(|φP (v, T, T + 1, x)|2 + |φB(v, T, T + 1, x)|2) dv.
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4.4 The SCOR market model: model 2

The SCOR market model 1 has several drawbacks including a restriction on the
investment at T to a fixed quantity and the possibility that forward survival proba-
bilities exceed 1 (as in Remark 4.3.1). We now adapt this basic model to circumvent
these problems. Consider, therefore, the following forward contract struck at time
t:

• At time t, no money exchanges hands.

• At time T , if the policyholder is still alive, he will pay £X(T ) to the insurer.
We allow X(T ) to be random but restrict it to be FT -measurable (that is,
adapted to the interest-rate model dynamics).

• At time T , the policyholder can choose how his fund of £X(T ) will be invested.

• At time T + 1, if the policyholder is still alive, he will receive £X(T )R(T +
1)/R(T )(1 + s(t, T, T + 1, x)) where R(u) represents the price at u of a non-
mortality-linked tradeable asset (that is, Ft-measurable) that reflects the pol-
icyholder’s chosen previsible investment strategy. If the policyholder is not
alive at T + 1, then the funds are retained by the insurer.

Remark 4.4.1 For convenience, we will continue to refer to s(t, T, T + 1, x) as the
forward Survivor Credit Offer Rate, although it should be stressed that the definition
of this term is different from that under model 1.

Remark 4.4.2 The use of the SCOR in our modelling does not constrain us into
looking only at contracts whose benefits are defined in terms of the SCOR. Rather,
the model provides us with a means of modelling the development of mortality rates
over time, since these can be easily backed out from the s(t, T, T + 1).

We now ask the question: what value of the forward SCOR, s(t, T, T +1, x), ensures
that this contract has zero value at time t? Let I(u) be the indicator random
variable that is equal to 1 if the policyholder is still alive at time u. Thus, for u > t,
PrQ[I(u) = 1|I(t) = 1,Mu] = S(u, x)/S(t, x). For general S̃ = 1 + s(t, T, T + 1, x)
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the value at t is

EQ

[
C(t)

C(T )
X(T )

(
C(T )

C(T + 1)

R(T + 1)

R(T )
S̃ I(T + 1)− I(T )

) ∣∣∣∣ Ht, I(t) = 1

]

= S̃EQ

[
C(t)

C(T + 1)
X(T )

R(T + 1)

R(T )

∣∣∣∣ Ft

]
EQ[I(T + 1)|Mt, I(t) = 1]

−EQ

[
C(t)

C(T )
X(T )

∣∣∣∣ Ft

]
EQ[I(T )|Mt, I(t) = 1]

= S̃EQ

[
C(t)

C(T )
X(T )

∣∣∣∣ Ft

]
pQ(t, T + 1, x)

−EQ

[
C(t)

C(T )
X(T )

∣∣∣∣ Ft

]
pQ(t, T, x) (recalling Remark 2.1.2)

which we require to be equal to zero to obtain the fair forward SCOR, s(t, T, T+1, x).
This implies that

(1 + s(t, T, T + 1, x))pQ(t, T + 1, x)− pQ(t, T, x) = 0

⇒ s(t, T, T + 1, x) =
pQ(t, T, x)− pQ(t, T + 1, x)

pQ(t, T + 1, x)

=
B(t, T, x)−B(t, T + 1, x)

B(t, T + 1, x)
.

It follows that this revised SCOR market model has considerably wider applicability
than the SCOR model 1. Specifically, the policyholder can adopt any Ft-measurable
investment strategy (but not strategies that depend, in addition, on changes in mor-
tality). Furthermore, the amount of income that can be drawn from a policyholder’s
account can also be stochastic, provided it is an Ft-measurable process.

Now we need to investigate whether or not the forward SCOR can be constructed
out of tradeable assets and this indeed turns out to be the case. Specifically, let
R(t) be an Ft-adapted process that represents the price at t of a tradeable asset.
Let D̃(t, T, x) represent the price at t for the investment and mortality-linked zero-
coupon bond that pays R(T )S(T, x) at T . Clearly D̃(t, T, x) represents the price of
a tradeable asset (one that could be replicated using the P (t, T ) and the B̃(t, T, x)).
Furthermore, since S(T, x) is independent of {Z(u) : 0 < u ≤ T}, we have

D̃(t, T, x) = EQ

[
C(t)

C(T )
R(T )S(T, x)|Ht

]

= EQ

[
C(t)

C(T )
R(T )|Ft

]
EQ [S(T, x)|Mt]

= R(t)B(t, T, x).
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Hence

s(t, T, T + 1, x) =
B(t, T, x)−B(t, T + 1, x)

B(t, T + 1, x)
(4.4)

=
R(t)B(t, T, x)−R(t)B(t, T + 1, x)

R(t)B(t, T + 1, x)

=
D̃(t, T, x)− D̃(t, T + 1, x)

D̃(t, T + 1, x)
.

As before there exists a measure PD
T+1,x under which the process U(t)/D̃(t, T +1, x)

is a martingale for all tradeable-asset price processes U(t). Hence s(t, T, T + 1, x)
is a martingale under PD

T+1,x. Since we are constraining ourselves to models under
which B(t, T, x) is a decreasing function of T , we have s(t, T, T + 1, x) > 0. Hence
the SDE for s(t, T, T + 1, x) can be written in the form

ds(t, T, T + 1, x) = s(t, T, T + 1, x)ψB(t, T, T + 1, x)′dW (T+1,x) (4.5)

for a suitable previsible volatility vector ψB and W (T+1,x)(t) is a standard nW -
dimensional Brownian motion under PD

T+1,x.

Remark 4.4.3 In contrast to model 1, model 2 does constrain the pQ(t, T, T +1, x)
to lie between 0 and 1.

Remark 4.4.4 If the volatility function ψB(t, T, T+1, x) is deterministic, s(u, T, T+
1, x) for t < u ≤ T has a log-normal distribution under PD

T+1,x with

EP D
T+1,x

[s(u, T, T + 1, x)|Ht] = s(t, T, T + 1, x)

and V arP D
T+1,x

[log s(u, T, T + 1, x)|Ht] =

∫ u

t

|ψB(v, T, T + 1, x)|2dv.

4.4.1 Simulation

Naturally we are interested in using the model to determine spot survival probabil-
ities over a range of future dates T . So far equation (4.5) only tells us something
about the dynamics of a single forward SCOR, s(t, T, T +1, x). How do the dynamics
of the s(t, T, T + 1, x) interact for different T and how can they be simulated?

Application of the quotient rule for SDE’s to equation (4.4) gives us

ψB(t, T, T + 1, x) = (V (t, T, x)− V (t, T + 1, x))
(1 + s(t, T, T + 1, x))

s(t, T, T + 1, x)
. (4.6)

Now define a series of future dates Tk = T0 + k for some T0 > 0 and k = 1, 2, . . ..
Equation (4.6) can be rearranged to give

V (t, Tk, x)− V (t, Tk+1, x) =
s(t, Tk, Tk+1, x)

(1 + s(t, Tk, Tk+1, x))
ψB(t, Tk, Tk+1, x). (4.7)
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Bearing in mind the relationship between the W (Tk,x)(t) and W̃ (t), for l > k we have

dW (Tl,x)(t) = dW̃ (t)− V (t, Tl, x)dt

dW (Tk,x)(t) = dW̃ (t)− V (t, Tk, x)dt

⇒ dW (Tl,x)(t) = dW (Tk,x)(t) + (V (t, Tk, x)− V (t, Tl, x)) dt

= dW (Tk,x)(t) +
l∑

j=k+1

(V (t, Tj−1, x)− V (t, Tj, x)) dt

= dW (Tk,x)(t) +
l∑

j=k+1

s(t, Tj−1, Tj, x)

1 + s(t, Tj−1, Tj, x)
ψB(t, Tj−1, Tj, x)dt.

by (4.7).

Thus, expressing the dynamics under PD
T1

, we have

ds(t, T0, T1, x) = s(t, T0, T1, x)ψB(t, T0, T1, x)dW (T1,x)(t)

and for k > 1

ds(t, Tk−1, Tk, x) = s(t, Tk−1, Tk, x)ψB(t, Tk−1, Tk, x)

×
(

dW (T1,x)(t) +
k∑

j=2

s(t, Tj−1, Tj, x)

1 + s(t, Tj−1, Tj, x)
ψB(t, Tj−1, Tj, x)dt

)
.

These equations can be used as the basis for simulation of the s(t, Tk−1, Tk, x) and
as a package it offers us a flexible and powerful toolkit for valuation of mortality-
linked securities and for risk measurement. For the latter purpose, we would simulate
under the real world measure P by replacing dW T1(t) by dW (t)+λ(t)dt for a suitable
process λ(t).

4.5 The Perks-SCOR market model

We now consider a specific version of the SCOR market model 2 by adapting a simple
short-rate model proposed by Cairns, Blake and Dowd (2006) (CBD) for the age
range 60 to 90. CBD developed a model for the retrospective survival probability
pQ(t+1, t, t+1, x) = 1/ (1 + exp{A1(t + 1) + A2(t + 1)(x + t)}) (using the notation
for forward survival probabilities in equation (2.7)). The parameters A1(t + 1) and
A2(t+1) are typically estimated in each year (t, t+1] using mortality and population
data for the same year without reference to data in preceeding years. This model for
pQ(t, t + 1, x) is a special case of what are known as Perks models (see, for example,
Perks, 1932). The vector process A(t) = (A1(t), A2(t))

′ is modelled by CBD as a
2-dimensional random walk with drift.
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In the model we adopt here, we apply the same process, A(t), to model one-year
spot survival probabilities rather than retrospective probabilities: that is,

pQ(t, t + 1, x) ≡ pQ(t, t, t + 1, x) =
1

1 + eA1(t)+A2(t)(x+t)
. (4.8)

In the normal course of events, pQ(t, t + 1, x) will be a very accurate predictor of
pQ(t + 1, t, t + 1, x), so the change in concept used here does not undermine the
simple model proposed by CBD.

As commented above, analysis of historical data suggest that a reasonable model for
the discrete-time process A(t) = (A1(t), A2(t))

′ is a random walk with drift: that is,

A(t + 1) = A(t) + µ + C∆W (t + 1)

where µ is a 2×1, constant vector, C = (cij) is a 2×2 constant matrix and ∆W (t+1)
is a 2× 1 vector of independent standard normal random variables.

Now we can easily write A(t) as a continuous process:

A(t) = A(0) + µt + CW (t)

where W (t) is a standard 2-dimensional Brownian motion. Thus dA(t) = µdt +
CdW (t).

Returning to the SCOR market model, we are interested in modelling the future
distribution of

s(T, T, T + 1, x) =
1− pQ(T, T + 1, x)

pQ(T, T + 1, x)
=

qQ(T, T + 1, x)

pQ(T, T + 1, x)

Now the Perks model above implies that

s(T, T, T + 1, x) = eA1(T )+A2(T )(x+T ).

Now we require the forward SCOR s(t, T, T +1, x) to be a martingale under PD
T+1,x:

that is,

s(t, T, T + 1, x) = exp

[
θ′ (A(t) + µ(T − t)) +

1

2
θ′CC ′θ(T − t)

]

where θ =
(
1, (x + T )

)′
. This implies that the volatility process for what we will

now call the Perks-SCOR market model should be

ψB(t, T, T + 1, x) = ν1 + ν2(x + T )

where ν1 =

(
c11

c12

)

and ν2 =

(
c21

c22

)
.
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We then have the simple result that under PD
T+1,x, s(T, T, T + 1, x) given s(t, T, T +

1, x) is log-normally distributed with

EP D
T+1,x

[s(T, T, T + 1, x)|Mt] = s(t, T, T + 1, x)

and

V arP D
T+1,x

[log s(T, T, T + 1, x)|Mt] =
[
(c11 + c21(x + T ))2 + (c12 + c22(x + T ))2

]
(T − t).

Remark 4.5.1 As we have noted before, the differences between the Perks-SCOR
market model and that of Cairns, Blake and Dowd (2006) are not great. The mech-
anisms underlying a market model will, however, mean that the drift processes for
the two models are different.

5 Conclusions

We have presented here a number of theoretical frameworks that could be used for
pricing many different types of mortality derivatives. More specifically, these frame-
works demonstrate how an arbitrage-free (or risk-neutral) valuation methodology
can be used to price a great variety of mortality-related instruments, from vanilla
longevity bonds to exotic mortality derivatives. These frameworks build on those
already established for conventional interest-rate derivatives, and therefore help to
show how the existing literature on the valuation of interest-rate derivatives can be
adapted to the valuation of derivatives involving mortality risk factors. They also
provide a basis for the future development of specific stochastic mortality models,
which can be developed within the frameworks offered here.

Our valuation methodology is of course the same, in principle, as that used to price
derivatives based on other underlyings. As such, it is also open to exactly the same
arguments over its merits. In particular, the use of arbitrage-free methods is al-
ways problematic if markets are incomplete, as is certainly the case with mortality
derivatives markets. However, risk-free approaches provide natural benchmark val-
uations, and one can also argue heuristically that they will become easier to justify
in any given context as markets become less incomplete over time. Naturally, we
also recognize that many of the assumptions underpinning these frameworks (such
as liquid, frictionless markets) do not hold in practice. Nevertheless, it is still the
case that, in such imperfect markets, if prices evolve in the way suggested by these
pricing frameworks, then the model will be arbitrage free. We are not assuming that
the market must be complete, or that transactions costs must be zero or that assets
are infinitely divisible, and so on.

Needless to say, many challenges remain for future work. These challenges centre
around five main issues:
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• Models: We need to investigate which models give adequate statistical de-
scriptions of historical mortality data, and which models generate ‘reasonable’
mortality dynamics.

• The number of risk factors: We need to determine how many risk factors are
needed to provide a satisfactory model of the mortality term structure. Is one
risk factor adequate, or do we need to have two or more factors to accommodate
imperfectly correlated mortality improvements at different ages? One can
easily argue that multiple factors might be desirable because the factors that
affect mortality (medical advances, outbreaks of disease, etc.) are likely to
have different impacts on people of different ages.

• Basis risk vs. liquidity: As with other derivatives, there is the usual tradeoff
between basis risk and liquidity. If we want to encourage the development of
market liquidity, then we would encourage standardized mortality instruments
trading on organized exchanges; however, such instruments will embody con-
siderable basis risk, which will reduce their usefulness as hedge instruments.
Conversely, the basis risk for the primary client associated with tailor-made
(or OTC) instruments will be low, but at the cost of poor liquidity. However,
there are also other factors to consider. For example, the trading of mortality
derivatives can be encouraged by choosing ‘good’ reference populations for the
mortality indices (e.g., a good reference population might one be typical of the
population as a whole, or typical of the annuitant population). Furthermore,
the market for mortality derivatives might be helped by the fact that mortal-
ity risks have low market beta, and the willingness of investors to buy up the
Swiss Re mortality-related bond is certainly encouraging.

• Index specification and moral hazard: The choice of index also needs to take
account of possible moral hazard. For example, can the index be manipulated
by the issuer of a security or by investors? Issuers of mortality-linked securities
can learn from past experience of cat bond issuance, where moral hazard is
always present to some degree.8 A carefully-chosen index will not only increase
liquidity, as discussed above, but it will also reduce moral hazard. A conse-
quence, though, is that this reduction is typically accompanied by increased
basis risk for those wishing to use the security for hedging. With cat bonds,
one of the principal ways to reduce moral hazard is to link the payments to a
non-company-specific index rather than to the ceding company’s experience.
The same arguments apply to mortality-related securities, although, perhaps,
to a lesser degree: in other words, it is advisable that the survivor index defined
in equation (2.1) is not calculated using the hedgers’ own mortality experience.

• The measurement-publication lag: How do we allow for the time lag between

8For a discussion of moral hazard as it relates to the issue of cat bonds, see, for example, the
papers by Doherty (1997) and Doherty and Richter (2002).
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the measurement date and the date when mortality rates for that date have
been graduated and made public? For example, is there something that can
be learned here from catastrophe derivatives, where information gradually
emerges after a catastrophic event? Connected to this issue is the need to
specify the contract in a way that minimises insider-trading moral hazard as-
sociated with time lags in the release of information. This is a critical issue,
not least because some early attempts to introduce non-life-insurance-linked
catastrophe derivatives failed on precisely this point. We note though, that
the Swiss Re mortality-related bond was issued successfully, implying that
investors must have been reassured on the issue of moral hazard.

In summary, mortality risks are an important new frontier in quantitative financial
risk. They offer intellectual challenges to those who study them and serious financial
benefits to those who trade them – and one would hope that they might also bring
significant benefits to customers down the line.
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Appendices

A The Lee and Carter model for stochastic mor-

tality

Lee and Carter (1992) investigate the dynamics of the observed central mortality
rates m(t, x) for integer t and x. Their model breaks m(t, x) down into a log-bilinear
model

log m(t, x) = a(x) + b(x)k(t)

with the translation and scaling constraints that
∑

x b(x) = 1 and
∑T1

t=T0
k(t) =

0. a(x) and b(x) are non-parametric functions without any smoothing applied or
functional form. Stage 1 of the modelling process estimates the functions a(x), b(x)
and k(t) without reference to a dynamic model for k(t). For a given functional form
for a(x) and b(x), k(t) is estimated directly using the data for date t in isolation and
without any assumption about its dynamic form. This is repeated until we optimise
the fit over a(x) and b(x) subject to the scaling constraints above. Stage 2 of the
modelling process then fits an ARIMA process to the k(t).

B The Lee and Yang model for stochastic mor-

tality

Lee (2000a) and Yang (2001) proposed the following model for stochastic mortality.

Suppose that a deterministic forecast of annual mortality rates is made at time 0.
Thus q̂(x, t) represents the probability (as estimated at time 0) that an individual
aged x at time t will die before time t + 1 for each integer x and t. The actual
mortality experience is modelled as

q(x, t) = q̂(x, t) exp

[
X(t)− 1

2
σ2

Y + σY ZY (t)

]

where X(t) = X(t− 1)− 1

2
σ2

X + σXZX(t)

and ZX(t) and ZY (t) are mutually independent sequences of i.i.d. standard normal
random variables.

It follows that the X(t) models the stochastic trend in the development of the
mortality curve while the −1

2
σ2

Y + σY ZY (t) models one-off environmental variations
in mortality (such as a major flu epidemic). From the limited data available, Yang
found that σY was not significantly different from 0. In contrast, however, Lin
and Cox (2005b), using a longer run of US population data and a slightly different
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model, found that mortality jumps of the type represented by σY ZY (t) above do
form a significant part of the development of mortality over time.

Note that while q̂(x, t) is an unbiased estimate for q(x, t), the use of q̂(x, t) will
not produce, in general, unbiased estimates for other quantities: for example, the
survivor index, S(t, x).

C The Milevsky and Promislow model for stochas-

tic mortality

Milevsky and Promislow (2001) model the force of mortality in the form µ(t, x) =
ξ0 exp(ξ1x+Yt) where Yt is an Ornstein-Uhlenbeck process with SDE dYt = −αYtdt+
σdWt. Essentially this is equivalent to a Gompertz model with a time-varying scaling
factor.

D The Dahl model for stochastic mortality

Dahl (2004) models the process for µ(t, x + t) as follows

dµ(t, x + t) = αµ(t, x, µ(t, x + t))dt + σµ(t, x, µ(t, x + t))dW̃ (t). (D.1)

He finds that if the drift and volatility are of the form

αµ(t, x, µ(t, x + t)) = δα(t, x)µ(t, x + t) + ζα(t, x)

and σµ(t, x, µ(t, x + t)) =
√

δσ(t, x)µ(t, x + t) + ζσ(t, x)

for some deterministic functions δα(t, x), δσ(t, x), ζα(t, x) and ζσ(t, x) then

pQ(t, T, x) = eA(t,T,x)−B(t,T,x)µ(t,x+t)

where the deterministic functions A(t, T, x) and B(t, T, x) are derived from differ-
ential equations involving δα(t, x), δσ(t, x), ζα(t, x) and ζσ(t, x).

Dahl’s affine model has been extended by Biffis (2005) who added a jump process
into the SDE (D.1).
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