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ABSTRACT

Estimation of rates of onset of rare, late-onset dominantly inherited genetic
disorders is complicated by: (a) probable ascertainment bias resulting from the
‘recruitment’ of strongly affected families into studies; and (b) inability to iden-
tify the true ‘at risk’ population of mutation carriers. To deal with the latter,
Gui & Macdonald (2002a) proposed a non-parametric (Nelson-Aalen) esti-
mate A(x) of a simple function A(x) of the rate of onset at age x. The func-
tion A(x) had a finite bound, which was an increasing function of the proba-
bility p that a child of an affected parent inherits the mutation and o the
life-time penetrance. However if A(x) exceeds this bound, it explodes to infinity,
and this can happen at quite low ages. We show that such ‘failure’ may in fact
be a useful measure of ascertainment bias. Gui & Macdonald assumed that

=1/2 and ¢ =1, but ascertainment bias means that p >1/2 and ¢ # 1 in the
sample The maximum attained by A(x) allows us to estimate a range for the
product po, and therefore the degree of ascertainment bias that may be pre-
sent, leading to bias-corrected estimates of rates of onset. However, we find that
even classical independent censoring, prior to ascertainment, can introduce
new bias. We apply these results to early-onset Alzheimer’s disease associated
with mutations in the Presenilin-1 gene.
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1. INTRODUCTION

1.1. Dominantly Inherited Gene Mutations

A few rare, but important, diseases of adulthood are caused by dominantly
inherited mutations in a single gene; for example Huntington’s disease (HD),
early-onset Alzheimer’s disease (EOAD) or familial breast cancer (BC). The age
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at onset may be highly variable, often falling between 20 and 60 years, when
people are working, raising families and possibly seeking insurance cover, so
these disorders present social and ethical, as well as medical, problems.

In this paper we focus on EOAD. This can be caused by mutations in any
one of three genes (more may yet be discovered) called Presenilin-1 (PSEN-1),
Presenilin-2 (PSEN-2) and Amyloid Precursor Protein (APP). PSEN-1 muta-
tions are highly likely to lead to EOAD, and studies of enough families have
been published to allow rates of onset to be estimated.

A dominantly inherited disorder results from a mutation that triggers a
deleterious process in some organ(s), so that inheriting just one copy of the
mutated gene from either parent is sufficient to cause disease. If the process is
of slow build-up (such as the accumulation of amyloid plaques in the brains
of Alzheimer’s disease (AD) sufferers) then disease onset may be delayed until
well into adult life.

If the mutation is rare, we can ignore the small probability that both parents
carry it, or that either parent carries two copies of the mutation (the latter
might not be consistent with life anyway). Then the probability that any child
of an affected parent will inherit the mutation, denoted p*, is 1/2.

The variable age at onset is described by the penetrance function g*(x)
defined as:

¢*(x) = P[Mutation carrier suffers onset of disease not later than age x] (1)

assuming that all other decrements (including death) are absent, or equivalently
the rate of onset x*(x) defined by:

g*(x) = 1-exp (— NGO dr)- 2)

Not all genetic disorders are fully penetrant, meaning that sometimes not
all mutation carriers will develop the disorder. Define the lifetime penetrance
o* as:

o* = lim g*(x). 3)

X — oo

1.2. Problems of Ascertainment

Ideally, we could observe a population of mutation carriers and estimate ¢*(x)
or u*(x) by ordinary survival analysis. However, unless everyone has had a
fully reliable genetic test, mutation carriers are only discovered when they
develop the disorder.

Alternatively, we could hope to observe a collection of complete generations
of siblings, called sibships, sampled from the population of at-risk families in
an unbiased manner. Then knowledge that p* = 1/2 still allows us to estimate
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TABLE 1

MODEL PARAMETERS WITH AND WITHOUT ASCERTAINMENT BIAS.

Parameter Whole Population Sampled Population
Probability of carrying a mutation p* P

Lifetime penetrance o* g
Penetrance function q*(x) q(x)

Rate of onset W (x) w(x)

q*(x) or u*(x) by suitable conditioning in respect of persons not yet observed
to have the disorder.

In practice, however, we may often obtain a sample of at-risk persons or
sibships retrospectively, and in a highly non-random fashion (see Section 1.3).
All the quantities defined above may then be different from their ‘true’ popula-
tion values; we denote their new values by omitting the asterisks (see Table 1).

Note that the parameters p, ¢ and so on are not empirical estimates based
on the actual sample, but the ‘true’ parameters in an expanded model, which
now includes the mechanism by which sampling takes place. A major problem
in genetic epidemiology, and the motivation for this paper, is that this sampling
mechanism may be unknown. Indeed, in studies based on retrospective analysis
of family histories collected from many sources (common in the study of rare
disorders) it may not even be consistent within the sample.

1.3. Ascertainment Bias and Censored Data

In the case of rare genetic disorders, there is often some reason for a family
coming to the attention of researchers (being ascertained), such as the number
of affected members. We might expect large families, with multiple cases, to be
overrepresented in many studies, leading to biased estimates of penetrance.
It is a central problem in genetic epidemiology (see for example Sham (1998,
Chapter 2), Thompson (1993)).

Adjusting for ascertainment bias requires a model of the mechanism for
selecting families into a study, so ideally the data should be collected through
a properly designed study in which the mechanism is known or can be con-
trolled for. This may not be possible if data are obtained retrospectively from
different sources, which may be unavoidable in the analysis of very rare dis-
orders. It is therefore useful to seek models in which estimation of parameters
(such as penetrance) does not depend on knowledge of the precise mechanism
leading to ascertainment.

Censoring introduces further complications. If ascertainment depends on
the number of affected persons observed in a family, then it may be affected
by any censoring that prevents observation of a possible case.
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1.4. Can We Correct Ascertainment Bias?

Correction of ascertainment bias is an important theme in the genetics litera-
ture; see in particular Ewens & Shute (1986, 1988a, 1988b) and Thompson (1993).
However most such methods depend on knowing the sampling mechanism,
and being able to find conditional likelihoods, conditioning on the reasons for
ascertainment. A simple thought-experiment shows the difficulty of correcting
ascertainment bias in retrospective analyses of family histories, where the
reasons for ascertainment might include the observation of a large number of
affected members.

(a) Consider a gene in which mutations, which are rare, greatly increase the
probability of some disease. Suppose it is a known biological fact that
mutations are completely homogeneous in their effects, meaning that a
‘true’ rate of onset x*(x) of mutation carriers actually exists.

(b) By chance alone, some families in which the mutation is inherited will
have an unusually large number of affected members. Geneticists trying to
find the gene search the world’s medical histories and find these families.
They do not sample the other extreme at all, carrier families which by
chance have very few affected members.

(c) Rates of onset based on retrospective analysis of these families will inevitably
be inflated. It is difficult to see how this might be corrected, without know-
ing the distribution of the mutations in unselected families. Estimates based
on prospective studies of those family members not affected at the time of
the study ought to be unbiased, but this is expensive and time-consuming.

This problem directly affects insurance applications. In most countries, cur-
rently, genetic testing is only available in a clinical setting, and may only be
offered to people who have a family history. In the case of disorders such as
Huntington’s disease, which have no known causes except mutations in a
specific gene, just one affected blood relative might be sufficient reason for
offering genetic testing. But other conditions such as breast cancer are com-
mon diseases with rare inherited forms, so there would need to be evidence of
quite a ‘strong’ family history before referral to a genetics clinic. It is some-
times argued, therefore, (see Daykin et al. (2003)) that a woman who applies
for insurance in the knowledge that she carries a mutation in the BRCAL1 or
BRCA2 genes that cause breast cancer, must be a member of one of these
‘high risk’ families, and that risk estimates based on studies of these families
are appropriate for use in actuarial calculations. Most major studies in the
1990s were retrospective analyses of high risk families, in particular those
carried out by the Breast Cancer Linkage Consortium (Ford et al., 1998),
which ‘recruited’ families from all over the world. However, as shown above,
retrospective analysis leaves open the possibility that asymptomatic mem-
bers of such families are at no more risk than mutation carriers in the general
population.
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1.5. The Aims of This Paper

Gui & Macdonald (2002a) suggested a non-parametric estimator for a certain
function of the rate of onset of EOAD associated with mutations in the PSEN-1
gene. The reason for doing so was that EOAD is one of the conditions identified
as being relevant for insurance by the Association of British Insurers, but there
were no existing studies of ages at onset in the genetics literature.

Implicit in their treatment were the assumptions that ¢ =1 (full penetrance)
and p = 1/2 (no ascertainment bias). Their estimator, while useful, displayed some
pathological behaviour (see Sections 2.3 and 2.5) that they suggested might be
caused by the presence of ascertainment bias and/or non-random censoring. The
key to this behaviour lies in the observation that if all decrements except onset of
the genetic disorder are absent, then the survival probability at very high ages is
not 0, as in the life table, but (1 —pao). Given full penetrance and no ascertainment
bias, this is just 1/2 (the proportion of non-mutation carriers) but otherwise it
depends on the sampling scheme, which may be unknown. The aims of this paper
are to extend the estimate in Gui & Macdonald (2002a) to allow for p #1/2 and
o # 1, opening the way to apply the modified estimate to some questions of crit-
ical illness insurance and life insurance as in Gui & Macdonald (2002b).

In Section 2 we discuss the problems of estimating the rate of onset of a
dominant disorder, and describe the estimator used by Gui & Macdonald
(2002a), which was a variation of the classical Nelson-Aalen estimate. This
estimate has an intrinsic limit related to the sampling mechanism, which imme-
diately suggests how we might adjust the estimator to allow for the value of po
estimated from the data. We find that identifiability is a problem because we
cannot estimate p and o separately, but only their product po. In Section 3, we
introduce a model for sampling based on numbers of affected persons in a
sibship, leading to ascertainment bias, and show how it affects the survival prob-
ability in the presence of censoring. In particular we find that if such a form of
ascertainment is applied to censored data, as will usually be the case in practice,
then even censoring independent of the event of interest does affect the results.
We re-analyse the EOAD data from Gui & Macdonald (2002a) in Section 4,
and because of the unidentifiability we obtain not a single estimator but a
range. Since the adjustment removes the pathological behaviour noted in Gui &
Macdonald (2002a), it is an improvement. Our conclusions are in Section 5.

2. ESTIMATING THE RATE OF ONSET OF A DOMINANT DISORDER

2.1. The Classical Nelson-Aalen Estimate Applied to Disease Onset

Suppose we observe a sample of N persons, and record the times at which they
suffer onset of a certain disease. Observation may be censored, as is common
in survival studies. In this case, death before disease onset would be a type of
censoring. We suppose that the rate (or force) of onset is a function pu(x) of
age x, and the problem is to estimate it.



434 C. ESPINOSA AND A. MACDONALD

The observations of the i person may be described by the sample paths
of two simple stochastic processes:

(a) N'(x) is the number of observed cases of onset by age x. Clearly it is 0 or 1.

(b) Y'(x) is the indicator of being healthy and under observation at age x, equal
to 1 if this is true, or 0 if it is false. In the absence of censoring Y'(x) =
1 —N'(x), but Y'(x) can represent a wide range of censoring schemes.

Denote the aggregated observations by the processes N(x) = Zifv N/(x) and
Y(x) = ZﬁleY"(x). Let 7, 5, ... be the times of the observed cases of onset,
and dN () is the number of cases of onset observed at time #;. Then the clas-
sical Nelson-Aalen estimate is the sum:

' 4
(1) @

<
I/_X

and it is an estimate of the integrated force of onset (or cumulative hazard)
Jy (),
In a modern formulation, the Nelson-Aalen estimate would be written as a

stochastic integral: define J(x) = Iy, >, With the convention that J(x)/Y(x) =0
if Y(x)=0; then we have:

=[S N, ®)

In this framework, all the properties of the estimator can be obtained, and it is
easily seen how it can be used in any multiple-state model; see Andersen et al.
(1993) for details. In particular, its variance can be estimated reasonably well by:

fJ«ﬂW»—AN@)
; (Y(1))’

dN(1). (6)

2.2. Identification of Mutation Carriers and Conditioning

If, as in the case of some genetic disorders, only mutation carriers may be
affected, how may we identify them?

(a) There might be a reliable genetic test.

(b) If symptoms develop, carrier status may be inferred if the disease has
no known cause except a gene mutation, or is so rare that sporadic occur-
rence within an affected family may be neglected. (This excludes common
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diseases of which a small proportion is caused by dominantly inherited
mutations, such as BC.)

(c) Survival free of symptoms does not rule out the possibility of carrying a
mutation, unless the mutation has 100% penetrance before very old ages,
which is rare.

It might be imagined that the advent of DNA-based genetic tests means that
(b) and (c) above will soon be redundant, but this is not so. The prevalence of
genetic testing is rather low when there is no effective treatment for the disorder.
For example Meiser & Dunn (2000) estimate the prevalence of testing for HD
at only 10-20%. Therefore, the mutation status of the majority of family mem-
bers included in a study may be unknown.

Given a model of inheritance, such as Mendel’s laws, it is simple in prin-
ciple to write down a likelihood, summing over all possible joint genotypes,
weighted by the probabilities of those genotypes given by the model (Elston,
1973). This is the most common approach. When questions of ascertainment
arise, however, it is impossible to write down a likelihood without formulating
a model of how the families were selected for the sample. Here, we assume that
this may unknown, so a fully parametric likelihood method cannot be used, and
at best, some kind of semi-parametric model will be needed.

Many approaches to estimating rates of onset (including the Nelson-Aalen
estimate) are variations of the simple occurrence/exposure rate. The problem
of unknown genotypes has been overcome in the past by weighting each person’s
exposures by the probability that they are a mutation carrier, conditional on all
the observations. (Elandt-Johnson, 1973; Newcombe, 1981; Harper & New-
combe, 1992). However, since such studies are usually retrospective (pedigrees
may include several generations) it is necessary to consider what information
may legitimately be used for conditioning.

For example, it may be known that person X suffered onset of the disorder
when they were age 40, many calendar years before the investigation now taking
place. Can we therefore use that to say that they were known to be a mutation car-
rier when we are calculating their contribution to the exposure at age 30 (say)?
The estimates in Newcombe (1981), following Elandt-Johnson (1973) did make
this assumption. This amounts to using conditional probabilities of the form:

P[Onset at age 30 | Known mutation carrier]. (7)

Whatever method is used, probabilities or expectations like these will con-
tribute to the estimating equations. But it was onset of the disorder itself that
showed that X carried the mutation, and this event is part of the information
structure, if we formulate the problem in a probabilistic model (Section 2.3).
Equation (7) should really be:

P[Onset at age 30 | Observation of event that revealed carrier status]
= P[Onset at age 30 | Onset at age 40] =0

and the estimating equations collapse.
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The same problem will arise if the event that reveals the mutation status is a
presymptomatic genetic test. To avoid it, we must avoid all such conditioning.
See Gui & Macdonald (2002a) for a detailed discussion, including the point
that pedigrees sometimes do not include enough information to allow each
family member to be tracked through several different risk groups, depending
on what was known about their relatives at every age.

This conditioning problem essentially arises from an attempt to see into
the future. To avoid it, we turn to stochastic process models adapted to the
information available at each age, rather than to all the information available
retrospectively. In the non- or semi-parametric case, this leads to the Nelson-
Aalen estimate. However, we then have to allow for the mutation status being
unknown before onset.

2.3. A Nelson-Aalen Estimate and a Bound

Gui & Macdonald (2002a) proposed the continuous-time Markov model in
Figure 1, in respect of a person who is at risk of carrying a mutation in the
PSEN-1 gene. ‘At risk’ means that one of their parents carries a PSEN-1 muta-
tion. They assumed, as in Section 1, that the at-risk child inherited it with
probability 1/2. Ignoring genetic tests for now, we assume, more generally, that
this person, at birth, was in state 0 with probability p, or in state 1 with prob-
ability (1-p). Onset of EOAD is represented by transition into state 2, with
transition intensities (rates of onset) iy, (x) and z;,(x). The former is the real
object of interest and, ultimately, the target for estimation. The latter may be
assumed to be zero, because EOAD is very rare (about 15 per 100,000 persons,
though this is very uncertain (Gui & Macdonald, 2002b)).

Just as the lifetime penetrance o in a population selected by a particular
sampling method might differ from the ‘true’ penetrance ¢*, so the intensity

0= +ve Lo2(x)

2=AD

1= —ve #12(x)

FIGURE 1: A model of the incidence of Alzheimer’s disease where an individual may have an EOAD
mutation (State 0, +ve) or may not have an EOAD mutation (State 1, —ve).
Source: Gui & Macdonald (2002a).
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o> (x) might depend on the sampling method. When we have cause to refer to
the ‘true’ population intensity we will denote it ug,(x). Again, we emphasise
that gy, (x) is not an empirical (functional) parameter based on any particular
sample but a parameter of a model that includes the sampling mechanism.

In respect of the i life, as in Section 2.1, we record the number of cases
of onset, N'(x), and the indicator of being at risk, Y'(x). Only now, because
we cannot distinguish carriers from non-carriers before onset, Y'(x) indicates
presence in either state 0 or state 1, which being unknown, and N'(x) represents
onset regardless of the originating state. Gui & Macdonald (2002a) showed that
the Nelson-Aalen estimate of Equation (5) is then an estimate of the following
function of age x (we have changed the notation slightly to emphasise the
dependence on p and o):

s peXp(—fO[uoz(S)dS>
A - of PCXP<_fOtﬂ02(S)dS> +(1-p) o0 v

Strictly, we ought to write A (p,{un(?)},<, X), but we allow the scalar parameter
o to remind us of this more concisely. The integrand in Equation (8) is inter-
preted as the intensity of onset of EOAD in respect of a person who is not
known to be a PSEN-1 mutation carrier, but who was born into state 0 with
probability p.

In the absence of any decrement other than EOAD, those who do not develop
it will live forever. Assuming the lifetime penetrance of PSEN-1 mutations
to be g, the survival probability associated with this hazard, exp(—A(p,a,x)),
tends to (1 —po) instead of to 0, and so lim,_  A(p,ag,x) =-log(1l - po).
If p=1/2, and ¢ =1, this limit is log2 = 0.693.

However, a Nelson-Aalen estimate A(p,o,Xx) is an increasing step function
that need not observe any finite limit, especially as the numbers exposed to risk
dwindle at higher ages. It can be shown (Section 2.5) that if A(p,a,x) exceeds
—log(1-p), fipx(x) explodes to infinity. Thus for PSEN-1 mutations Gui &
Macdonald (2002a), assuming p = 1/2 and ¢ = 1, found that A(p,o,x) exceeded
log2 by about age 50, and reached about 1.3 by age 60; estimates of z,(x) seemed
unreliable after about age 45.

2.4. An Example

As an example, following Palamidas (2001) we suppose that g, (x) =0.285253 —
0.0227997x + 0.0004594x? for 25 < x < 60. This is a hypothetical rate of onset
that results in almost 100% penetrance by age 60, obtained by fitting the ‘max-
imum exposure’ estimate, males and females combined, in Gui & Macdonald
(2002a) (because of missing data, estimates were based on both minimum
and maximum exposures to risk (the Y(X) process) consistent with the data).
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TABLE 2

A HYPOTHETICAL DISTRIBUTION OF FAMILY SIZES P[W, = w].

Number w 1 2 3 4 5 6 7 >7
Probability 0.23 0.5 0.2 0.054 0.012 0.003 0.001 0

We suppose that in a sample of sibships, the size of the i sibship is a random
variable W,, and that the {W,} are mutually independent.

(a) W, has the distribution in Table 2 (from Macdonald, Waters & Wekwete
(2003)).

(b) Each member of each sibship carries a mutation with probability 1/2.

(c) There is no ascertainment bias; even sibships with no affected members are
included in the sample.

(d) There is no censoring; every member of each sibship is observed until age 60.

Figure 2 shows the true value of A(p,o,x), tending to its theoretical limit of
log2, and ten simulated examples of its Nelson-Aalen estimate A( p,0,x), each
based on a small sample of 25 sibships. Four of these exceed log2. Figure 3
shows 10 simulated estimates A(p,a,x) each based on a very large sample of
10,000 sibships. This shows the convergence to the true A(p,o,Xx).

1.2

1.0

0.8

0.6

Integrated Intensity

04

0.2

\ \ \ \ \
0 20 40 60 80

Age
FIGURE 2: The true value of A(p,a,x) (bold) and 10 simulated Nelson-Aalen estimates of A(p,a,x) each

based on a small sample of 25 sibships. No ascertainment bias or censoring.
The theoretical log?2 limit is shown by the dotted line.
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FIGURE 3: The true value of A(p,o,x) (bold) and 10 simulated Nelson-Aalen estimates of A(p,a,x) each
based on a large sample of 10,000 sibships. No ascertainment bias or censoring.
The theoretical log2 limit is shown.

2.5. The Bound on the Nelson-Aalen Estimate

In this section we look in more detail at the bound —log(1 —pa) of the Nelson-
Aalen estimate. The real target of estimation is y,(x). From Equation (8):

PCXP< _/ Hoa (s dS)

PCXP<fﬂ02 dS) (I-p)

d
dx

A(p,o,x) = Moo (X) )

and if we substitute a smoothed version of /A\( p,0,x) on the left hand side
of this equation, we can solve it numerically for an estimate fy,(x) of g (x).
In fact we can express Equation (9) as an ODE:

d _r—1

1)+ el f(x) = Lo e(w) (10)

where ¢(x) = dA(p,o,x)/dx and f(x) = exp( f Lo (1 dt> This ODE has sev-
eral interesting consequences:

(a) Solving it with f(0)=1 and A(p,q,0) =0, we get:

(1 _ p>—l _ e/\(p,d,x)

eXp<_f0TUoz (Z>dt> = (- p)_leA("’”’X) (11)
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which suggests another numerical approach to estimating pg,(x) from
A(p,0,x).

(b) In the limit only non-carriers and unaffected carriers will be left in the
population so lim, . A(p,o,x) = —log(1 —po), which is confirmed by sub-
stituting ¢ on the left hand side of Equation (11) as x — oco. The intuitive
content of this limit was discussed in Section 2.3.

2.6. A Possible Correction for Ascertainment Bias?

At first sight this intrinsic bound on A(p,o,x) is nothing but a nuisance, cur-
tailing the estimation of xy,(x) at higher ages. Gui & Macdonald (2002b) had
to extrapolate their estimate of gy, (x) up to age 60 in order to apply it to some
insurance problems, and also had to investigate the effect of considerably lower
rates of onset (reduced fairly arbitrarily by 50% and 75%) to allow for the pos-
sibility of ascertainment bias.

We can see that the bound on A(p,a,x), —log(l —po), is an increasing
function of pa. This suggests that the Nelson-Aalen estimate A( p,a,x) might
exceed its bound with pg = 1/2 (namely log?2) not just because of diminishing
exposures, but because this is the wrong bound; the assumption that pg = 1/2
may be invalid if there is ascertainment bias. However, it also suggests a way
to adjust estimates of zy,(x) for the ascertainment bias.

The adjustment is simple. A(p,o,x) at high ages is taken as an estimate of
the limit —log(1 — pa), and hence an estimate of po is obtained. Here, we have
a problem of unidentifiability. The model may be described as semiparametric,

0.1 03 03, 04 05 06\ 07\ 08 0.9\
2
S
| T T T T
0.0 0.2 0.4 0.6

0.8 1.0
Lifetime Penetrance

1.0

0.8

Mutation Carrier Probablity
0.7

0.6

0.5

FIGURE 4: Contours of constant po (values shown at the left of each contour)
in a plot of probability p against lifetime penetrance ¢. The extreme case of full
penetrance (o = 1) and no ascertainment bias p = 1/2 is at the bottom right.
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since it involves the two scalar parameters p and o, but we can only make infer-
ences about the product po, or make suitable a priori assumptions about one
or other of p and o.

We still have useful information despite our inability to estimate ¢ and p
separately. Figure 4 shows some contours of constant values of po in the
feasible part of the o-p plane (with the obvious constraints 1/2 < p <1 and
0 <o <1). We see, for example, that a value of pg = 0.7 as in Section 3.3 is
consistent with lifetime penetrance (in the sample) of between 75% and 100%,
and with ascertainment bias resulting in p greater than 0.7. For possible
values of_p consistent with pa, we then apply Equation (11) to a smoothed ver-
sion of A(p,a,x).

We shall find that, despite the unidentifiability problem, we are able to
find upper and lower limits for the rate of onset z,(x) which improve upon
the arbitrary reductions used by Gui & Macdonald (2002b). Before doing that,
we need to analyse in more detail how ascertainment might be affected if it is
based on censored data.

3. A MODEL FOR ASCERTAINMENT BIAS AND CENSORING
3.1. A Mechanism for ‘Recruiting’ Subjects to a Study

Ascertainment bias arises because the subjects ‘recruited’ to a study of an
inherited disorder are often not single individuals, but complete sibships (all
the children borne by two parents) or several generations of sibships, or sets
of sibships related by having common ancestors. Bias arises if sibships might
be selected because of larger numbers of affected members or, more accurately,
observed affected members. Unless we limit the analysis to completed cohorts,
members who are affected after the investigation takes place are not observed
to be affected — observation is censored. Censoring could also happen for other
reasons, for example losing touch with relatives, or premature death. In this sec-
tion we will show that censoring taking place before ascertainment affects pa,
and so is important for our analysis. We propose the following quite general
model.

(a) The study is retrospective, taking place at a fixed epoch and obtaining its
‘subjects’ from historical records of family histories of the disorder (pedi-
grees).

(b) We sample S™ sibships without bias from the population of affected fam-
ilies. The i sibship has W, members as before.

(c) The number of mutation carriers in the i sibship is a Binomial(W,, 1/2)
random variable M;. We define M, ; to be the indicator that the j* mem-
ber of the i sibship is a mutation carrier.

(d) The number of affected mutation carriers in the i sibship is a Binomial(M;,
o*) random variable Z, Note that we use the population penetrance o*
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defined in Equation (3). Conditional on M;, Z; is independent of W,. We
define Z,;; to be the indicator that the j# member of the i sibship is an
affected mutation carrier

(e) The number of affected members observed in the i sibship is a random
variable X;. In the absence of censoring, X; = Z;, otherwise X; < Z;. We sup-
pose that censoring is independent of the carrier status of any person.
Conditional on Z,;, X, is independent of M; and W,. We define X; ; to be the
indicator that the j” member of the i sibship is observed to be affected.

(f) Sampled sibships are ‘selected’ for the study by a probabilistic mechanism
that makes them unrepresentative of affected families as a whole; of course
this mechanism is hidden from the investigator. Define I; =1 if the i’ sib-
ship sampled is accepted, and I, = 0 if it is rejected. Conditional on X,, I,
is independent of Z;, M, and W,. Sibships with larger numbers of mem-
bers observed to be affected are more likely to be accepted. In this model,
censoring precedes selection into the study. This seems reasonable for an
entirely retrospective study.

(g) Sampling and acceptance/rejection continues until S sibships have been
accepted, out of S* sampled, and S* - S have been rejected.

Summing over all accepted sibships, define W= S_"W, M= S M,

Z=%77Z and X = 377X,

3.2. The Effect of Ascertainment Bias and Censoring on the Bound for A(p,s,x)

By the definition of p and a:

po = P[Z,;=1]|1,=1] (12)
=P[Z,;=1,M,;;=1]|L=1] (13)
=PM,;;=1|L=1]P[Z,;=1|M,;;=1,1,=1]. (14)

This shows clearly why we should not assume that o= ¢*. We have equality if:

P[Z,; = 1 |Mi,j: LL=1]= P[Z,; = 1 |Mi,j = 1] (15)

that is, if the ascertainment (following censoring) has no effect on the pene-
trance. However, the right hand side of Equation (15) is clearly unaffected by
censoring, while the left-hand side may be affected by, for example, the study
ending when several siblings in the i sibship are still at risk. So even if the ascer-
tainment mechanism were such that Equation (15) would be true, censoring
could still change a. It is worth repeating that ¢ is not the empirical penetrance
based on the sample; it is a parameter, the penetrance in the presence of the
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ascertainment and censoring mechanism. Equations (12) et seq. are not small-
sample properties, but lead to asymptotic limits in the sense that as the sample
size increases, Z/W tends to pao, not to ¢*/2.

Clearly E[Z] = peE[W] so, making use of the conditional independences
noted in Section 3.1, and allowing for the ascertainment to follow any censoring,
we have:
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We can therefore compute po if all the necessary conditional distributions are
known. This will be unusual, except in hypothetical examples, and even then
any realistic censoring will make Py 7, (x| z)intractable. However, as an exam-
ple, Table 3 shows po with:

(a) ‘true’ population penetrance of ¢* =1 or ¢*=0.7;
(b) a ‘true’ Mendelian carrier probability of 1/2 in at-risk sibships;

(c) either no censoring, or a crude form of censoring that prevents 50% of
affected cases from being observed, regardless of age; and

(d) either no ascertainment bias, or the following simple ascertainment mech-
anism: sibships with no affected members are rejected, sibships with three
or more affected members are accepted, and sibships with one or two
affected members are accepted with probabilities 1/3 and 2/3 respectively.

We observe the following:

(a) If there is ascertainment bias, then for any value of w, smaller values of z
in the numerator are given smaller weight, and larger values larger weight,
so p will increase. This is the basis of assuming that p > 1/2 if there is
ascertainment bias.

TABLE 3

VALUES OF po FROM EQUATION (16) WITH/WITHOUT CENSORING AND ASCERTAINMENT BIAS.

a*=1.0 g*=0.7
Censoring Bias po Censoring Bias po
No No 0.500000 No No 0.350000
No Yes 0.696562 No Yes 0.607537
Yes No 0.500000 Yes No 0.350000
Yes Yes 0.698712 Yes Yes 0.608661
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(b) One of the qualities of the classical Nelson-Aalen estimate is that its large-
sample properties are not affected by the presence of independent cen-
soring. Here, however, the fact that censoring occurs before ascertainment
means that it affects the value of pa, which does feature in the asymptotic
limit of the Nelson-Aalen estimate. In this example, the impact is small,
but this is not always so as the more realistic example in Section 3.3 will
show. What this means for the interpretation of the estimate is discussed
in Section 3.4.

3.3. An Example (Continued)

Extend our hypothetical example from Section 2.4 by implementing the
same mechanism for accepting or rejecting sibships as in Table 3 In this case
Equation (16) gives p = 0.696562, so —log(1—p) = 1.19258 (recall that o = 1 here).
Figure 5 shows ten simulated Nelson-Aalen estimates of A(x), each with a
small sample of 25 sibships.

Figure 6 shows the effect of censoring as well as ascertainment bias, with
a large sample of 10,000 sibships. The censoring takes two forms; indepen-
dent random censoring with hazard rate 0.025 per annum throughout life
(which is quite severe), and censoring at the time of the investigation. Each has
an effect, but only when ascertainment follows censoring. If censoring follows
ascertainment, the variance but not the limit of A(p,a,Xx) is affected (not shown).

(a) We emphasise that in retrospective studies, the sampling mechanism will
usually be unknown.
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FIGURE 5: True value of A(p,a,x) (bold) and 10 simulated Nelson-Aalen estimates of A(p,a,x) each
based on a small sample of 25 sibships. Ascertainment bias present but no censoring.
The —log (1 —p) limit is shown.



A CORRECTION FOR ASCERTAINMENT BIAS 445

(d)
<
o (c)
=
£ v
= (b)
]
2 < | (2)
s =2
&
E
bAR
[«
<
(=)
T T T T T
0 20 40 60 80

Age

FIGURE 6: The effect of censoring: 10 simulated Nelson-Aalen estimates of A(p,o,x) each based on a
large sample of 10,000 sibships, with ascertainment bias. (a) No censoring. (b) Censoring at time of
investigation. (c) Independent censoring at rate 0.025 per annum. (d) Both forms of censoring.

(b) Itisencouraging that censoring at the time of the investigation has a much
smaller effect than censoring throughout life, since the former will always
be present, unless the analysis is limited to completed cohorts, while the
latter might be relatively uncommon in carefully researched pedigrees.

(c) Ascertainment following extreme censoring may result in p being close to 1,
so the limit of A( p,0,x) may yield a very good estimate of ¢. For example
in Figure 6, A( p,0,x) reaches about 2.2 with very heavy censoring, implying
op = 0.89, strong evidence of very high penetrance. Thus, paradoxically,
censoring may improve the estimation. The catch is that unfeasibly large
samples would be required.

3.4. The Interpretation of the Nelson-Aalen Estimate A (p, o, x)

Returning to the model of Figure 1, we see that it is specified by a scalar para-
meter, the probability p, and a functional parameter, the intensity zy,(x) (Which
determines the other scalar parameter, o). Both p and ug,(x) are determined
by the ascertainment mechanism, which induces dependence upon censoring,
even censoring independent of onset, if ascertainment is based on sibships rather
than individuals. However what is observable, in any sense, is not p or gy, (x)
but po or A(p,a,Xx).

(a) Adjustment of observations, to obtain an estimate of the ‘true’ population
intensity uj,(x), is intrinsically impossible.



446 C. ESPINOSA AND A. MACDONALD

(b) However, once po is estimated we have a range of possible values of p so
we can at least locate zy,(x) within a feasible interval (not to be confused
with a confidence interval for yy,(x); for any given value of p the estima-
tion of confidence intervals for uy,(x) is a separate exercise). For highly
penetrant disorders this may often be sufficient to reach useful conclusions
about the insurance implications.

(¢) The mechanism of censoring and selection determines pa, but with po
given the details of the mechanism disappear from sight, and play no fur-
ther part in the Nelson-Aalen estimate or its properties. This is why this
approach is still useful, because we may have to analyse data retrospectively
without any knowledge of what these mechanisms were in the various
studies that might have contributed to the data.

4. APPLICATION TO PRESENILIN-1 MUTATIONS
4.1. Numbers of Persons At Risk

Gui & Macdonald (2002a) surveyed the literature on PSEN-1 mutations.
Because most of these are point mutations, many of them observed in only a
single family, the literature includes a fairly large number of published pedigrees,
from which estimates can be constructed. In total 47 pedigrees, from over 100
studies, were reported in enough detail to be useable. Even so, certain items of
information were often missing:

(a) The Nelson-Aalen estimate assumes that it is known, of each person in
the sample, that one of their parents carried the mutation. This may be
because the parent or one of the person’s siblings has developed EOAD
or has had a genetic test. It follows that each person is excluded from the
sample until the age at which that information is revealed (this loses some
information, but it is required to ensure that the estimate is adapted to the
available information).

(b) The age at which observation of unaffected siblings is censored is some-
times omitted. Often the best that can be done is to estimate the highest
and lowest possible age at censoring, from information on other relatives,
thus minimum and maximum possible exposures. Gui & Macdonald (2002a)
estimated rates of onset based on such minimum and maximum possible
exposures, which are shown graphically in Figure 9 of Gui & Macdonald
(2002a).

(c) The gender of unaffected persons is sometimes omitted.

We refer to Gui & Macdonald (2002a) for details. We take from that study the
numbers of observed cases of onset, and the maximum and minimum numbers
at risk at each age.
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4.2. Estimates Adjusted for Ascertainment Bias

Figure 7 shows, at the top, the Nelson-Aalen estimates /A\( p,0,x), kernel-smoothed
versions of these, and approximate 95% confidence intervals (Equation (6))
based on these maximum and minimum exposures.

(a) The maximum and minimum exposures make only a small difference to
the estimates.
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FIGURE 7: Onset rates of EOAD associated with PSEN-1 mutations, with maximum (left) and minimum
(right) exposures. Nelson-Aalen estimates /A\(p,a,x) and 95% Cls (top), estimated intensities iy, (x) (middle)
and corresponding survival functions exp (- 0\' Hga(t)dr) (bottom). Assumed values of penetrance o are
(a) 1; (b) 0.9; (c) 0.8; and (d) 0.653 (maximum exposures) and 0.728 (minimum exposures).
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(b) The confidence intervals are quite narrow, compared with those usually
seen for non-parametric estimates at high ages. This is because the expo-
sures include non-mutation carriers who will almost certainly not develop
EOAD, and who therefore remain in the risk set until they are censored.

(c) We take the value of A( p,05) be an estimate of —log(1—pao), hence 1 -
exp(— A( p,65)) to be an estimate po of po. The data included a case of
AD at age 68, but age 65 is usually taken to be the limit of early-onset
cases. With maximum exposures, po = 0.653 (confidence interval (0.587,
0.718)) and with minimum exposures pa = 0.728 (0.646, 0.810).

Figure 7 (middle) shows estimates jiy,(x) of the intensity of onset, based on a
selection of possible values of the penetrance o consistent with the estimates
po. These include the limiting cases of ¢ = 1 (full penetrance, labelled (a) in
Figure 7) and ¢ = po (representing such extreme ascertainment bias that p =1,
labelled (d) in Figure 7). The corresponding survival functions are shown at
the bottom of Figure 7.

(a) The value of ¢ (equivalently, p) makes a very great difference to the esti-
mated intensity, whereas the difference between maximum and minimum
exposures does not. We can safely conclude that the results are fairly robust
to the missing data described in Section 4.1.

(b) For any supposed value o, we estimate p to be ¢ = pa/a. With ¢ = 1 (full
penetrance) that means that the sample contains persons who are
mutation carriers with 65.3% probability (maximum exposures) or 72.8%
probability (minimum exposure) instead of the 50% probability that we
would expect in the absence of ascertainment bias.

4.3. Comparison with Previous Estimates

Figure 8 compares our estimates of the intensity of onset and associated sur-
vival functions with those of Gui & Macdonald (2002a). Recall that the latter
were obtained with the same Nelson-Aalen estimate as we have used, but with-
out any explicit allowance for ascertainment bias, effectively assuming p = 1/2.
As shown, the estimates blew up just beyond age 50, though they seemed
reasonably well-behaved until the mid-40s. However even the highest of our esti-
mates, with ¢ = 1, are considerably lower. Because the intensities are all high,
however, the differences between the associated survival functions are much less
dramatic. Indeed at the other extreme, our estimates with p = 1 (extreme ascer-
tainment bias) imply that fewer than 40% of mutation carriers would escape
onset by age 60 (as could be inferred from the estimates po) so the significance
for insurance is not diminished.

For insurance modelling, Gui & Macdonald (2002b) recognised that their
estimates would be too high, and:

(a) smoothed the lower of their two estimates (that based on maximum exposures);
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(bottom) with those of Gui & Macdonald (2002a). (a) is our estimate with the lowest possible
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FIGURE 9: Comparison of estimated intensities (maximum exposures) with those used by Gui &
Macdonald (2002b). (i) is our estimate with the lowest possible value of o (ii) is our estimate with o = 1;
(a) is the smoothed intensity from Gui & Macdonald (2002b); (b) is 50% of (a); and (c) is 25% of (a).
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FIGURE 10: Comparison of estimated intensities with those used by Gui & Macdonald (2002b).
Based on the intensities in Figure 9, see there for the labels.

(b) extrapolated it to age 60; and

(¢) as an ad hoc allowance for ascertainment bias, considered intensities that
were 50% and 25% of the smoothed estimate.

The resulting intensities are shown in Figure 9, as well as the highest (¢ = 1)
and lowest (p = 1) of our estimates based on maximum exposures. These sug-
gest that the ad hoc reductions made by Gui & Macdonald (2002b) were quite
reasonable; perhaps a little low at younger ages but consistent with the range of
our estimates above about age 45. Figure 10 shows the corresponding survival
functions.

However, the problem remains that we have estimated po and not p*c*,
and that the latter is intrinsically unobtainable from a retrospective analysis.

5. CONCLUSIONS

Because EOAD is a very rare disease, the selection of the sample of families
is unlikely to be by random ascertainment. Families with large numbers of
affected members may be more likely to be detected by researchers. Therefore,
we expect that the PSEN-1 data were not randomly ascertained. Also, the
sampling penetrance related to the PSEN-1 data is not certain and has to be
estimated either with or without ascertainment bias.

We concluded that even classical independent censoring has an effect on the
integrated intensity estimates when ascertainment follows after censoring. Then,
both p and ¢ are determined by the ascertainment scheme and the censoring.
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We extended Gui & Macdonald’s (2002a) estimator by introducing the
in-sample parameters p and ¢. Our estimate, which is a variation of the Nelson-
Aalen estimator, has an intrinsic limit related to the sampling mechanism,
which immediately suggests how we might estimate the product po. We found
that unidentifiability is a problem because we cannot estimate p and o sepa-
rately, but only their product po.

An estimate of the ‘true’ population intensity z,(x), is intrinsically impos-
sible. However, the range of possible values of (p, o) allow us to at least locate
o (x) within a feasible interval, hence removing the pathological behaviour
noted in Gui & Macdonald (2002a).
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