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Abstract

We investigate and model how the mortality of Danish males aged 55-94 has changed
over the period 1985-2012. We divide the population into ten socio-economic sub-
groups using a new affluence index that combines wealth and income reported on
the Statistics Denmark national register database. This is shown to provide consis-
tent subgroup rankings based on age specific death rates across all ages and over all
years. Its use also improves significantly on previous studies that have focused on
the impact of either education of income on life expectancy or on age-standardised
mortality rates. The gap between the most and least affluent is confirmed to be
widest at younger ages and has widened over time.

We introduce a new multi-population mortality model that fits the historical mor-
tality data very well and captures the essential character of the raw data. The
model generates smoothed death rates that allow us to work with a larger number
of smaller subgroups than might be considered feasible when working with raw data.

The model produces plausible projections of age-specific death rates that preserve
the subgroup rankings at all ages. It also satisfies reasonableness criteria related to
the term structure of correlations across ages and over time through consideration
of future death and survival rates.
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1 Introduction

We are interested in explaining and projecting mortality in closely related popula-
tions. To do this, it is essential to use an appropriate modelling framework. Single-
population mortality models, such as Lee-Carter and Cairns-Blake-Dowd (CBD)
and their extensions,1 are not appropriate, since they can lead to implausible pro-
jections especially in the medium and long term. For example, it is possible for
projected death rates in an historically lower-mortality population (e.g., females) to
cross over those for a higher-mortality population (e.g., males).

To avoid issues of this kind, increasing use has been made in recent years of multi-
population models to explain the mortality dynamics of related populations, such as:
neighbouring countries (e.g., Li and Lee, 2005, Enchev et al., 2016, Christiansen et
al., 2015); males versus females; smokers vs non-smokers (e.g., Kleinow and Cairns,
2013); groups of annuitants vs those who hold life insurance policies (e.g., Yang et
al., 2014); a specific pension plan’s own mortality vs that of the national population
(e.g., Cairns et al., 2011, Haberman et al., 2014, Hunt and Blake, 2017); and different
socio-economic subgroups (e.g., Li et al., 2015).

In some of these cases, especially those that involve subpopulations of the national
population, we might have limited or even no data with which to model. However,
we can use the experience of the larger national population to help inform and
improve projections of the population of interest. In other settings, we might seek
to manage actively the risks that we identify. This point is most apparent in the
life insurance and pensions worlds where some risk management approaches require
joint modelling of the mortality experiences of both an annuity provider and the
national population (see, e.g., Coughlan et al., 2011, Li and Hardy, 2011, Haberman
et al., 2014, Michaelson and Mulholland, 2015, and Cairns and El Boukfaoui, 2017).

We have been given access to a unique and extremely comprehensive database from
Statistics Denmark that enables us to model the socio-economic mortality of older
Danish males at a finer level of granularity than has hitherto been possible. This
allows us:

• To construct a new affluence index for subdividing the Danish male population
into ten socio-economic subgroups of equal size.

• To consider the potential advantages of lockdown. Individuals potentially
transfer between subgroups each year prior to the official state pension age

1Lee and Carter, 1992, Cairns et al., 2006b, and the extensions summarised in Mavros et al.,
2014, and Hunt and Blake, 2014
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of 67 depending on their affluence, with lockdown thereafter: that is, each
individual remains in the same subgroup to which they were allocated in their
67th year.

• To use the proposed index in combination with an appropriate stochastic mor-
tality model to subdivide the male population into a larger number (10) of
smaller subgroups than has previously been attempted for Danish males –
using income, one component of our affluence index – while still preserving
statistical significance.

• To demonstrate that the affluence index plus lockdown in their 67th year
provides a much improved separation of the 10 deciles at all ages from 55 to
94. Specifically, whereas previous work has focused on life expectancy from a
limited range of ages, the new method achieves a clear ranking of death rates
at all ages from 55 to 94 across all 10 subgroups and in all years.

• To demonstrate that the use of the affluence index reveals a greater degree of
mortality inequality within the Danish males’ population than is suggested by
education: a commonly used alternative covariate.

• To develop a new stochastic multi-population gravity model for making mor-
tality projections. The model fits the historical data well and produces,
for the 10 subgroups, coherent projections of future death rates (in the sense
of Hyndman et al., 2013) that are both biologically reasonable2 and socio-
economically reasonable over all ages and a range of time horizons.

• To analyse how future uncertain death rates and survival probabilities in the 10
subgroups are related to each other, through a detailed analysis and discussion
of the term structure of correlations.

• To consider a range of useful applications. For example, it allows the author-
ities to generate more accurate estimates of the cost and projected increases
in the cost of state pension benefits in different population segments; it helps
corporate pension plans improve estimates of their liabilities, given the socio-
economic mix of their plan members; and it allows annuity providers to price
annuities on a socio-economic basis.

The outline of the paper is as follows. Section 2 introduces and explains the Danish
national mortality dataset. It also discusses the approach used to process the data
using the affluence index. Section 3 sets out the proposed multi-population grav-
ity model that we use to model mortality by socio-economic grouping. Section 4
presents the model fit for a range of years and ages and confirms that our approach
to modelling fits the data well, smoothing out the effects of sampling variation (also

2As introduced in Cairns et al. (2006).
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known as Poisson risk) while still preserving the essential characteristics of the crude
subgroup mortality data. Section 5 analyses properties of projected mortality: cen-
tral trends, uncertainty and correlations between subgroups. Section 6 offers some
suggestions for further research, and Section 7 summarises the results.

We are aware that historical trends in Danish mortality have their own idiosyncratic
features (as identified, for example, by Juel, 2008, Glei et al., 2010, and Christiansen
et al., 2010, in Crimmins et al., 2010). These features are evident in the current
data (e.g., the trend before and after 1995 in Figure 1 below). In anticipation of the
analysis, we note that the stochastic model considered in Section 3 captures these
features well across all ages, years and affluence groups. The stochastic model’s ap-
plication to equivalent datasets for other countries would, obviously, require careful
model revalidation.

2 Danish males’ data

The analysis in this paper makes use of a dataset from Statistics Denmark (SD),
based on administrative records. Since every individual in Denmark is given a
central personal register (CPR) number either at birth or when given residence
permission in the country, we are able to uniquely identify each individual across all
components of the public register system which includes the Population Register,
the Integrated Database for Labor Market Research, the Income and Tax Register,
and the Cause of Death Register. Thus, for each individual, we have information on
their date of birth, education, labour market status, income, wealth, and, ultimately,
their date and cause of death. We can also identify the same information for an
individual’s spouse or partner, thereby enabling us to allocate income and wealth
within households. On an annual basis, we observe their marital status based on
the following four categories: unmarried, married, divorced, and widow/widower.
Cohabitation status, and with whom, is also recorded. Significantly, the information
contains no survey element. In general, we have access to a very high quality dataset.

We choose at the outset to focus on measures of the financial status of each individ-
ual, since income and wealth are well known predictors of mortality. However, for
comparison, we also discuss in Section 2.3 an individual’s attained level of education
as an alternative covariate.

The database allows us to identify three financial indicators for each individual and
couple, all deflated to 2000 real values: gross individual annual income, total net
household income, and household net wealth. All financial measures are based on
calculations from the tax authorities which are linked to the CPR. Gross annual
income includes all taxable income, such as wage income, self-employment income,
unemployment insurance benefits, social assistance (from 1994), honoraria, and all
types of pension-related income. However, payments deducted from labour income
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into non-taxable pension schemes, such as labour market pension schemes, ATP (the
supplementary income-related pension scheme), private capital pension schemes,
as well as annuity pension schemes, are not included in the gross annual income
measure.3 For retired individuals, we observe a break in the gross annual income
variable from 1994 onwards. There are several reasons for this break. The level of
old age pension benefits was increased in 1994 to compensate for the government
removal of a special tax rebate previously given to retirees. Moreover, individuals
living in retirement homes prior to 1994 were only given a monthly allowance, but
no amount to cover rent, heating, electricity, etc. as these expenses were paid for
by the government. After 1994, all individuals, irrespective of their living situation,
were given the full amount of old age pension benefits or disability pension benefits.

Total net household income is defined as total gross annual income for all members
of the household, net of alimony, tax and interest payments. One drawback with
this measure is that there is no standardized household size. Such a measure could
be obtained by using standardized household income = total household income/(#
of adults)0.7, as suggested by Citro and Michael (1995).

Household net wealth is calculated as total assets minus total liabilities at year end.
Total assets include real estate, bank deposits, bonds, stocks, mortgage deeds, shares
in firms, the value of cars, boats and mobile homes, as well as cash. Liabilities include
credit secured by a mortgage on real estate, debt to financial institutions, credit
card debt, and all other types of debt to private companies and the government
(e.g., unpaid tax). Prior to 1983, all assets were assigned to the male spouse.
Thereafter, 50% is allocated to each spouse, unless otherwise reported to the tax
authorities. From 1987 to 1996, net wealth also included the taxable equity value
of self-employed businesses (which can be negative). In 1997, a wealth tax was
abolished, which resulted in the equity value of self-employed companies, the value
of some mortgage deeds (not related to real estate), shares in firms, and the value
of cars, boats and mobile homes no longer being reported in the wealth measure.

Data are available for calendar years 1980 to 2012. However, as the quality of both
the income and wealth data (especially for married couples) is regarded as poor at
the beginning of the period, we disregard the first four years of the available data
points. In addition, since our methodology for allocating individuals into subgroups,
requires data for the previous calendar year, we calculate exposures and deaths data
for each subgroup for the 1985-2012 period only.

One of the key objectives is to identify covariates (predictive variables) derived from
information available on the SD database that have a strong predictive power in
explaining the mortality of different individuals in the population. More specifically,
we aim to subdivide the population at each age and in each year into a number,
N , of approximately equal-sized subgroups, with a clear and unchanging ordering
between subgroups in terms of mortality rates at all ages: that is, group 1 should

3This is due to the taxation being postponed until the payout stage of these pension schemes.
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have the highest mortality at all ages and group N the lowest. From the outset, we
aimed for a larger number of subgroups than has typically been the case in other
studies,4 settling on N = 10 deciles, giving us the flexibility to aggregate subgroups
should this be desirable or necessary in the modelling work.

For a subsample of the US population, Waldron (2013) is able to achieve statis-
tically meaningful results using deciles based on lifetime earnings covering a more
limited range of ages (63-71) than in this paper (55-94). For Denmark, we show
that separation into deciles also gives meaningful results, but requires more work to
filter out or smooth the effects of sampling variation. We also found that the use
of deciles revealed weaknesses in some previously considered covariates that would
not be so readily apparent if we were to use, say, N = 3 or 4 subgroups. Extensive
experimentation helped not only to identify these weaknesses (see, e.g., Figure 3 be-
low), but also led us to identify a new and, in our view, superior covariate, namely
affluence with lockdown at a certain age (67 in the case of Danish data). Lastly,
greater levels of inequality are revealed using deciles.

In this particular study, we aim to identify a single financial covariate that is a strong
predictor of mortality. Our reasons for choosing to focus on financial variables from
the outset are twofold. First, income or wealth are well known as strong predictors
of mortality (e.g., Rogot et al. 1992, Wolfson et al., 1993, Chapman and Hariharan,
1996, McDonough et al., 1997, Sabel et al., 2007, Brønnum-Hansen and Baadsgaard,
2012, and Demakakos et al., 2015). Second, we sought to develop a modelling
framework that could be applied to a variety of other countries and subpopulations;
and some measure of income and/or wealth is often available, even when other types
of data that are held by Statistics Denmark (e.g., education) are not.

The specific candidate covariates considered were income, individual wealth, house-
hold wealth, and linear combinations of these: in particular, wealth plus K×income
where K is some constant to be determined (e.g., K = 5, 10, 15 or 20). We also
considered the exclusion of individuals with negative income and/or wealth and
self-employed individuals, for whom there was a suspicion that the reported in-
come/wealth values did not accurately reflect these individuals’ true financial posi-
tions. Ultimately, all individuals were included, giving us almost complete coverage
of the population, with the exception of nationals living abroad.

In general, wealth and income were found separately to be strong predictors of
mortality: higher wealth and income resulted in lower mortality. However, for most
of the variants considered above, results were not satisfactory across all ages and/or
in all years. Typically, we would find consistent and unchanging mortality rankings
across age for the higher (more wealthy) subgroups, while lower subgroups might be
correctly ranked at some ages, but not at other ages. In most of our experiments,
we found that (a) high income or high wealth is a strong predictor of low mortality,

4For example, Brønnum-Hansen and Baadsgaard (2012) subdivide the Danish population into
N = 4 income-based quartiles.
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but (b) low income or low wealth is not a strong predictor of high mortality. For
example, a 70-year-old might have little capital, but still have a good pension that
allows him to live a healthy lifestyle. Another 70-year-old might have no pension,
but have substantial personal savings that he can draw on to provide a good income
in retirement – income that would not be recorded as such by SD. We also found
that the registered level of wealth is, in many cases, negative for working age males;
this finding reflects the fact that while liabilities include loans and mortgages, not
all of the matching assets are included (e.g., the value of a self-employed person’s
business set up with the help of a bank loan).

2.1 Allocation of individuals to subgroups

Following a great deal of experimentation, we settled on the following algorithm
for allocating older Danish males to one of the 10 subgroups, based on a single
composite financial indicator variable that we label as the affluence index. This
index is obtained specifically from the income and wealth data available for each
individual for each year. Allocation to subgroups 1 to 10 is based on data that are
available at or before the start of the year, meaning that we use relevant data for
the previous year.

The first step in the allocation algorithm is to determine the value of the index. The
affluence index, A(i, t, x), for individual i, in year t at age x (at the start of the year)
is defined as the individual’s wealth plus K times their income in the preceding year,
that is:

A(i, t, x) = W (i, t− 1, x− 1) +K × Y (i, t− 1, x− 1) (1)

where W (i, t − 1, x − 1) is the (physical and financial) net wealth for individual i,
at age x− 1 in year t− 1 and Y (i, t− 1, x− 1) is the income of individual i, at age
x−1 in year t−1. K is a constant across the whole population. Income and wealth
are highly correlated, but the variables combine to create a more robust index,
particularly for higher-mortality subgroups. We have chosen to use K = 15, but the
derived subgroup death rates outlined below are found to be robust relative to the
value of K.5 Representative values for the affluence index are given in Table 1 for
ages 55 and 65 in 1990 and 2010. The values given are for the boundaries between
adjacent groups. Lockdown from age 67 means that the boundaries become blurred
as some individuals’ affluence levels drift up and some down without them being
reallocated to another subgroup. However, from age 67, the relationship between
mean levels of affluence between the groups remains relatively stable.

The second step is then to allocate all individuals to specific subgroups. Based
on the affluence index, A(i, t, x), all individuals, i, in year t at age x are ranked

5The original choice of K = 15 reflects the idea that, around the age of retirement, 15×income
is a very approximate estimate of the present value of an individual’s future retirement income; in
other words, K can be interpreted as a capitalisation factor.
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Year: 1990 Year: 2010
Group Boundary Age 55 Age 65 Age 55 Age 65

1→ 2 2324 1803 2521 2026
2→ 3 3141 2184 3492 2451
3→ 4 3588 2518 4056 2898
4→ 5 3970 2842 4542 3354
5→ 6 4361 3218 5038 3866
6→ 7 4836 3655 5568 4474
7→ 8 5428 4219 6245 5224
8→ 9 6335 5094 7261 6317
9→ 10 8139 6855 9421 8356

Table 1: Boundaries (affluence, in ’000’s of Danish krone) between the ten affluence
groups for ages 55 and 65 and in years 1990 and 2010; e.g. individuals aged 65 on
1 January 2010 will be assigned to affluence group 3 if their affluence for 2009 lies
between 2,451,000 DKK and 2,898,000 DKK. Amounts are rebased to year 2000
values. 1000DKK≈150USD (18/9/2016).

from 1, 2, ..., n, where n is the number of individuals at age x in year t. The rank
of the individuals is given by R(i, t, x). This rank is normalised by U(i, t, x) =
R(i, t, x)/(n+ 1), so it is evenly spread between 0 and 1. Then, if U(i, t, x) lies be-
tween 0 and 1/10, the individual is allocated to Group 1, and so on. This procedure
implies that 10% of the total population are assigned to each subgroup.

The ranking and allocation is repeated every year and age until an individual reaches
their 67th year, the main state pension age for most of the period.6 From age 67
onwards, each individual is assumed to remain in the same subgroup that they
were allocated to at age 66 (lockdown). Thus, individuals are assumed to be able
to migrate between affluence subgroups before age 66, but not after. From these
population subgroups, it is then possible to calculate the demographic measures
exposed to risk, death counts, and death rates.

There are two key contributions of this algorithm compared to earlier ones. First,
we found that the use of the affluence index is a more effective covariate across all
ages (from 55 to 94) and in all years than income or wealth on their own. Second,
the lockdown at age 67 produces much better results (including improved separation
between the 10 subgroups) than not locking down.7

6The state pension age was reduced from 67 in 2004 to 65, although it will increase to 67 between
2024 and 2027, with further increases after 2027 that are linked to increases in life expectancy.

7An additional advantage of the lockdown is that it restricts the potential for Group 1 to fill up
after age 67 with individuals in severely declining health who have used up most of their personal
savings on long-term care. Allowing for such mobility would artificially inflate Group 1 mortality
at high ages and depress it in the more affluent subgroups.
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2.2 Deaths, exposures and age-specific death rates

We exploit the detailed nature of the database to calculate deaths and exposures in
a different way from standard sources (e.g., the Human Mortality Database count
deaths according to the age at the last birthday at the time of death) to obtain a
greater degree of precision. Here our age variable, x, refers to the attained (integer)
age at the start of each calendar year. Thus

• D(i, t, x) = the number of individuals allocated to subgroup i at the start of
the year, born in calendar year t− 1− x,8 who die during calendar year t.

• EI(i, t, x) = the number of individuals allocated to subgroup i, born in calen-
dar year t− 1− x, and counted on the first of January in year t.9

• E(i, t, x) is the corresponding central exposed to risk, and measures the average
size of the population during year t in subgroup i born in year t−1−x. Migra-
tion of people into and out of Denmark prevents us from calculating E(i, t, x)
exactly, so we have chosen to use the common approximation E(i, t, x) =
EI(i, t, x)−D(i, t, x)/2.10

The age-specific death rate is then

m̂(i, t, x) = D(i, t, x)/E(i, t, x)

in subgroup i, calendar year t and age x at the last birthday at the beginning of the
year.

Exposures, E(i, t, x) range from about 4250 (at age 55) down to 13 (at age 94).
Deaths, D(i, t, x), ranged from 151 (peak mortality ages) down to 4 (age 94). It is
evident, therefore, that subdividing an already small national population produces
crude age-specific death rates where sampling variation will be quite significant.

By way of example, age-specific death rates for the 10 subgroups in 2012 are plotted
in Figure 1 (left). This plot is typical of what we see for all years 1985 to 2012.
Despite the significant levels of sampling variation along each curve, we can still see
a clear ranking in the plot: Group 1 has consistently the highest death rates across
all ages; Group 2, the next highest; and so on down to Group 10. In particular, the
rankings are what could be described as socio-economically reasonable: the more
affluent someone is, the less likely they are to die in the next year compared with a
less affluent person of the same age. Sampling variation introduces some crossovers

8Equivalently individuals: (a) who are age x at the start of calendar year t or (b) who attain
their x+ 1th birthday during year t.

9EI(i, t, x) is referred to by actuaries as the initial exposed to risk.
10Alternative approximations for E(i, t, x) were considered, but these resulted in only very small

differences compared with the formula used in this study.
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Figure 1: Left: Age-specific death rates, m̂(i, t, x) = D(i, t, x)/E(i, t, x), for Danish
males Groups 1 to 10 by age in 2012. Right: Partial period life expectancies (LE)
for Danish males Groups 1 to 10 from age 55, capped at age 95.

in the left-hand plot in Figure 1, especially at high ages, but the broad patterns
are still clear. We can also observe that relative differences in death rates between
subgroups are biggest at younger ages and smallest at very high ages.

We experimented with numerous ways of segmenting the population, but, however
we did it, we always ended up with a similar (or even narrower) spread of curves at
higher ages. This finding is in line with the compensation law of mortality (Gavrilov
and Gavrilova, 1979, 1991; see, also, Avraam et al., 2014) which postulates that
mortality rates for different populations tend to converge with age. This ‘law’ implies
that wealth and lifestyle-related factors have a lesser impact as we age, whilst other,
mainly genetic, factors become more significant. The narrowing gap with age is also
consistent with the findings of Waldron (2007), Cristia (2009) and Bosworth and
Burke (2014) for US males, and Office for National Statistics (2013) and Villegas
and Haberman (2014) for males in England and Wales.

It is also of interest to look at the variation in life expectancies between groups.
Here we choose to calculate partial period life expectancies using a maximum age of
95 to avoid the need to extrapolate beyond the maximum age in our dataset11 and
it is defined as the expected number of years survived from age x to age xu = 95

11Knowledge of death rates up to age 94 allows us to calculate survivorship up to exact age 95.
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conditional on having survived to age x, and assuming that mortality stays at the
same levels as in year t. This measure can be approximated as follows:

LE(t, x) ≈ 1

2
+

xu−1∑
y=x+1

Sp(t, x, y) +
1

2
Sp(t, x, xu),

where Sp(t, x, y) = exp
[
−
∑y−1

s=x m̂(t, s)
]

defines the observed period survival prob-
abilities.12 We can note the following. At age 55 (and the same holds for other
ages), there is a clear separation between observed partial period life expectancies
(LEs) in all years across all 10 subgroups (Group 1 has the lowest LE; Group 10
has the highest), even though we are using unsmoothed data. The gap between
Groups 1 and 10 narrows as age increases, reflecting the narrowing gap between
age-specific death rates observed in the left-hand plot in Figure 1. The gap between
observed LEs for Groups 1 and 10 widened between 1985 and 2012 at both ages 55
(6.9 years widening to 7.8 years) and 67 (4.0 widening to 5.3). Nevertheless, Group
1 improved at a somewhat faster rate than those in Group 2 (and, to a lesser extent,
3 and 4).

Similar observations have been found previously with Danish data by Brønnum-
Hansen and Baadsgaard (2012) using disposable income as a covariate. However,
these authors only report period life expectancy at a single age 0 and separate the
population into quartiles. By contrast, we have carried out a much more detailed
analysis using deciles rather than quartiles, partial period life expectancy over a
range of ages from 55 and up, and death rates at individual ages from 55 to 94. Our
conclusion is that the use of disposable income as the key metric could, as discussed
above, be improved upon significantly. Specifically, income, on its own, does not
achieve a satisfactory separation of the 10 subgroups across all ages and all years: a
problem that has now been resolved through the use of the A = W + 15Y affluence
index with lockdown at age 67. Our analysis of mortality across a wide age range
is important in the context of the intended applications. In particular, we seek to
model subpopulation death rates with a view to assessing how subgroups will evolve
over time relative to each other at all ages, and to assess the impact financially on
the providers of pensions and annuities.

The widening over time of the gap in life expectancy is not unique to Denmark and
can be observed elsewhere. The UK Office for National Statistics (2011) consider
life expectancies in England and Wales by occupation group and find a widening
gap between professional/managerial and unskilled manual workers; Cristia (2009)
considers US males and females subdivided by lifetime earnings and also finds a
widening gap over time; Tarkiainen et al. (2012) find an increasing gap in Finland
by income; and Mackenbach et al. (2003) find increasing gaps in six European
countries using other socio-economic measures.

12Partial life expectancy up to age 95 is only very slightly less than complete (untruncated) life
expectancy unless the current age, x, is quite high.
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2.3 Education

We also considered an individual’s level of education as an alternative covariate
(see, for example, Kitagawa and Hauser, 1968, Duleep, 1989, and, more recently,
Olshansky et al., 2012, and Sasson, 2016). For consistency with Mackenbach et al.
(2003) and partially with Brønnum-Hansen and Baadsgaard (2012), we subdivided
the population into three education levels as shown in Table 2.

Low education Primary and lower secondary education (ISCED levels 1, 2)
Medium education Upper secondary education (ISCED 3A, 3C, 4A)

(gymnasium or technical/vocational)
High education Tertiary education (ISCED 5, 6)

Table 2: Education levels.

It is important to note that for the Danish population, most individuals born before
1922 have no recorded level of educational attainment (that is, we have no reliable
education data for the first 31 cohorts in our ages 55-94, years 1985-2012 dataset).

We calculated two quantities: Age Standardised Mortality Rates (ASMR) for the
age range 30-59 using the 1976 European Standard Population for comparison with
Mackenbach et al. (2003); and partial period life expectancies (LE) from age 55 up
to age 90.13 Results are presented in Tables 3 and 4. We can see that, at both lower
ages (ASMR, Table 3) and higher ages (LE, Table 4), affluence is a much stronger
discriminator than education: that is, it produces a wider separation of the ASMR’s
and LE’s. This observation supports our choice of affluence as the first choice for
an analysis using a single covariate.

Age Standardised Mortality Rate
Group 1985 1995 2005
Low education 6.2 6.4 5.9
High education 4.0 2.8 1.9
Affluence group 1 11.2 10.2 7.4
Affluence group 10 3.1 2.5 1.5

Table 3: Age Standardised Mortality Rates (per 1000 person years) for ages 30-59
by subgroup and calendar year.

Within each birth cohort, levels of educational attainment will be stable after around
age 30 allowing straightforward cohort by cohort analysis of the impact of education
on mortality. But it must also be recognised that levels of educational attainment

13For high ages, LEs give a more meaningful view of the impact of education or affluence. We
use a maximum age of 90 (lower than the upper age of 95 in Subsection 2.2, and e.g. Figure 1)
because we do not have complete education data up to age 90, even in 2011.
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LE
Group 2011

Low education 22.9
High Education 26.6

Affluence group 1 20.9
Affluence group 10 27.4

Table 4: Partial period life expectancies (LE) from age 55 to 90.

have been rising steadily over time (see, e.g., Brønnum-Hansen and Baadsgaard,
2012, and Sasson, 2016), so the impact of having a tertiary education might be
different in an older cohort than a younger cohort where its occurrence will be more
common. For example, the lowest educated group might contain an increasing per-
centage of the most deprived in society, a group with higher mortality (Bound et al.,
2016).14 This shift would lessen the impact of underlying mortality improvements,
and separation of the two effects within the low education group might be difficult.

3 Modelling subpopulation mortality

Multi-population mortality modelling concerns the development over time of the
death rates in several populations. Let m(i, t, x) be the underlying age-specific
death rate for population i in year t for individuals aged x last birthday on the
first of January in the year of death. A standard hypothesis in multi-population
modelling is that the relationship between the death rates at given ages in two related
populations should not diverge over time: that is, the ratio m(i, t, x)/m(j, t, x), for
i 6= j, should remain stable over time. This stability condition is often referred
to as coherence, and further discussion and specific models can be found, in Li and
Lee (2005), Cairns et al. (2011), and Hyndman et al. (2013), whose models achieve
coherence through a careful choice of time series models for period effects. Related
approaches to multi-population modelling include those of Dowd et al. (2011; gravity
model) Jarner and Kryger (2011; SAINT model) and Kleinow (2015; Common Age
Effect model).

We propose the following gravity model of the CBD-X type for underlying age-
specific death rates in the 10 subgroups:

logm(i, t, x) = β
(i)
0 (x) + κ

(i)
1 (t) + κ

(i)
2 (t)(x− x̄) (2)

where i is the subgroup, t is the year and x is the age last birthday at the start of
the year. This is a variant in the style of Plat (2009) of the CBD model (Cairns et

14In other words, we need to recognise that the low education group is not homogeneous, and
that its internal mix changes over time.
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al., 2006) that adds a non-parametric age effect, β
(i)
0 (x), to the basic CBD model,

and models the log death rate rather than the logit of the mortality rate; see, also,
Hunt and Blake (2014). The κi1(t) terms capture changes in the level of mortality,
while the κi2(t) terms pick up changes in the slope of the log-mortality curve relative

to the baseline β
(i)
0 (x). The non-parametric age effect was found to be necessary to

preserve the mortality rankings between subgroups over the full range of ages from
55 to 94. Without it, we found that the mortality curves in individual years for
different subgroups would cross over at high ages in a way that was not consistent
with the crude age-specific death rates. As we discuss later, this model was found to
fit the 10 subpopulations of the Danish males aged 55 to 94 well without the need
for a cohort effect.

For the purpose of both fitting the model to historical data and for projecting, we
need to specify a stochastic model for the period effects. We propose the following:

κ
(i)
1 (t) = κ

(i)
1 (t− 1)− ψ

(
κ
(i)
1 (t− 1)− κ̄1(t− 1)

)
+ µ1 + Z1i(t) (3)

κ
(i)
2 (t) = κ

(i)
2 (t− 1)− ψ

(
κ
(i)
2 (t− 1)− κ̄2(t− 1)

)
+ µ2 + Z2i(t) (4)

where

κ̄1(t) =
1

n

n∑
i=1

κ
(i)
1 (t)

κ̄2(t) =
1

n

n∑
i=1

κ
(i)
2 (t).

As outlined below, equations (3) and (4) correspond to two underlying random walk
processes, κ̄1(t) and κ̄2(t) that govern mortality improvements at the national level,
with additional subgroup deviations from κ̄1(t) and κ̄2(t) that are mean reverting,
to prevent subgroups from diverging from each other. The random innovation terms
Zki(t) are multivariate normal with mean 0 and covariances

Cov (Z1i(t), Z1j(t)) =

{
v11 for i = j
ρv11 for i 6= j

Cov (Z2i(t), Z2j(t)) =

{
v22 for i = j
ρv22 for i 6= j

Cov (Z1i(t), Z2j(t)) =

{
v12 for i = j
ρv12 for i 6= j

with −1 < ρ < 1. Additionally, the Zki(t) are independent from one year to the
next.

The κ
(i)
1 (t) share a common drift, µ1, and the κ

(i)
2 (t) share a common drift, µ2, where

µ1 and µ2 need to be estimated. The components of equations (3) and (4)

−ψ
(
κ
(i)
1 (t− 1)− κ̄1(t− 1)

)
and − ψ

(
κ
(i)
2 (t− 1)− κ̄2(t− 1)

)
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represent gravity effects (similar to Cairns et al., 2011, and Dowd et al., 2011a)
between subgroups that prevent individual subgroup death rates from drifting away
from the overall trend, with 0 < ψ < 2 to ensure stationarity.

From equations (3) and (4), it is straightforward to show that (κ̄1(t), κ̄2(t)) is a
bivariate random walk with drift (µ1, µ2)

′ and one-step-ahead covariance matrix

1 + (n− 1)ρ

n

(
v11 v12
v12 v22

)
.

Next, define

∆1i(t) = κ
(i)
1 (t)− κ̄1(t). (5)

Then, the ∆1i(t) are correlated AR(1) processes with AR(1) parameter 1− ψ, that
revert to 0, add up to 0, and which are independent of κ̄1(t). Similar properties hold

for the ∆2i(t) = κ
(i)
2 (t)− κ̄2(t).

We have deliberately chosen to have a single short-term, contemporaneous correla-
tion parameter, ρ, and a single gravity parameter, ψ, to keep the model simple and
robust, as well as to benefit from computational efficiencies. This parameterisation
implies that the correlations in log death rates between all pairs of subgroups are
all the same.

For projecting, we are interested in assessing correlations between the subgroups.
We can remark that the T -year-ahead correlations between subgroups will depend
on ρ and ψ as well as the vij.

We will move on now to discuss how parameters in the model are estimated.

Both latent state variables and process parameters were estimated using Bayesian
methods.15 These methods provide a rigorous and coherent framework for finding
point estimates and also for assessing parameter uncertainty. Additionally, they
allow us to mitigate problems that arise as a result of small population sampling
recently highlighted by Haberman et al. (2014) and developed further by Chen et
al. (2015).16

We seek to estimate the Bayesian posterior distribution for β (representing all of

the β(i)(x)), κ (representing all of the κ
(i)
j (t)) and φ (representing all of the process

parameters governing the dynamics of the κ
(i)
j (t)), given the detailed information, D,

about deaths by subgroup, year and age. The posterior distribution is proportional
to

f1(D|β, κ, φ)f2(β, κ|φ)f3(φ)

15Estimation was carried out using the statistics package R using the authors’ own code.
16Specifically, they find that small populations introduce a significant upwards bias in the volatil-

ity of the period effects in a stochastic mortality model estimated using standard maximum likeli-
hood (ML). In this study, the affluence based subgroups are about 1% of the size of the England
& Wales (EW) population. Chen et al. (2015) compare populations that are 100% and 1% of the
size of EW, and find there is significant bias in ML-based projections for the latter.
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where f1 is the probability of observing D(i, t, x) deaths given β, κ, φ, and the
exposures, f2 is the density function for β and κ given φ, and f3 is the prior density
for the process parameters, φ.

f2(β, κ|φ) is based on the multivariate time series structure for the κ
(i)
j (t). In our

formulation, β plays no role in f2: that is, our prior assumption is that the β
(i)
0 (x)

are independent of each other and have an improper uniform prior distribution; and
we let the deaths data drive estimation of the β

(i)
0 (x). For the given combination of

equations (2), (3) and (4), we only need two identifiability constraints to uniquely
identify the posterior density. We choose to fix κ̄1(1) = 0 and κ̄2(1) = 0. Beyond
these constraints, we also need a distributional assumption for ∆(t) = {∆ji(t) : j =
1, . . . , 10; i = 1, 2} (equation 5) at time t = 1. We assume the stationary distribution
for ∆(1).17

In practice, f1 depends only on D, β and κ, and not on φ. For modelling the condi-
tional distribution of the deaths given κ, we use conditionally independent normal
distributions for the logD(i, t, x) (conditional on κ) with mean log m̂(i, t, x)E(i, t, x)
and variance 1/Dobs(i, t, x), where Dobs(i, t, x) is the observed number of deaths. The
conditional log-normal is used as an approximation to the usual conditional Poisson
distribution for the D(i, t, x). The use of 1/Dobs(i, t, x) is an approximation to the
variance of the log of a Poisson random variable with mean m̂(i, t, x)E(i, t, x). It is,
of course, self-referential, but it works well in practice and can be considered as an
application of Empirical Bayes. For further discussion, see Cairns et al. (2016).

The use of the log-normal for deaths in combination with pre-specified variances
plus the given time series model for κ results in a log-likelihood function that is
quadratic in the latent state variables, β

(i)
0 (x), κ

(i)
1 (t) and κ

(i)
2 (t). An advantage of

this specification is that when we use Markov chain Monte Carlo (MCMC) to sample
from the posterior distribution for the model parameters, we can use computation-
ally efficient Gibbs sampling from the conditional posterior distributions (i.e., the

multivariate normal) to update the β
(i)
0 (x), κ

(i)
1 (t) and κ

(i)
2 (t).

The log-likelihood for ρ does not lead (in combination with any sensible choice of
prior) to a simple conditional posterior distribution for ρ, however. To remedy this
shortcoming, we use the Metropolis-Hastings (MH) algorithm for updating ρ instead
of the Gibbs sampler. Estimation of the posterior distribution for ψ also uses the
MH algorithm, for similar reasons.18

17Since 0 < ψ < 2 and the Zki(t) are multivariate normal, the stationary distribution of ∆(t)
required for ∆(1) exists and is also multivariate normal.

18 For an introduction to MCMC, the MH algorithm and the Gibbs sampler, see Gilks et al.
(1996).

The MCMC algorithm simulates a Markov chain, θ(t), where θ is the vector of latent state
variables (the age effects and historical period effects) and the process parameters. After the
‘burn-in’ period, the empirical distribution of the observed (simulated) θ(t) series converges to
the posterior distribution for θ. In this study, 50,000 iterations after the burn-in period were
considered to be sufficient for this convergence. Following standard practice (Gilks et al., 1996)
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The parameters v11, v22 and v12 are also estimated, but in a constrained way. Specif-
ically, vij = νv̂ij, where the v̂ij are specified constants and the scalar parameter,
ν > 0, has to be estimated. The prior point estimates of v̂11, v̂22 and v̂12 exploit
Empirical Bayes and are based on estimated values for the total Danish population.
We assume, a priori, that the random walk processes for each of the 10 subpopula-
tions are, individually, neither more nor less volatile than the national population.

Uniform prior distributions are assumed throughout apart from:

• We selected a Beta prior for ρ to ensure it remains in the range (0, 1). We tried
both Beta(2, 2) (as weak as we could reasonably go) and Beta(3, 3) priors. Both
are quite uninformative and produce similar, although not identical, results for
the posterior for ρ.

The posterior distribution for ρ is centred around 0.45 with a standard de-
viation of about 0.1, so the influence of the prior in the tails should not be
critical.

In the results that follow we use the weaker, less-informative Beta(2, 2) prior.

• We also selected a Beta prior for ψ to ensure it remains in the range (0, 1).
We tried both Beta(2, 2) and Beta(3, 3) priors with similar, but not identical,
results for the posterior for ψ.

The posterior for ψ is quite skewed towards 0 and so the choice of the prior
parameters can, potentially make a difference. In fact, the Beta(2, 2) (which
pushes ψ less strongly away from 0) produces a posterior for ψ that is a bit
closer to 0 than the Beta(3, 3) prior.

In the results that follow, we use the weaker, less-informative Beta(2, 2) prior.

• An inverse gamma prior was chosen for ν, centred around 1.19 Since the log-
likelihood function is quadratic in relevant latent state variables, ν has an
inverse gamma distribution for its conditional posterior distribution.

Sensitivity of key model outputs to the choice of priors for ρ and ψ is discussed later
in Section 5.

, we then record one out of every 50 of these to reduce the correlation between the consecutive
recorded observations to low levels. We denote this recorded sequence by θ1, . . . , θ1000.

19Specifically, the prior has shape parameter 11 and rate parameter 10, giving a mean of 1 and
a standard deviation of 1/3.
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Figure 2: Fitted age-specific death rates, m(i, t, x), for Danish males Groups 1
to 10 using the CBD-X model, with subgroupings based on the affluence index
(wealth+15×income) and lockdown at age 67. Top row: by age in years 1985 and
2012. Bottom row: by year for ages 60 and 80.
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Figure 3: Fitted age-specific death rates, m(i, t, x), for Danish males Groups 1 to
10 using the CBD-X model, but with subgroupings based on income only and no
lockdown at age 67.
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Figure 4: Partial period life expectancy (LE) for Danish males in Groups 1 to 10 for
ages 55 (left) and 65 (middle) and 75 (right). Lines: LEs based on fitted age-specific
death rates. Points: LEs based on observed age-specific death rates.
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Figure 5: Estimated age and period effects for the 10 subpopulations.
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4 Analysis of historical death rates

4.1 Fitted age-specific death rates

Figure 2 shows fitted age-specific death rates for the years 1985 and 2012 across all
ages and for ages 60 and 80 across all years, and can be compared to the observed
age-specific death rates in Figure 1. The fitted rates smooth out the noise very
considerably and achieve a crisp distinction between each of the subgroups. At the
same time, this clarity is achieved without losing any of the essential patterns and
characteristics underpinning the observed rates. From these plots of smoothed fitted
age-specific death rates (and others not included here), we can confirm the findings
we first observed from plots of observed rates:

• Falling death rates over time at all ages.

• A very wide gap in age-specific death rates between the least and most affluent
at younger ages, and a narrower gap at higher ages.

• Relative to 1985 age-specific death rates, improvements have been largest
amongst the most affluent and at younger ages (resulting in a widening life
expectancy gap).

For comparison with previous grouping methods, equivalent plots are provided in
Figure 3, where subgroups are based on income only with no lockdown at age 67.
The step change in the age-80 plot in the fitted rates around 1995 for Group 1 that
is evident in Figure 3 but not Figure 2 is most likely to be the result of changes in
the amounts and treatment of social assistance and old-age pensions in the previous
year.20 After 1995, the subgroup rankings are very poor especially after retirement.
Similar plots have been analysed for income only with lockdown at 67, and the
affluence index (wealth+15×income) with no lockdown. Out of all the numerous
experiments that we conducted, only affluence with lockdown at 67 produces a con-
sistent ranking across all years and all ages.

Figure 4 plots the development of partial period life expectancy (LE) over time for
ages 55, 65 and 75 for each of Groups 1 to 10. The dots show LEs derived from ob-
served age-specific death rates, while the lines show LEs based on fitted age-specific
death rates. We can see that the fitted LEs produce a smoother progression from
year to year compared to the crude LEs, without losing the essential features of
the crude LEs. More importantly, we see that the fitted process results in greater

20The changes in the reporting of income in 1995 have resulted in a high proportion of individuals
in lower groups being reallocated to other groups, with Group 1 losing many individuals in poor
health and gaining many others (perhaps with substantial personal savings to top up their low
reported income) in relatively good health.
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consistency from year to year between the 10 subgroups, including improved sep-
aration. In line with earlier findings on the crude LEs, fitted LEs exhibit a wider
spread at younger ages and a slight widening of spreads between subgroups over the
period 1985 to 2012. These plots highlight, in more meaningful terms, the wide gap
between the rich and poor, even in a country with a strong health care and social
security system.

This can be compared with US data. Waldron (2013) considers deciles for fully-
insured US males based on lifetime earnings. At age 65, Waldron finds a wider gap
between Groups 1 and 10, but when one compares Groups 2 to 10, the differences
between groups are quite similar to the results for Denmark; indeed the gap between
Groups 2 and 10 is wider than in the US. One might tentatively conclude, therefore,
that the more generous social security system in Denmark benefits primarily the
least affluent 10%, in comparison with the US.

Point estimates for fitted age and period effects – the underlying drivers of Figures
2 and 4 – are plotted in Figure 5. The base mortality tables (left-hand plot), repre-

sented by the β
(i)
0 (x), provide the basis for the rankings of the different subgroups

in individual years. The κ
(i)
1 (t) period effects (middle plot) drive changes in the

overall level of mortality. The individual series all follow a consistent downwards
trend (of generally improving mortality) that steepens after around about 1995.21 22

However, we can see that κ
(10)
1 (t) starts higher and falls more steeply than is the

case with the other subgroups: a feature that supports the earlier observation that
the gap between the richest and poorest has been widening, potentially, at all ages.

Changes in the κ
(i)
2 (t) (right-hand plot) indicate how the slopes of the individual

mortality curves have been changing. These have tended to rise over time (by
varying amounts) indicating that mortality has improved at a faster rate at lower
ages than at higher ages. The biggest changes have been amongst Groups 6 to 10,
with Groups 1 to 5 lagging in a variety of ways over different time periods,with the
interpretation that the widening of the gap between the more and less affluent has
been more pronounced at younger ages, as was observed in Figure 2.

4.2 Model validation

The stochastic model was subjected to a number of in-sample and out-of-sample
model validation tests. Standardised residuals were not found to exhibit any clus-

21The prominence of the kink around 1995 observable in Figures 2, 4 and Figure 5 is most likely
due to 1995 being a year with randomly high mortality, making what is probably a more gradual
increase in mortality improvement rates look more sudden, i.e., like a kink. A detailed analysis
and explanation for the change in trend is beyond the scope of this paper. However, Christensen
et al. (2010) point to changes in major lifestyle risk factors such as smoking, alcohol consumption
and exercise occurring in Denmark around this time.

22The same kink can be observed in Figure 4, although the scale makes it slightly less obvious.
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Figure 6: Fan charts for age-specific death rates at ages 65 and 75 for Danish males
Groups 1 to 10. The charts show parameter uncertainty in the fitted age-specific
death rates up to 2012, and combined parameter uncertainty and process risk from
2013. The lower and upper edges of the fans correspond to the 5% and 95%
quantiles, respectively.

tering or obvious cohort effects and had the right level of variability to suggest a
good in-sample fit, consistent with model assumptions. Estimates of age and period
effects were found to be robust relative to the choice of estimation period. And
out-of-sample experience was found to be consistent with projections. For further
details, see Appendix A.

5 Future mortality and survivorship

In this section, we will consider simulated future mortality. Bearing in mind that
different applications make use of different quantities, we will present simulation
results for both age-specific death rates and cohort survival probabilities.

5.1 Projecting future age-specific death rates

We begin by projecting future age-specific death rates. The results in this section,
unless otherwise stated, include full parameter uncertainty. This means that we
draw historical values for the latent state variables (the β

(i)
0 (x) and the κ

(i)
j (t)) and

the process parameters (ρ, ψ etc.) at random from the MCMC output, and then
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use the final year’s (2012) κ
(i)
j (t) plus the selected process parameters to generate

each stochastic projection scenario.23

Fan charts for the forecast age-specific death rates for ages 65 and 75 are plotted in
Figure 6. The relative positions of the fans stay fairly fixed over the period 1985 to
2012, although the fans gradually widen after 2013, reflecting the greater uncertainty
in projected future rates.

The correlations between subgroup mortality will be of interest to pension plans and
insurers as a key component of their overall risk assessment (see, e.g., Haberman
et al., 2014). Forward correlations over varying time horizons are considered in
Figure 7. They rise steadily the further into the future we look. Initially, the
levels of the curves reflect the short-term contemporaneous correlations between the
period effects. As the projection horizon lengthens, the shape reflects mean reversion
towards the ‘national’ random walk (equations 3 and 4).

We can also see that Group 10 tends to have lower correlations than Group 5, which,
in turn, has lower correlations than Group 1. This is because Group 10 death rates
are lower than Group 1 and so, in relative terms, contribute less than 10% of the
risk to the national average.

The level and shape of the correlation curve depend on whether or not we include
uncertainty in the underlying process parameters (see, e.g., Cairns, 2013, and Cairns
et al., 2014). We investigate this issue in Figure 8 (left-hand plot) for Group 5 by
way of illustration. This plot shows correlations under three experiments:

• Full Parameter Uncertainty (Full PU): full allowance for uncertainty in all
process parameters and latent state variables in line with the posterior distri-
bution.

• Partial PU#1: the drift parameters µ1 and µ2 are fixed at their posterior
medians. All other elements of the posterior distribution remain random.

• Partial PU#2: the process parameters µ1, µ2, ρ, ψ and ν are fixed at their
posterior medians.

From Figure 8, we see that the curves for Partial PU #1 and #2 are almost in-
distinguishable indicating that uncertainty in ρ, ψ and ν has little impact on the
empirical correlations. For each parameter, uncertainty around its median can push
the correlation up or down depending on whether the deviation from the median is

23

Let M be the number of independent scenarios to be generated. We first generate I1, . . . , IM
i.i.d. random variables uniformly distributed on the integers 1, . . . , 1000. Building on the remarks
in Footnote 18, scenario k then uses the vector θIk from which we extract the historical values

of the β
(i)
0 (x), κ

(i)
j (t), while the process parameters also extracted from θIk provide the basis for

simulating future values of the κ
(i)
j (t). For further details, see Cairns et al. (2011).
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positive or negative. By contrast, moving from Partial PU#1 to Full PU results in
a big change. Uncertainty in µ1 and µ2 pushes up uncertainty in κ̄1(t) and κ̄2(t),
with a corresponding impact on uncertainty in subgroup death rates. But, since
each subgroup has a common dependency on κ̄1(t) and κ̄2(t), correlations rise, in
line with the results in Cairns (2013) and Cairns et al. (2014).

Returning to Figure 7, we can also consider correlations between two stylised pen-
sion plans and the national population. The first (“white-collar”) pension plan is
assumed to be made up of equal numbers of Groups 8, 9 and 10: the high earners.
The second (“blue-collar”) pension plan is made up of equal numbers of Groups 2, 3
and 4. We exclude Group 1 from the analysis as it potentially includes unemployed
people. Both plans have much higher correlations with the national population than
any of Groups 1 to 10 separately, reflecting the fact that some of the idiosyncratic
risk in each of the three contributing subgroups has been pooled. We also see that
the blue-collar plan has higher correlations than the white-collar plan, for the same
reason that Group 1 had higher correlations than Group 10 above.

It is noteworthy that the correlation term structure for the white-collar plan is
similar to that for UK assured lives both in terms of level and shape (see the UK
Continuous Mortality Investigation of Assured Lives versus England & Wales males
examined in Dowd et al., 2011, Figure 13).

5.2 Sensitivity to the choice of prior distribution

In Figure 8 (right), we pick out Group 5, by way of example, and investigate how
sensitive the correlation term structure is to changes in the prior distributions for ρ
and ψ. Each has either a Beta(2, 2) or Beta(3, 3) prior distribution as outlined in
the legend. In each case, although differences can be seen, the three sets of priors
produce very similar results in each of the plots.24 Although this experiment is a
limited one, it does suggest that our estimates of the correlations over a range of
time horizons are robust relative to the choice of prior.

5.3 Survivor indexes

As an alternative to death rates, we can also look at cohort survival probabilities. A
general cohort survivor index, S(t, x), represents the probability that an individual
aged exactly x (an integer) at time 0 (the beginning of calendar year 1) survives for
t years to age x + t, given the knowledge of how the underlying age-specific death

24These differences are small in comparison with the case that allows for the inclusion of param-
eter uncertainty in µ1 and µ2 – see Figure 8 (left).
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and the total population, cor (m(i, t, x), m̄(t, x)), for age 75. Simulations incorporate
full parameter uncertainty. The dotted line at a correlation of 0.9 is for reference
only.
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Figure 8: Empirical correlations between Group 5 and the total population,
cor (m(i, t, x), m̄(t, x)), for age 65, showing sensitivity to changes in inputs and as-
sumptions. Left: impact of different levels of parameter uncertainty: Full parameter
uncertainty (PU); PPU #1 has µ1 and µ2 fixed at their posterior medians; PPU #2
has µ1, µ2, ρ, ψ and ν fixed. Other elements of the posterior distribution remain
random. Right: the three lines show sample correlations under three different com-
binations of prior distributions for ρ and ψ.
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rates, m(t, y), evolve from time 0 to t. Thus25

S(t, x) =
t∏

u=1

exp (−m(u, x+ u− 1)) .

Correspondingly, we have survivor indexes, S1(t, x), . . . , S10(t, x), for each of Groups
1 to 10. Now suppose that a pension plan (“X”) consists of a mixture of Groups
1 to 10 with weights w1, . . . , w10 (with

∑
iwi = 1; different ages might have differ-

ent weights). Special cases of X include the stylised white- and blue-collar plans
discussed above. The plan X then has its own cohort survivor index SX(t, x) =∑10

i=1wiSi(t, x). Lastly, the total population from age x = 67 has survivor index
STOT (t, x) =

∑10
i=1 Si(t, x)/10.

We consider the correlation between survivor indices for individual subgroups, pen-
sion plans and the total population from two perspectives in Figure 9. The plots
include a third stylised plan (“mixed”, “M”) that has weights proportional to the
vector (0, 0, 1, 2, 3, 4, 5, 6, 7, 8), which might reflect either growing numbers of indi-
viduals in more wealthy subgroups, or more equal numbers with the weights re-
flecting the growing amounts of pensions. Figure 9, left, looks at the effect of the
time horizon, and we can see correlation curves that mimic the shape of those in
Figure 7. Unlike the death rates, the survival index correlations depend on multiple
death rates from prior years. Additionally, we see Groups 2 and 9 cross over around
2027. Initially, the less affluent subgroups contribute more to the uncertainty in
STOT (t, x). In later years, however, the less affluent subgroups will have died off
much more quickly, so that they contribute less to STOT (t, x), while, e.g., Group 9
contributes relatively more.

There is, however, a much more general ‘term-structure’ of survivorship correlation,

cor (Si(ti, xi), Sj(tj, xj)) ,

for any two populations i and j and potentially different time horizons and ages. In
some applications, it is important that this term structure takes a plausible form.
By way of example, we take again, i = X = 2, 9, B,W,M and j = TOT , with
ti = tj = 10. The right-hand plot in Figure 9 looks at how correlations change as
we vary the ages in the two populations. Specifically, we keep the initial age (xj) for
the total population fixed at 67, and calculate the time-10 correlation with different
plans, X, over a range of ages (x)

cor (SX(10, x), STOT (10, 67)) .

We see that choosing matching ages makes a big difference in the correlations: co-
horts in the two populations that are far apart in terms of age are less strongly
correlated.

25We use the approximation that, for an individual aged exactly integer x at the start of year t,
the probability of death during year t is q(i, t, x) = 1− exp (−m(i, t, x)).
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These correlation plots help us to identify a number of desirable criteria from the
perspective of biological and socio-economic reasonableness (see, e.g., Cairns et al.,
2009, and Haberman et al., 2014). Specifically, a multi-population mortality model
should ideally satisfy the following:

• Correlations between death rates or between survivor indexes for different pop-
ulations should vary smoothly with the time horizon and should be increasing
with the time horizon if it is felt that mean reversion between populations is
itself a desirable element of the model, and correlations should not be exactly
equal to 1 without good reason.

• For a fixed time horizon, correlations between populations should vary smoothly
with the reference ages of both populations, and correlations should not be
exactly equal to 1 without good reason.26

It is difficult in general terms to define what the boundary is between what would
be a reasonable and unreasonable plot, and, as in some previous cases (e.g., Cairns
et al., 2009), each plot for each model needs to be considered on its own merits.
From time to time, a model produces a plot that is clearly unreasonable for reasons
that can only be inferred from the plot itself rather than anticipated in advance.27

6 Extensions and further work

This study has focused on older male mortality in Denmark. For females, we obtain
similar results with the exception that the affluence index is less effective at pro-
ducing the anticipated ranking amongst Groups 1, 2 and 3. Group 1, in particular,
seems to have rather lower mortality than Groups 2 and 3, perhaps suggesting that
reported levels of income and wealth do not reflect the true level of affluence of the
females in Group 1. Further work needs to be done on female mortality, although
we can report that good rankings can be observed amongst Groups 4 to 10.

We have not attempted to explore the many other covariates and pieces of informa-
tion within the SD database. The work could, therefore, be extended in a number
of ways:

• We could look at the explanatory power of including other covariates, such
as education (previously discussed), marital status, occupation and area of

26That is, correlations between different socio-economics groups should be less than 1 at all ages
and time horizons.

27For example, consider the Li and Lee (2005) model: logm(i, t, x) = αi(x) + B(x)K(t) +
βi(x)κi(t). For different populations i and j, it is possible to have βi(xi) = βj(xj) = 0 for
significantly different ages xi and xj . We then have, for all t, cor (logm(i, t, xi), logm(j, t, xj)) = 1.
This is neither plausible nor realistic when correlations are (significantly) less than 1 at other ages.
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Figure 9: Left: Empirical correlations between SX(t, 67) and STOT (t, 67) for t =
2013, . . . , 2037. Right: Correlations between SX(10, x) and STOT (10, 67) for x =
55, . . . , 74. In both plots, results for Groups X = 2, 9, blue collar, white collar, and
mixed pension plans are plotted.

residence. In each case, we need to think carefully about sample sizes to allow
us to elicit statistically significant results.

• We could look at how individuals migrate between different affluence sub-
groups. From an insurance and pension perspective, it is of most interest to
determine the probabilities of ending up in each of Groups 1 to 10 at age 67.

• We could consider stochastic models that offer an alternative to the random
walk with constant drift, e.g., we might adopt the approach of Liu and Li
(2017).

• We could consider cause-of-death data (e.g., Arnold-Gaille and Sherris, 2016)
and investigate whether affluence, as a covariate, has a greater impact on some
causes of death. For example, Case and Deaton (2015) attribute stagnating
mortality in the midlife, white, non-Hispanic, US population primarily to in-
creasing mortality from suicide, drug and alcohol poisoning, and chronic liver
diseases and cirrhosis.

• We could consider how to model mortality above age 95, in a way that exploits
the convergence in death rates at high ages observed in Figure 2.

There are potentially many other “big data” analyses that could be conducted,
including cohort-based analyses where we track individuals over time and assess the
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impact of various risk factors on mortality including all of those discussed above.
However, many of these might be very specific to the detailed nature of the SD
database, making it difficult to apply the results in other contexts (e.g., using the
more limited data available to an annuity provider).

7 Summary

Understanding socio-economic differences in mortality is important both to policy-
makers planning and projecting state pension budgets and to private sector providers
of mortality-linked products, such as pensions and annuities.

We have been able to explain mortality differences in older Danish males at a much
finer level of granularity than hitherto attempted using income or education as a
covariate, namely at the decile level, and for single ages, using just a single co-
variate to allocate males to a subgroup. The index, which we call the affluence
index, is based on income and wealth data available on the Statistics Denmark
database. The male population aged 55 to 94 in years 1985 to 2012 was subdivided
into 10 subgroups, based on the relative value of their affluence index (measured as
wealth+15×income). Prior to age 67, they would be allocated to a particular sub-
group annually, based on the value of the index in the previous year. In their final
year before reaching age 67, the state pension age in Denmark for some of the pe-
riod under investigation, they would be allocated to a subgroup and remain in that
subgroup for the remainder of their lives, a procedure we call lockdown. Lockdown
at a particular age combined with the affluence index was found to be critical for
ensuring a consistent ranking of subgroup death rates across all years and all ages.
The use of affluence-based deciles was found to reveal greater levels of inequality
than, say, quartiles.

We also introduced a flexible multi-population stochastic gravity-type mortality
model for both fitting death rates and projecting future death rates. The struc-
ture of the model combined with the gravity effect links group-specific mortality
improvements to the national trend. The model allows for some flexibility in the
relationship between the 10 subgroups, but also preserves the subgroup rankings
over different time horizons.

Model-based smoothing was employed to dampen the effect of sampling variation
in the underlying crude age-specific death rates, and we used these smoothed death
rates to rank the 10 subgroups at each age and in each year. This smoothing was
achieved without losing any of the essential patterns and characteristics underpin-
ning the crude age-specific death rates. Subgroup rankings were again consistent
and clear across all ages and years, with a very wide gap between the most and least
affluent at young ages, narrowing significantly with age, but widening slightly over
the period 1985 to 2012.
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Another key element of the paper was an analysis of how correlations between sub-
groups and the national population change as the projection horizon lengthens. We
looked at both projected death rates and survival rates. Correlations were found
to start at moderate levels 1 year ahead (in the range 0.5-0.6) and climb quickly
to very high levels (over 0.8), especially for populations that comprise a mixture
of individuals across a range of the 10 subgroups modelled. Amongst other things,
knowledge of this term structure of correlation is important in some financial appli-
cations where risk management strategies will be more effective if correlations are
higher.

Our paper provides important general lessons for researchers with other datasets
who are interested in modelling socio-economic differences in mortality at high ages
at a fine level of granularity:

• It is possible with to generate clear and consistent rankings of death rates at all
ages down to at least the decile level using just a single, well-chosen covariate
to allocate individuals to a particular subgroup.

• That covariate is likely to be some measure of the relative affluence of the
individuals in the dataset and will involve some combination of the wealth
and income available to the individual – this is intuitively appealing and is
obviously preferable compared to looking at income alone which most previous
studies have concentrated on. It is also superior to education on its own.

• It is likely that, in order to preserve the rankings across ages and over time
(including future projections), there will need to be a lockdown at a certain
age – in other words, we found that individuals could switch between decile
subgroups prior to the lockdown age without violating the subgroup rankings,
but they needed to be locked in to a particular subgroup once they reached a
certain age in order to preserve the subgroup rankings at higher ages.

• The age at which lockdown happens might well be related to the age at which
individuals retire – this also makes intuitive sense: individuals have much more
flexibility to change their labour market behaviour (and hence their relative
affluence) before retirement than after.

• It is possible to smooth subgroup death rates by fitting a multi-population
stochastic gravity-type mortality model. Fitting this model has the benefit of
reducing the effect of idiosyncratic mortality risk in small populations and can
then be used to make mortality projections, with the gravity effect helping
preserve subgroup rankings.

• Correlations between subgroups and the national population rise with the time
horizon and are especially high for subgroups that contain a diverse mixture
of socio-economic groups, such as in a large pension plan.
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A Model validation

A.1 Standardised residuals

Standardised (Pearson) residuals based on the Poisson model for deaths are defined
as

ε(i, t, x) = (m̂(i, t, x)−m(i, t, x)) /
√
m(i, t, x)/E(i, t, x).

If the model fits well, then the ε(i, t, x) should be approximately i.i.d. standard
normal. Heat plots of these (see, e.g., Cairns et al., 2009) for the 10 affluence groups
are provided in Figure 10 using the posterior mean for the m(i, t, x). As a graphical
diagnostic, each of these plots looks almost completely random, with no systematic
clustering, and hence consistent with the independence criterion. Additionally, (a)
the ε(i, t, x) have mean −0.07 and variance 1.004, and (b) a QQ plot of the residuals
against a standard normal is reasonably linear with only marginal evidence of a fat
tail (kurtosis = 3.14).

Overall, these results show that, although the fit is not perfect, it is very much
better than can typically be achieved for some other populations or models (see,
e.g., Cairns et al., 2009, Section 6.1.2). This finding allows us to conclude that the
model does provide us with a satisfactory in-sample fit over the period 1985-2012.

A.2 Robustness

We tested for robustness of parameter estimates, following Cairns et al. (2009).
Parameter estimates using data from three periods: 1985-2012; 1995-2012; 1995-
2004. By way of example, results for Group 6 are plotted in Figure 11. We can see
that the broad shape of each of β

(6)
0 (x), κ

(6)
1 (t) and κ

(6)
2 (t) is largely unchanged in the

years where estimates overlap. The approximate parallel shifts in κ
(6)
1 (t) and κ

(6)
2 (t)

are the artificial result of the constraint that κ̄1(t) = κ̄2(t) = 0 in the first year of
observation (1985 or 1995). The same constraints result in a small shift (from the

κ̄1(t) constraint) and a tilt (from κ̄2(t)) in the β
(6)
0 (x) curves. Based on this limited

test, there is no evidence to suggest that the model fit is not robust.

A.3 Optimal historical calibration period

For out of sample backtesting, we need, first, to choose an historical period (not
including the most recent years) to which the model is calibrated. We then simulate
from the year after the end of the calibration period up to the most recent year that
has been actually observed and compare these with the forecasts. To choose the
best calibration period, we follow the approach of Booth et al. (2002). We focused
on the posterior means of the fitted κ̄1(t), this being the main driver of uncertainty
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Figure 10: Plots of standardised (Pearson) residuals, ε(i, t, x), for affluence groups
1 to 10. Deep orange: ε > 0, close to 0. Light orange: ε > 0, further from 0. Deep
blue: ε < 0, close to 0. Light blue: ε < 0, further from 0.



39

60 70 80 90

−
5

−
4

−
3

−
2

−
1

Age, x

β 0
(x

)
Group 6; Beta_0(x)

1985 1995 2005
−

0.
5

−
0.

3
−

0.
1

0.
0

0.
1

Year, t

κ 1
(t)

Group 6; Kappa_1(t)

1985 1995 2005

−
0.

01
0.

00
0.

01
0.

02
0.

03

Year, t

κ 2
(t)

Group 6; Kappa_2(t)

Figure 11: Point estimates of age and period effects for Group 6. Left: β
(6)
0 (x).

Middle: κ
(6)
1 (t). Right: κ

(6)
2 (t). Solid lines: values based on 1985-2012 calibration.

Dashed lines: 1995-2012. Dot-dashed lines: 1995-2004.

in the level of mortality in all groups. Over the full period 1985-2012, we observe a
change in trend around 1995 (see Figure 5 for the individual κ

(i)
1 (t)). Booth et al.

(2002) remark that trend changes can, and do happen (e.g., in Australia) and they
propose a method for choosing the optimal start date for calibration. By directly
examining the κ̄1(t) (rather than the individual death counts in addition), we found
the optimal start date to be 1995.

A.4 Out-of-sample backtesting

Following Lee and Miller (2001) and Dowd et al. (2010), we compare out of sample
projections of partial period life expectancy (LE) from age 55 based on a model
calibration using data from 1995 to 2004. Results are presented in Figure 12. Grey
fans show the out-of-sample projections of the LE with no allowance for sampling
variation. Red fans show the outcome for LEs based on the posterior distribution for
the underlying death rates. Blue dots show the outcome for LEs based on observed
mortality (i.e. including sampling variation). The actual outcomes (red fans) for
the 10 groups look quite reasonable, with some groups above and some below their
central projection.
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Figure 12: Fan charts of historical and projected partial period life expectancy (LE)
from age 55 for each of affluence groups 1 to 10. Grey fan: credibility intervals (5%
to 95% quantiles) for underlying LE (historical and projected) using data from 1995
to 2004 and simulated mortality from 2005 to 2012. Red fan: credibility intervals
using data from1995 to 2012. Blue dots: empirical LEs using observed mortality.


