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Abstract

We investigate and model how the mortality of Danish males aged 55-94 has changed
over the period 1985-2012. We divide the population into ten socio-economic sub-
groups using a new measure of affluence that combines wealth and income reported
on the Statistics Denmark national register database. The affluence index, in combi-
nation with sub-group lockdown at age 67, is shown to provide consistent sub-group
rankings based on crude death rates across all ages and over all years in a way that
improves significantly on previous studies that have focused on life expectancy. The
gap between the most and least affluent is confirmed to be widest at younger ages
and has widened over time.

We introduce a new multi-population mortality model that fits the historical mor-
tality data very well and generates smoothed death rates that can be used to model
a larger number of smaller sub-groups than has been previously possible without
losing the essential character of the raw data.

The model produces bio-demographically reasonable forecasts of mortality rates that
preserve the sub-group rankings at all ages. It also satisfies reasonableness criteria
related to the term structure of correlations across ages and over time through
consideration of future death and survival rates.
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1 Introduction

When trying to explain and project mortality in closely related populations, it is
essential to use an appropriate modelling framework. Single-population mortality
models, such as Lee-Carter and Cairns-Blake-Dowd (CBD) and their extensions,1 are
not appropriate, since they can, for example, lead to inconsistent forecasts especially
in the medium and long term. It is possible for forecast death rates in an historically
lower-mortality population (e.g., females) to cross over those for a higher-mortality
population (e.g., males).

To avoid problems of this kind, increasing use has been made in recent years of multi-
population models to explain the mortality dynamics of related populations, such as:
neighbouring countries (e.g., Li and Lee, 2005, Enchev et al., 2015, Christiansen et
al., 2015); males and females; smokers and non-smokers (e.g., Kleinow and Cairns,
2013); groups of annuitants and those who hold life insurance policies (e.g., Yang et
al., 2014); a specific pension plan’s own mortality and that of the national population
(e.g., Cairns et al., 2011, Haberman et al., 2014); and different socio-economic sub-
groups (e.g., Li et al., 2015).

In some of these cases, especially those that involve sub-populations of the national
population, we might have limited or even no data with which to model. However, we
can use the experience of the larger national population to help inform and improve
forecasts of the population that we are really interested in. In other settings, we
might seek to manage actively the risks that we identify. This is most apparent in
the life insurance and pensions worlds where, for example, some risk management
approaches require joint modelling of the mortality experiences of both an annuity
provider and the national population (see, e.g., Coughlan et al., 2011, Li and Hardy,
2011, Haberman et al., 2014, and Michaelson and Mulholland, 2015).

We have been given access to a unique and extremely comprehensive database from
Statistics Denmark that enables us to model the socio-economic mortality of older
Danish males at a finer level of granularity than has hitherto been possible. This is
valuable for a number of reasons: it allows the authorities to generate more accurate
estimates of the cost and projected increases in the cost of state pension benefits in
different population segments; it helps corporate pension plans improve estimate of
their liabilities, given the socio-economic mix of their plan members; and it allows
annuity providers to price annuities on a socio-economic basis.

The key contributions of this paper based on an analysis of older Danish male
mortality data are as follows:

• We propose a new, affluence index for subdividing the Danish male population
into ten socio-economic sub-groups of equal size. We allow individuals to

1Lee and Carter, 1992, Cairns et al., 2006b, and the extensions summarised in Mavros et al.,
2014, and Hunt and Blake, 2014
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transfer between sub-groups prior to the official state pension age of 67, but
thereafter to remain in the same sub-group to which they were allocated at
this age.

• The proposed index, in combination with the stochastic mortality model re-
marked on below, allows us to subdivide the male population into a larger
number (10) of smaller sub-groups, while still preserving statistical signifi-
cance.

• We demonstrate that the affluence index plus lockdown at age 67 provides a
much improved separation of the 10 deciles at all ages. Specifically, whereas
previous work has focused on life expectancy from a limited range of ages, the
new method achieves a clear ranking of death rates at all ages from 55 to 94
across all 10 sub-groups.

• We develop a new stochastic multi-population mortality model for forecast-
ing. The model fits the historical data well and produces coherent and bio-
demographically reasonable forecasts of future death rates in the 10 sub-groups
across all ages and a range of time horizons.

• We analyse how future uncertain death rates and survival probabilities in
the 10 sub-groups are related to each other, through a detailed analysis and
discussion of the term structure of correlations.

• We discuss what lessons can be learned about the dependencies between dif-
ferent socio-economic sub-groups in other countries.

• We propose, but do not investigate, a method for modelling mortality at very
high ages (i.e., above age 95).

The outline of the paper is as follows. Section 2 introduces and explains the Danish
national mortality dataset. It also explains the approach used to process the data
using the new affluence index. Section 3 sets out the proposed multi-population
gravity model that we use to model mortality by socio-economic grouping. Section
4 presents the model fit for a range of years and ages and confirm that our approach
to modelling fits the data well, smoothing out the effects of sampling variation while
still preserving the essential characteristics of the crude sub-group mortality data.
Section 5 analyses properties of projected mortality: central trends, uncertainty
and correlations between sub-groups. Section 6 offers some suggestions for further
research, and Section 7 concludes.
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2 Danish males data

The analysis in this paper makes use of a dataset from Statistics Denmark (SD),
based on administrative records. Since every individual in Denmark is given a
central personal register number (CPRN) either at birth or when given residence
permission in the country, we are able to uniquely identify each individual in all areas
of the public register system which includes the Population Register, the Integrated
Database for Labor Market Research, the Income and Tax Register, and the Cause of
Death Register. Thus, for each individual, we have information on their date of birth,
education, labour market status, income, tax, and, ultimately, their date of death
and cause of death. We can also identify the same information for an individual’s
spouse or partner, thereby enabling us to allocate income and wealth between couples
and within households. On an annual basis, we observe their marital status, based
on the following four categories: unmarried, married, divorced, and widow/widower.
We also know the precise date of marriage. Separately, cohabitation status, and with
whom, is also recorded. Significantly, the information contains no survey element.
In general, we have access to a very high quality dataset.

The dataset allows us to identify three financial indicators for each individual and
couple, all deflated to the 2000 real values: gross individual annual income, total net
household income, and household net wealth. All financial measures are based on
calculations from the tax authorities which are linked to the CPRN. Gross annual
income includes all taxable income, such as wage income, self-employment income,
unemployment insurance benefits, social assistance (from 1994), honoraria, and all
types of pension-related income. However, all payments withdrawn from labour
income into non-taxable pension schemes, such as labour market pension schemes,
ATP (the supplementary income-related pension scheme), private capital pension
schemes, as well as annuity pension schemes, are not included in the gross annual
income measure.2 For retired individuals, we observe a break in the gross annual
income variable from 1994 onwards. There are several reasons for this. The level of
old age pension benefits was increased in 1994 as the government removed a special
tax rebate previously given to retirees. Moreover, individuals living in retirement
homes prior to 1994 were only given a monthly allowance, but had no expenses to
cover rent, heating, electricity, etc. After 1994, all individuals, irrespective of their
living situation, were given the full amount of old age pension benefits or disability
pension benefits.

Total net household income is defined as total gross annual income for all members
of the household, net of alimony, tax and interest payments. One drawback with
this measure is that there is no standardized household size. Such a measure could
be obtained by using standardized household income = total household income/(#
of adults)0.7, as suggested by Citro and Michael (1995).

2This is due to the taxation being postponed until the payout stage of these pension schemes.
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Household net wealth is calculated as total assets minus total liabilities at year end.
Total assets include real estate, bank deposits, bonds, stocks, mortgage deeds, shares
in firms, the value of cars, boats and mobile homes, as well as cash. Liabilities include
credit secured by a mortgage on real estate, debt to financial institutions, credit
card debt, and all other types of debt to private companies and the government
(e.g., unpaid tax). Prior to 1983, all assets were assigned to the male spouse.
Thereafter, 50% is allocated to each spouse, unless otherwise reported to the tax
authorities. From 1987 to 1996, net wealth also included the taxable equity value
of self-employed businesses (which can be negative). In 1997, a wealth tax was
abolished, which resulted in the equity value of self-employed companies, the value
of some mortgage deeds (not related to real estate), shares in firms, and the value of
cars, boats and mobile homes are no longer being reported in the wealth measure.3

Data are available for calendar years 1980 to 2012. However, as the quality of both
the income and wealth data (especially for married couples) is regarded as poor
at the beginning of the period, we disregard the first four years of the available
data points. In addition, since our methodology for allocating individuals into sub-
groups, requires data for the previous calendar year, we calculate exposures and
deaths data for each sub-group for the 1985-2012 period only.

One of the key objectives of this study is to identify covariates in the SD database
that have a strong predictive power in explaining the mortality of different individ-
uals in the population. More specifically, our aim is to subdivide the population
at each age and in each year into 10 approximately equal-sized sub-groups, with a
clear ordering between sub-groups in terms of mortality at all ages: that is, group 1
should have the highest mortality at all ages and group 10 the lowest. This number
of sub-groups is rather larger than is typically the case in related studies of small
populations (e.g., Brønnum-Hansen and Baadsgaard, 2012, who subdivide into quar-
tiles), and gives us the subsequent flexibility to aggregate sub-groups should this be
desirable or necessary in the modelling work. For large populations, such as the US,
the use of deciles produces meaningful results without smoothing (e.g., Waldron,
2013). For Denmark, we show that separation into deciles also gives meaningful
results, but requires more work to filter out or smooth objectively the effects of
sampling variation.

In this particular study, we aim to identify a single covariate that is a strong predictor
of mortality, subject to the condition that the covariate represents a quantity that is
readily available in other datasets, thereby enabling our modelling framework to be
applicable to a wide range of countries, including those that are less comprehensive
than the SD database. We therefore decided to focus on income and wealth, since
these are well-known predictors of mortality (e.g., Rogot et al. 1992, Wolfson et al.,
1993, Chapman and Hariharan, 1996, McDonough et al., 1997, Sabel et al., 2007,

3This change might have resulted in a few more transitions between groups than normal. But
because the rankings are relative, we do not believe that there has been a material impact, nor is
there any statistical evidence.
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and Demakakos et al., 2015).

The specific candidate covariates considered were income, individual wealth, house-
hold wealth and linear combinations of these: in particular, wealth plus K×income
where K is some constant to be determined (e.g., K = 5, 10, 15 or 20). We also
considered the exclusion of individuals with negative income and/or wealth and
self-employed individuals, for whom there was a suspicion that the reported in-
come/wealth values did not accurately reflect their true financial position. Ulti-
mately, all of these individuals were included, giving us almost complete coverage
of the population, with the exception of nationals living abroad.

In general, wealth and income were found individually to be strong predictors of
mortality. However, for most of the variants considered above, results were not
satisfactory across all ages and/or in all years. Typically, we would find consistent
mortality rankings across age for the higher (more wealthy) sub-groups, while lower
sub-groups might be correctly ranked at some ages but not at other ages. In most of
our experiments, we found that (a) high income or high wealth is a strong predictor
of low mortality, but (b) low income or low wealth, taken separately, is not a strong
predictor of high mortality. For example, a 70-year-old might have little capital, but
still have a good pension that allows him to live a healthy lifestyle. Another 70-year-
old might have no pension, but have substantial personal savings that he can draw
on to provide a good income in retirement – income that would not be recorded as
such by SD. We also found that the registered level of wealth was, in many cases,
negative for working age males: this seems to reflect the fact that registered wealth
takes account of loans and mortgages, but not all of the corresponding assets at
market value (e.g., the value of a self-employed person’s business set up with the
help of a bank loan).

2.1 Allocation of individuals to sub-groups

Following a great deal of experimentation, we settled on the following algorithm
for allocating older Danish males to one of the 10 sub-groups, based on a finan-
cial indicator variable that we label as the affluence index. This index is obtained
specifically from the income and wealth available for each individual for each year.
Allocation to sub-groups 1 to 10 is based on data that are available at or before the
start of the year, meaning that we use relevant data for the previous year.

The first step in the allocation algorithm is to determine the value of the index. The
affluence index, A(i, t, x), for individual i, in year t at age x (at the start of the year)
is defined as the individual’s wealth plus K times their income in the preceding year,
that is:

A(i, t, x) = W (i, t− 1, x− 1) +K × Y (i, t− 1, x− 1) (1)

where W (i, t− 1, x− 1) is the (physical and financial) wealth for individual i, at age
x−1 in year t−1 and Y (i, t−1, x−1) is the income of individual i, at age x−1 in year
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t − 1. K is a constant across the whole population. Income and wealth are highly
correlated, but the variables combine to create a more robust index, particularly
for higher-mortality sub-groups. We have chosen to use K = 15, but the derived
sub-group death rates outlined below are found to be robust relative to the value of
K.4

The second step is then to allocate all individuals to specific sub-groups. Based
on the affluence index, A(i, t, x), all individuals, i, in year t at age x are ranked
from 1, 2, ..., n, where n is the number of individuals at age x in year t. The rank
of the individuals is given by R(i, t, x). This rank is normalised by U(i, t, x) =
R(i, t, x)/(n+ 1), so it is evenly spread between 0 and 1. Then, if U(i, t, x) lies be-
tween 0 and 1/10, the individual is allocated to Group 1, and so on. This procedure
implies that 10% are assigned to each sub-group.

The ranking and allocation is repeated every year until an individual reaches the
main state pension age of 67.5 After age 67, each individual remains in the same
sub-group that they were allocated to at age 67. Thus, individuals are assumed
to be able to migrate between affluence sub-groups before age 67, but not after.
From these population sub-groups, it is then possible to calculate the demographic
measures exposed to risk, death counts, and death rates.

The key contributions of this algorithm compared to earlier ones are twofold. First,
we found that the use of affluence is a more effective discriminator across all ages
than income or wealth on their own. Second, the lockdown at age 67 produces much
better results (including improved separation between the 10 sub-groups) than not
locking down.6

2.2 Deaths, exposures and crude death rates

We exploit the detailed nature of the database to calculate deaths and exposures in
a different way from standard sources (e.g., the Human Mortality Database count
deaths according to the age last birthday at the time of death) to obtain a greater
degree of precision. Here our age variable refers to the age at the start of each
calendar year. Thus

• D(i, t, x) = the number of individuals allocated to sub-group i at the start of

4The original choice of K = 15 reflects the idea that, around the age of retirement, 15×income
is a very approximate estimate of the present value of an individual’s future retirement income; in
other words, K can be interpreted as a capitalisation factor.

5The state pension age was reduced from 67 in 2004 to 65, although it will increase to 67 between
2024 and 2027, with further increases after 2027 that are linked to increases in life expectancy.

6An additional advantage of the lockdown is that it restricts the potential for Group 1 to fill
up with individuals in severely declining health who have used up most of their personal savings
on long-term care. This would artificially inflate Group 1 mortality at high ages and depress it in
the more affluent sub-groups.
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the year, born in calendar year t− 1− x,7 who die during calendar year t.

• EI(i, t, x) = the number of individuals allocated to sub-group i, born in cal-
endar year t− 1− x, and counted on the first of January in year t.8

• E(i, t, x) is the corresponding central exposed to risk, and measures the average
size of the population during year t in sub-group i born in year t − 1 − x.
Migration prevents us from calculating E(i, t, x) exactly, so we have chosen to
use the common approximation E(i, t, x) = EI(i, t, x)−D(i, t, x)/2.9

The crude death rate is then

m̂(i, t, x) = D(i, t, x)/E(i, t, x)

in sub-group i, calendar year t and age x last birthday at the beginning of the year.

Exposures, E(i, t, x) range from about 4250 (at age 55) down to 13 (at age 94).
Deaths, D(i, t, x), ranged from 151 (peak mortality ages) down to 4 (age 94). It is
evident, therefore, that subdividing an already small national population produces
crude death rates where sampling variation (also known as Poisson risk) will be
quite significant.

By way of example, crude death rates for the 10 sub-groups in 2012 are plotted
in Figure 1 (left).10 This plot is typical of what we see for all years 1985 to 2012.
Despite the significant levels of sampling variation along each curve, we can still see
a clear ranking in the plot: Group 1 has consistently high death rates across all
ages; Group 2 the next highest; and so on down to Group 10. In particular, the
rankings are what could be described as bio-demographically reasonable: the more
affluent someone is, the less likely they are to die in the next year compared with a
less affluent person of the same age. Sampling variation introduces some crossovers
in the left-hand plot in Figure 1, especially at high ages, but the broad patterns are
clear. We can also observe that relative differences in death rates between sub-groups
are biggest at younger ages and smallest at very high ages.

We experimented with numerous ways of segmenting the population, but however
we did it, we always ended up with a similar (or even narrower) spread of curves at
higher ages. This finding is in line with the compensation law of mortality (Gavrilov
and Gavrilova, 1979, 1991; see, also, Avraam et al., 2014) which observes that the
mortality for different populations tend to converge with age. This ‘law’ implies
that wealth and lifestyle-related factors have a lesser impact as we age, whilst other,

7Equivalently individuals: (a) who are age x at the start of calendar year t or (b) who attain
their x+ 1th birthday during year t.

8EI(i, t, x) is the initial exposed to risk.
9Alternative approximations for E(i, t, x) were considered, but these resulted in only very small

differences compared with the formula used in this study.
10Knowledge of death rates up to age 94 allows us to calculate survivorship up to exact age 95.



9

60 70 80 90

0.
00

2
0.

01
0

0.
05

0
0.

20
0

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

Males Crude m(t,x); 2012

Age

m
(t

,x
) 

(lo
g 

sc
al

e)

1985 1995 2005
16

18
20

22
24

26
28

Males Period LE: Age 55

Year

P
ar

tia
l P

er
io

d 
Li

fe
 E

xp
ec

ta
nc

y

Group 10
Group 9
Group 8
Group 7
Group 6
Group 5
Group 4
Group 3
Group 2
Group 1

Figure 1: Left: Crude death rates, m(i, t, x) = D(i, t, x)/E(i, t, x), for Danish males
Groups 1 to 10 by age in 2012. Right: Crude partial period life expectancies for
Danish males Groups 1 to 10 from age 55, capped at 95.

mainly genetic, factors become more significant. The narrowing gap with age is also
consistent with the findings of Waldron (2007), Cristia (2009) and Bosworth and
Burke (2014) for US males, and Office for National Statistics (2013) and Villegas
and Haberman (2014) for England and Wales males.

Partial period life expectancies, LE(t, x), for age x =55 are plotted in Figure 1
(right).11 We can note the following points. At age 55 (and the same holds for other
ages), there is a clear separation between partial period life expectancies (LEs) in
all years across all 10 sub-groups (Group 1 has the lowest LE; Group 10 has the
highest), even though we are using unsmoothed data. The gap between Groups 1
and 10 narrows as age increases, reflecting the narrowing gap between death rates
observed in the left-hand plot in Figure 1. The gap between crude LEs for Groups
1 and 10 widened between 1985 and 2012 at both ages 55 (6.9 years widening to 7.8
years) and 67 (4.0 widening to 5.3).

11We define partial period life expectancy, LE(t, x) ≈ 1
2 +

∑xu−1
y=x+1 Sp(t, x, y) + 1

2Sp(t, x, xu), to
be the expected number of years survived from age x to age xu = 95, assuming that mortality
stays at the same crude levels as in year t. The crude period survival probabilities are defined as

Sp(t, x, y) = exp
[
−
∑y−1

s=x m̂(t, s)
]
. Partial life expectancy up to age 95 is only very slightly less

than complete (untruncated) life expectancy, but the latter requires extrapolation of death rates
beyond our upper age.
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Similar observations have been found previously with Danish data by Brønnum-
Hansen and Baadsgaard (2012) using disposable income as a covariate. However,
Brønnum-Hansen and Baadsgaard only report period life expectancy at a single age
0 and separate the population into quartiles. By contrast, we have carried out a
much more detailed analysis using deciles rather than quartiles, partial period life
expectancy over a range of ages from 55 and up, and death rates at individual ages
from 55 to 94. Our conclusion is that the use of income as the key metric could, as
discussed above, be improved upon significantly. Specifically, income, on its own,
does not achieve a satisfactory separation of the 10 sub-groups across all ages and all
years: a problem that has now been resolved through the use of the A = W + 15Y
affluence index with lockdown at age 67. Our analysis of mortality across a wide
age range is important in the context of the intended applications. In particular, we
seek to model sub-population death rates with a view to assessing how sub-groups
will evolve over time relative to each other at all ages, and to assess the impact
financially on the providers of pensions and annuities.

The widening over time of the gap in life expectancy is not unique to Denmark
and can be observed elsewhere. The UK Office for National Statistics (2011) con-
sider England and Wales life expectancies by occupation group and find a widening
gap between professional/managerial and unskilled manual workers; Cristia (2009)
considers US males and females subdivided by lifetime earnings and also finds a
widening gap over time; Tarkiainen et al. (2012) find an increasing gap in Fin-
land by income; and Mackenbach et al. (2003) find increasing gaps in six European
countries using other socio-economic measures.

3 Modelling sub-population mortality

Multi-population mortality modelling concerns the development over time of the
death rates in several populations. Let m(i, t, x) be the death rate for population i
in year t for individuals aged x last birthday on the first of January in the year of
death. A standard hypothesis in multi-population modelling is that the relationship
between the death rates at given ages in two related populations should not diverge
over time: that is, the ratio m(i, t, x)/m(j, t, x), for i 6= j, should remain stable over
time. This stability condition is often referred to as coherence. Coherence can be
achieved through the use of certain models, such as the gravity model which achieves
stability in an intuitive and plausible way (see, for example, Li and Lee, 2005, Cairns
et al., 2011, and Dowd et al., 2011). Other approaches to multi-population modelling
include those of Jarner and Kryger (2011) and Kleinow (2015).

We propose the following gravity model of the CBD-X type for underlying death
rates in the 10 sub-groups:

logm(i, t, x) = β
(i)
0 (x) + κ

(i)
1 (t) + κ

(i)
2 (t)(x− x̄) (2)
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where i is the sub-group, t is the year and x is the age last birthday at the start of the
year. This is a variant in the style of Plat (2009) of the CBD model (Cairns et al.,

2006) that adds a non-parametric age effect, β
(i)
0 (x), to the basic CBD model, and

models the log death rate rather than the logit of the mortality rate; see, also, Hunt
and Blake (2014). The κi1(t) terms capture changes in the level of mortality and the
κi2(t) terms changes in the slope of the log-mortality curve relative to the baseline

β
(i)
0 (x). The non-parametric age effect was found to be necessary to preserve the

mortality rankings between sub-groups over the full range of ages from 55 to 94.
Without it, we found that the mortality curves in individual years for different sub-
groups would cross over at high ages in a way that was not consistent with the crude
death rates. As we discuss later, this model was found to fit the 10 sub-populations
of the Danish males aged 55 to 94 well without the need for a cohort effect.

For the purpose of both fitting the model to historical data and for forecasting, we
need to specify a stochastic model for the period effects. We propose the following:

κ
(i)
1 (t) = κ

(i)
1 (t− 1)− ψ

(
κ
(i)
1 (t− 1)− κ̄1(t− 1)

)
+ µ1 + Z1i(t) (3)

κ
(i)
2 (t) = κ

(i)
2 (t− 1)− ψ

(
κ
(i)
2 (t− 1)− κ̄2(t− 1)

)
+ µ2 + Z2i(t) (4)

where

κ̄1(t) =
1

n

n∑
i=1

κ
(i)
1 (t)

κ̄2(t) =
1

n

n∑
i=1

κ
(i)
2 (t)

and the random innovation terms Zki(t) are multivariate normal with mean 0 and
covariances

Cov (Z1i(t), Z1j(t)) =

{
v11 for i = j
ρv11 for i 6= j

Cov (Z2i(t), Z2j(t)) =

{
v22 for i = j
ρv22 for i 6= j

Cov (Z1i(t), Z2j(t)) =

{
v12 for i = j
ρv12 for i 6= j

with −1 < ρ < 1. Additionally, the Zki(t) are independent from one year to the
next.

The κ
(i)
1 (t) share a common drift, µ1, and the κ

(i)
2 (t) share a common drift, µ2, where

µ1 and µ2 need to be estimated. The components of equations (3) and (4)

−ψ
(
κ
(i)
1 (t− 1)− κ̄1(t− 1)

)
and − ψ

(
κ
(i)
2 (t− 1)− κ̄2(t− 1)

)
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represent gravity effects (similar to Cairns et al., 2011, and Dowd et al., 2011a)
between sub-groups that prevent individual sub-group death rates from drifting
away from the overall trend, with 0 < ψ < 2 to ensure stationarity.

From equations (3) and (4), it is straightforward to show that (κ̄1(t), κ̄2(t)) is a
bivariate random walk with drift (µ1, µ2)

′ and one-step-ahead covariance matrix

1 + (n− 1)ρ

n

(
v11 v12
v12 v22

)
.

Next, define

∆1i(t) = κ
(i)
1 (t)− κ̄1(t). (5)

Then, the ∆1i(t) are correlated AR(1) processes with AR(1) parameter 1− ψ, that
revert to 0, add up to 0, and which are independent of κ̄1(t). Similar remarks apply

to ∆2i(t) = κ
(i)
2 (t)− κ̄2(t).

We have deliberately chosen to have a single short-term, contemporaneous correla-
tion parameter, ρ, and a single gravity parameter, ψ, to keep the model simple and
robust, as well as to benefit from computational efficiencies. This means that the
correlations in log death rates between all pairs of sub-groups are all the same.

For forecasting, we are interested in assessing correlations between the sub-groups.
We can remark that the T -year-ahead correlations between sub-groups will depend
on ρ and ψ as well as the vij.

3.1 Estimation

The β
(i)
0 (x), κ

(i)
1 (t) and κ

(i)
2 (t) were estimated using Bayesian methods with the fol-

lowing elements. We seek to estimate the posterior distribution for β (representing

all of the β(i)(x)), κ (representing all of the κ
(i)
j (t)) and φ (representing all of the

process parameters governing the dynamics of the κ
(i)
j (t)), given the detailed infor-

mation, D, about deaths by sub-group, year and age. The posterior distribution is
proportional to

f1(D|β, κ, φ)f2(β, κ|φ)f3(φ)

where f1 is the probability of observing D(i, t, x) deaths given β, κ, φ, and the
exposures, f2 is the density function for β and κ given φ, and f3 is the prior density
for the process parameters, φ.

f2(β, κ|φ) is based on the multivariate time series structure for the κ
(i)
j (t). In our

formulation, β plays no role in f2: that is, our prior assumption is that the β
(i)
0 (x)

are independent of each other and have an improper uniform prior distribution; and
we let the deaths data drive estimation of the β

(i)
0 (x). For the given combination of

equations (2), (3) and (4), we only need two identifiability constraints to uniquely
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identify the posterior density. We choose to fix κ̄1(1) = 0 and κ̄2(1) = 0. Beyond
these constraints, we also need a distributional assumption for ∆(t) = {∆ji(t) : j =
1, . . . , 10; i = 1, 2} (equation 5) at time t = 1. We assume the stationary distribution
for ∆(1).12

In practice, f1 depends only on D, β and κ, and not, additionally, on φ. For
modelling the conditional distribution of the deaths given κ, we use conditionally
independent normal distributions for the logD(i, t, x) (conditional on κ) with mean
log m̂(i, t, x)E(i, t, x) and variance 1/Dobs(i, t, x), where Dobs(i, t, x) is the observed
number of deaths. The conditional log-normal is used as an approximation to the
usual conditional Poisson distribution for the D(i, t, x). The use of 1/Dobs(i, t, x) is
an approximation to the variance of the log of a Poisson random variable with mean
m̂(i, t, x)E(i, t, x). It is, of course, self-referential, but it works well in practice and
can be considered as an application of Empirical Bayes. For further discussion, see
Cairns et al. (2016).

The use of the log-normal for deaths in combination with pre-specified variances
plus the given time series model for κ results in a log-likelihood function that is
quadratic in the latent state variables, β

(i)
0 (x), κ

(i)
1 (t) and κ

(i)
2 (t). An advantage of

this specification is that when we use Markov chain Monte Carlo (MCMC) to sample
from the posterior distribution for the model parameters, we can use computation-
ally efficient Gibbs sampling from the conditional posterior distributions (i.e., the

multivariate normal) to update the β
(i)
0 (x), κ

(i)
1 (t) and κ

(i)
2 (t).

The log-likelihood for ρ does not lead (in combination with any sensible choice of
prior) to a simple conditional posterior distribution for ρ, however. To remedy this
shortcoming, we use the Metropolis-Hastings (MH) algorithm for updating ρ instead
of the Gibbs sampler. Estimation of the posterior distribution for ψ also uses the
MH algorithm, for similar reasons.13

The parameters v11, v22 and v12 are also estimated, but in a constrained way. Specif-
ically, vij = νv̂ij, where the v̂ij are specified constants and the scalar parameter,
ν > 0, has to be estimated. The prior point estimates of v̂11, v̂22 and v̂12 exploit
Empirical Bayes and are based on estimated values for the total Danish population.
We assume that the random walk processes for each of the 10 sub-populations are,
individually, no more or less volatile than the national population. The parameter ν
has an inverse gamma conditional posterior distribution, which we exploit to allow
us to use the Gibbs sampler for updating ν.

Uniform prior distributions are assumed throughout apart from:

• ρ has a Beta prior to ensure it remains in the range (0, 1). We tried both

12Since 0 < ψ < 2 and the Zki(t) are multivariate normal, the stationary distribution of ∆(t)
required for ∆(1) exists and is also multivariate normal.

13For an introduction to MCMC, the MH algorithm and the Gibbs sampler, see Gilks et al.
(1996).
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Beta(2, 2) (equivalent to the Uniform distribition, and this is as weak as we
could reasonably go) and Beta(3, 3) priors. Both are quite uninformative and
produce similar, although not identical, results for the posterior for ρ.

The posterior distribution for ρ is centred around 0.45 with a standard de-
viation of about 0.1, so the influence of the prior in the tails should not be
critical.

In the results that follow we use the weaker, less-informative Beta(2, 2) prior.

• ψ also has a Beta prior to ensure it remains in the range (0, 1). We tried both
Beta(2, 2) and Beta(3, 3) priors with similar, but not identical, results for the
posterior for ψ.

The posterior for ψ is quite skewed towards 0 and so the choice of the prior
parameters can, potentially make a difference. In fact, the Beta(2, 2) (which
pushes ψ less strongly away from 0) produces a posterior for ψ that is a bit
closer to 0 than the Beta(3, 3) prior.

In the results that follow, we use the weaker, less-informative Beta(2, 2) prior.

• ν has an inverse gamma prior centred close to 1 or a bit higher.14 Since the
log-likelihood function is quadratic in relevant latent state variables, ν has an
inverse gamma distribution for its conditional posterior distribution.

Sensitivity of key model outputs to the choice of priors for ρ and ψ is discussed later
in Section 5.

4 Analysis of Historical Death Rates

4.1 Fitted death rates

Figure 2 shows fitted death rates for the years 1985 and 2012 across all ages and for
ages 60 and 80 across all years, and can be compared to the crude death rates in
Figure 1. The fitted rates smooth out the noise very considerably and achieve a crisp
distinction between each of the sub-groups. At the same time, this clarity is achieved
without losing any of the essential patterns and characteristics underpinning the
crude rates. From these plots of smoothed fitted death rates (and others not included
here), we can confirm the findings we first observed from plots of crude rates:

• Falling death rates over time at all ages.

14Specifically, the prior has shape parameter 11 and rate parameter 10, giving a mean of 1 and
a standard deviation of 1/3.
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Figure 2: Fitted death rates, m(i, t, x), for Danish males Groups 1 to 10
using the CBD-X model, with sub-groupings based on the affluence index
(wealth+15×income) and lockdown at age 67. Top row: by age in years 1985 and
2012. Bottom row: by year for ages 60 and 80.
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Figure 3: Fitted death rates, m(i, t, x), for Danish males Groups 1 to 10 using the
CBD-X model, but with sub-groupings based on income only and no lockdown at
age 67.
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Figure 4: Partial period life expectancy (LE) for Danish males in Groups 1 to 10
for ages 55 (left) and 65 (middle) and 75 (right). Lines: LEs based on fitted death
rates. Points: LEs based on crude death rates.
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Figure 5: Estimated age and period effects for the 10 sub-populations.
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• A very wide gap in death rates between the least and most affluent at younger
ages, and a narrower gap at higher ages.

• Relative to 1985 death rates, improvements have been largest amongst the
most affluent (that is a widening life expectancy gap) and at younger ages.

For comparison with previous grouping methods, equivalent plots are provided in
Figure 3, where sub-groups are based on income only with no lock down at age 67.
The step change in the age-80 plot in the fitted rates around 1995 for Group 1 that
is evident in Figure 3 but not Figure 2 is, most-likely, the result of changes in the
amounts and treatment of social assistance and old-age pensions in the previous
year.15 After 1995, the sub-group rankings are very poor especially after retirement.
Similar plots have been analysed for income only with lockdown at 67, and the
affluence index (wealth+15×income) with no lockdown. Out of all the numerous
experiments that we conducted, only affluence with lockdown produces a consistent
ranking across all years and all ages.

Figure 4 plots the development of partial period life expectancy (LE) over time for
ages 55, 65 and 75 for each of groups 1 to 10. The dots show LEs derived from
crude death rates, while the lines show LEs based on fitted death rates. We can
see that the fitted LEs produce a smoother progression from year to year compared
to the crude LEs, without losing the essential features of the crude LEs. More
importantly, we see that the fitted process results in greater consistency from year
to year between the 10 sub-groups, including improved separation. In line with
earlier findings on the crude LEs, fitted LEs exhibit a wider spread at younger ages,
and a slight widening of spreads between sub-groups over the period 1985 to 2012.
These plots highlight, in more meaningful terms, the wide gap between the rich and
poor, even in a country with a strong health care and social security system.

This can be compared with US data. Waldron (2013) considers deciles for fully-
insured US males based on lifetime earnings. At age 65, Waldron finds a wider gap
between Groups 1 and 10, but when one compares Groups 2 to 10, the differences
between groups are quite similar to the results for Denmark: indeed the gap between
Groups 2 and 10 is wider than in the US. One might tentatively conclude, therefore,
that the more generous social security system in Denmark benefits primarily the
least affluent 10%, in contrast to the US.

15The changes in the reporting of income in 1995 has resulted in high proportion of individuals
in lower groups being reallocated to other groups, with group 1 losing many individuals in poor
health and gaining many others (perhaps with substantial personal savings to top up their low
reported income) in relatively good health.
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Point estimates for fitted age and period effects – the underlying drivers of Figures
2 and 4 – are plotted in Figure 5. The base mortality tables (left-hand plot),

represented by the β
(i)
0 (x), provide the basis for the rankings of the different sub-

groups in individual years. The κ
(i)
1 (t) period effects (middle plot) drive changes in

the overall level of mortality. The individual series all follow a consistent downwards
trend (of generally improving mortality) that steepens after around about 1995.16 17

However, we can see that κ
(10)
1 (t) starts higher and falls more steeply than is the

case with the other sub-groups: a feature that supports the earlier observation that
the gap between the richest and poorest has been widening, potentially, at all ages.

Changes in the κ
(i)
2 (t) (right-hand plot) indicate how the slopes of the individual

mortality curves have been changing. These have tended to rise over time (by
varying amounts) indicating that mortality has improved at a faster rate at lower
ages than at higher ages. The biggest changes have been amongst Groups 6 to 10,
with Groups 1 to 5 lagging in a variety of ways over different time periods. The
interpretation of this is that the widening of the gap between the more and less
affluent has been more pronounced at younger ages, as was observed in Figure 2.

4.2 Proposal for mortality modelling at very high ages

The narrowing gap in death rates up to age 94 observed in Figure 2 suggests a
possible way to model sub-group mortality at very high ages. At the sub-group
level, there is very little data to work with. To circumvent this, we propose that
mortality is first modelled at very high ages at the level of the national population
(although the amount of data is still small, it is not as small). Sub-group mortality
can then be modelled as national mortality with modest increments or decrements
at age 95, that gradually diminish with age and eventually vanish at very high ages.
We leave this for future work.

5 Future Mortality and Survivorship

5.1 Projecting future death rates

We now turn to projecting future death rates. The results in this section, unless
otherwise stated, include full parameter uncertainty. This means that we draw

16The kink around 1995 observable in Figures 2, 4 and Figure 5 that affects all groups is probably
not connected to the social security and tax changes that occurred in 1994. Rather, 1995 looks
like a year with randomly high mortality, making what is probably a more gradual increase in
mortality improvement rates look more sudden, i.e., like a kink. We have not been able to find a
good explanation for this change in improvement rates.

17The same kink can be observed in Figure 4 although the scale makes it slightly less obvious.
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historical values for the latent state variables (the β
(i)
0 (x) and the κ

(i)
j (t)) and the

process parameters (ρ, ψ etc.) at random from the MCMC output, and then use

the final year’s (2012) κ
(i)
j (t) plus the selected process parameters to generate each

stochastic projection scenario.

Fan charts for the forecast death rates for ages 65 and 75 are plotted in Figure 6.
The relative positions of the fans stay fairly fixed over the period 1985 to 2012,
although the fans gradually widen after 2013, reflecting the greater uncertainty in
projected future rates.

The correlations between sub-group mortality will be of interest to pension plans and
insurers as a key component of their overall risk assessment (see, e.g., Haberman et
al., 2014). Correlations over varying time horizons are considered in Figure 7. They
rise steadily the further into the future we look. Initially, the levels of the curves
reflect the short-term contemporaneous correlations between the period effects. As
the projection horizon lengthens, the shape reflects mean reversion towards the
‘national’ random walk (equations 3 and 4).

We can also see that Group 10 tends to have lower correlations than Group 5 Which,
in turn, has lower correlations than Group 1. This is because Group 10 death rates
are lower than Group 1 and so, in relative terms, contribute less than 10% of the
risk to the national average.

The level and shape of the correlation curve depend on whether or not we include
uncertainty in the underlying process parameters (see, e.g., Cairns, 2013, and Cairns
et al., 2014). We investigate this in Figure 8 (left-hand plot) for Group 5 by way of
illustration. This plot shows correlations under three experiments:

• Full Parameter Uncertainty (Full PU): full allowance for uncertainty in all
process parameters and latent state variables in line with the posterior distri-
bution.

• Partial PU#1: the drift parameters µ1 and µ2 are fixed at their posterior
medians. All other elements of the posterior distribution remain random.

• Partial PU#2: the process parameters µ1, µ2, ρ, ψ and ν are fixed at their
posterior medians.

From Figure 8, we see that the curves for Partial PU #1and #2 are almost in-
distinguishable indicating that uncertainty in ρ, ψ and ν has little impact on the
empirical correlations. For each parameter, uncertainty around its median can push
the correlation up or down depending on whether the deviation from the median is
positive or negative. By contrast, moving from Partial PU#1 to Full PU results in
a big change. Uncertainty in µ1 and µ2 pushes up uncertainty in κ̄1(t) and κ̄2(t),
with a corresponding impact on uncertainty in sub-group death rates. But, since
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Figure 6: Fan charts for mortality at ages 65 and 75 for Danish males Groups 1 to
10. The charts show parameter uncertainty in the fitted death rates up to 2012, and
combined parameter uncertainty and process risk from 2013.
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each sub-group has a common dependency on κ̄1(t) and κ̄2(t), correlations rise, in
line with the results in Cairns (2013) and Cairns et al. (2014).

Returning to Figure 7, we can also consider correlations between two stylised pen-
sion plans and the national population. The first (“white-collar”) pension plan is
assumed to be made up of equal numbers of Groups 8, 9 and 10: the high earners.
The second (“blue-collar”) pension plan is made up of equal numbers of Groups 2,
3 and 4. We exclude Group 1 from the analysis as it potentially includes unem-
ployed or people who are in poor health (and not in employment). Both plans have
much higher correlations with the national population than any of Groups 1 to 10
separately, reflecting the fact that some of the idiosyncratic risk in each of the three
contributing sub-groups has been diversified. We also see that the blue-collar plan
has higher correlations than the white-collar plan, for the same reason that Group
1 had higher correlations than Group 10 above.

It is noteworthy that the correlation term structure for the white-collar plan is
similar to that for UK assured lives both in terms of level and shape (see the UK
Continuous Mortality Investigation of Assured Lives versus England & Wales males
examined in Dowd et al, 2011, Figure 13).

5.2 Sensitivity to the choice of prior distribution

In Figure 8 (right), we pick out Group 5, by way of example, and investigate how
sensitive the correlation term structure is to changes in the prior distributions for
ρ and ψ. Each has either a Beta(2, 2) or Beta(3, 3) prior distribution as outlined
in the legend. In each case, although differences can be seen, the three sets of
priors produce very similar results in each of the plots.18 Although this is a limited
experiment, it does suggest that our estimates of the correlations over a range of
time horizons are robust relative to the choice of prior.

5.3 Survivor indexes

As an alternative to death rates, we can also look at cohort survivorship. A general
survivor index, S(t, x), represents the probability that an individual aged exactly x
at time 0 (the beginning of calendar year 1) survives for t years to age x+ t, given
the knowledge of how the underlying mortality rates, q(t, y), evolve from time 0 to
t.19 Thus

S(t, x) =
t∏

u=1

(1− q(u, x+ u− 1)) .

18These differences are small in comparison with the case that allows for the inclusion of param-
eter uncertainty in µ1 and µ2 – see Figure 8 (left).

19We use the approximation q(i, t, x) = 1− exp (−m(i, t, x)).
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Figure 8: Empirical correlations between Group 5 and the total population,
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sumptions. Left: impact of different levels of parameter uncertainty: Full parame-
ter uncertainty (PU); PPU #1 has µ1 and µ2 fixed at their posterior medians; PPU
#2 has µ1, µ2, ρ, ψ and ν fixed. Other elements of the posterior distribution re-
main random. Right: the three lines show sample correlations under three different
combinations of prior distributions for ρ and ψ.
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Correspondingly, we have survivor indexes, S1(t, x), . . . , S10(t, x), for each of Groups
1 to 10. Now suppose that a pension plan (“X”) consists of a mixture of Groups 1
to 10 with weights w1, . . . , w10 (with

∑
iwi = 1; different ages might have different

weights). Special cases of X include the stylised white- and blue-collar plans. The
plan X then has its own cohort survivor index SX(t, x) =

∑10
i=1wiSi(t, x). Lastly, the

total population from age x = 67 has survivor index STOT (t, x) =
∑10

i=1 Si(t, x)/10.

We consider the correlation between survivor indices for individual sub-groups, pen-
sion plans and the total population from two perspectives in Figure 9. The plots
include a third stylised plan (“Mixed”, “M”) that has weights proportional to the
vector (0, 0, 1, 2, 3, 4, 5, 6, 7, 8), which might reflect either growing numbers of in-
dividuals in more wealthy sub-groups, or more equal numbers with the weights
reflecting the growing amounts of pensions. Figure 9, left, looks at the effect of the
time horizon, and we can see correlation curves that mimic the shape of those in
Figure 7. Unlike the death rates, the survival index correlations depend on multiple
death rates from prior years. Additionally, we see Groups 2 and 9 cross over around
2027. Initially, the less affluent sub-groups contribute more to the uncertainty in
STOT (t, x). In later years, however, the less affluent sub-groups will have died off
much more quickly, so that they contribute less to STOT (t, x), while, e.g., Group 9
contributes relatively more.

There is, however, a much more general ‘term-structure’ of correlation,

cor (Si(ti, xi), Sj(tj, xj)) ,

for any two populations i and j and potentially different time horizons and ages.
In some applications, it is important that this term structure takes a reasonable
or plausible form. By way of example, we take, again, i = X = 2, 9, B,W,M
and j = TOT with ti = tj = 10. The right-hand plot in Figure 9 looks at how
correlations change as we vary the ages in the two populations. Specifically, we keep
the initial age (xj) for the total population fixed at 67, and calculate the time-10
correlation with different plans, X, over a range of ages (x)

cor (SX(10, x), STOT (10, 67)) .

We see that choosing matching ages makes a big difference in the correlations: co-
horts in the two populations that are far apart in terms of age are less strongly
correlated.

These correlation plots help us identify a number of desirable criteria from the
perspective of biological reasonableness (see, e.g., Cairns et al., 2009, and Haberman
et al., 2014). Specifically, a multi-population mortality model should ideally satisfy
the following:

• Correlations between mortality rates and survivor indexes for different popu-
lations should vary smoothly with the time horizon and should be increasing
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Figure 9: Left: Empirical correlations between SX(t, 67) and STOT (t, 67) for t =
2013, . . . , 2037. Right: Correlations between SX(10, x) and STOT (10, 67) for x =
55, . . . , 74. In both plots, results for Groups X = 2, 9, blue collar, white collar and
mixed pension plans are plotted.

with the time horizon if it is felt that mean reversion between populations is
itself a desirable element of the model, and correlations should not be exactly
equal to 1 without good reason.

• For a fixed time horizon, correlations between populations should vary smoothly
with the reference ages of both populations, and correlations should not be
exactly equal to 1 without good reason.

It is difficult to define what the boundary is between what would be a reasonable
and unreasonable plot, and, as in some previous cases (e.g., Cairns et al., 2009),
each plot of its type for each model needs to be considered on its own merits. From
time to time, a model produces a plot that is clearly unreasonable for reasons that
can only be inferred from the plot itself rather than anticipated in advance.20

20For example, consider the Li and Lee (2005) model: logm(i, t, x) = αi(x) + B(x)K(t) +
βi(x)κi(t). For different populations i and j it is possible to have βi(xi) = βj(xj) = 0 for signifi-
cantly different ages xi and xj . We then have, for all t, cor (logm(i, t, xi), logm(j, t, xj)) = 1. This
is not plausible or realistic when correlations are (significantly) less than 1 at other ages.
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6 Extensions and further work

This study has focused on older male mortality in Denmark. For females, we obtain
similar results with the exception that the affluence index is less effective at pro-
ducing the anticipated ranking amongst Groups 1, 2 and 3. Group 1, in particular,
seems to have rather lower mortality than Groups 2 and 3, suggesting that reported
levels of income and wealth do not truly reflect the affluence of the females in Group
1. Further work needs to be done, although we can report that good rankings can
be observed amongst Groups 4 to 10.

We have not attempted to explore the many other covariates and pieces of informa-
tion within the SD database. The work could, therefore, be extended in a number
of ways:

• We can look at the explanatory power of including other covariates, such as
marital status, education and area of residence: education, in particular, is
known to have strong explanatory power (see, e.g., Olshansky et al., 2012,
and Sasson, 2016). We need to think carefully about sample sizes to allow
us to elicit statistically significant results. We also need to be mindful of the
fact that levels of educational attainment have been rising steadily over time
(see, e.g., Brønnum-Hansen and Baadsgaard, 2012, and Sasson, 2012), so the
impact of having a tertiary education might be different in an older cohort
than a younger cohort where its occurrence will be more common.

• We can look at how individuals migrate between different affluence sub-groups
over different periods of time. From an insurance perspective, it is of most
interest to determine the probabilities of ending up in each of Groups 1 to 10
at age 67.

• We can consider cause of death data (e.g. Arnold-Gaille and Sherris, 2016)
and investigate whether affluence, as a covariate, has a greater impact on some
causes of death.

There are potentially many other “big data” analyses that could be conducted.
However, many of these might be very specific to the detailed nature of the SD
database, making it difficult to apply the results in other contexts (e.g., using the
more limited data available to an annuity provider).

7 Conclusions

Understanding socio-economic differences in mortality is important both to policy-
makers planning and projecting state pension budgets and to private sector providers
of mortality-linked products, such as pensions and annuities.
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We have been able to explain mortality differences in older Danish males at a much
finer level of granularity than hitherto attempted, namely at the decile level, using
just a single index to allocate males to a decile sub-group. The index, which we call
the affluence index, is based on income and wealth data available on the Statistics
Denmark database. The male population aged 55 to 94 in years 1985 to 2012 was
subdivided into 10 sub-groups, based on the relative value of their affluence index
(measured as wealth+15×income). Prior to age 67, they would be allocated to a
particular subgroup annually, based on the value of the index in the previous year.
Once they reached 67, they would be allocated to a subgroup and remain in that sub-
group for the remainder of their lives, a procedure we called lockdown. Lockdown
at a particular age (we found that age 67, which also happened to equal the state
pension age in Denmark for most of the period under investigation, worked well)
combined with the affluence index was found to be critical for ensuring a consistent
ranking of sub-group death rates across all years and all ages.

We also introduced a flexible multi-population stochastic gravity-type mortality
model for both fitting death rates and forecasting future death rates. The struc-
ture of the model combined with the gravity effect links group-specific mortality
improvements to the national trend. The model allows for some flexibility in the
relationship between the 10 sub-groups, but also preserves the sub-group rankings
over different time horizons.

Model-based smoothing was employed to filter out sampling variation in the under-
lying crude death rates, and we used these smoothed death rates to rank the 10
sub-groups at each age and in each year. We were able to do this without losing
any of the essential patterns and characteristics underpinning the crude death rates
and without the need for a cohort effect. Sub-group rankings were again consistent
and clear across all ages and years, with a very wide gap between the most and least
affluent at young ages, narrowing significantly with age, but widening slightly over
the period 1985 to 2012.

We also proposed a way to model sub-group mortality at very high ages, given that
there is very little data to work with at these ages. Mortality is first modelled at
the national population level, with sub-group mortality then modelled as national
mortality with small increments or decrements at age 95, which subsequently decline
and ultimately vanish as age increases above 95.

Another key element of the paper was an analysis of how correlations between sub-
groups and the national population change as the forecasting horizon lengthens. We
looked at both forecast death rates and survival rates. Correlations were found to
start at moderate levels 1 year ahead (in the range 0.5-0.6) and climb quickly to very
high levels (over 0.8), especially for populations that comprise a mixture of individu-
als from several of the 10 sub-groups modelled. Amongst other things, knowledge of
this term structure of correlation is important in some financial applications where
risk management strategies will be more effective if correlations are higher.
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Our paper provides important general lessons for researchers with other datasets
who are interested in modelling socio-economic differences in mortality at high ages
at a fine level of granularity:

• It is possible to generate clear and consistent rankings of death rates at all
ages down to at least the decile level using just a single covariate to allocate
individuals to a particular decile sub-group.

• That covariate is likely to be some measure of the relative affluence of the
individuals in the dataset and will involve some combination of the wealth
and income available to the individual – this is intuitively appealing and is
obviously preferable to looking at income alone which most previous studies
have concentrated on.

• It is likely that, in order to preserve the rankings across ages and over time
(including future projections), there will need to be a lockdown at a certain age
– in other words, we found that individuals could switch between decile sub-
groups prior to the lockdown age without violating the sub-group rankings,
but they needed to be locked in to a particular sub-group once they reached
a certain age in order to preserve the sub-group rankings at higher ages.

• The age at which lockdown happens might well be related to the state pension
age or the age at which individuals retire – this also makes intuitive sense:
individuals have much more flexibility to change their labour market behaviour
(and hence their relative affluence) before retirement than after.

• It is possible to smooth sub-group death rates by fitting them to a multi-
population stochastic gravity-type mortality model, with the gravity parame-
ter helping to preserve the sub-group rankings – this has the benefit of reducing
the effect of idiosyncratic mortality risk in small populations.

• The multi-population mortality model can then be used to make mortality
projections that preserve the subgroup rankings.

• It can also be used to model sub-group mortality at very high ages, where data
are likely to be sparse, by first modelling at the national population level, with
sub-group mortality then modelled as increments or decrements to the national
mortality which decline and ultimately vanish with increasing age.

• Correlations between sub-groups and the national population rise with the
time horizon and are especially high for sub-groups that contain a diverse
mixture of socio-economic groups.
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