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Genetics and Insurance

Genetics – Some Basic Facts

Genetics is today a vast subject, but it is necessary to
know only a small part of it to appreciate its impact
on insurance. In this short summary, we ignore all
complications; see [32, 35], for a full account, or
[8, 9], for introductions aimed at insurance.

Most cells in the human body have a nucleus
that contains 23 pairs of chromosomes. One pair
(the X and Y chromosomes) determines sex; women
have two X chromosomes, men have an X and a
Y chromosome. The other 22 pairs are homologous.
Because every cell is descended from the fertilized
egg by a process of binary cell division in which
the chromosomes are duplicated, the chromosomes
in every cell ought to be identical. Mutations arise
when the duplicating process makes errors, or when
chromosomes are damaged, hence genetic disorders
may arise.

Chromosomes are simply very long sequences
of DNA, arranged in the famous double helix. A
gene is a region of DNA at a particular locus on
a chromosome, whose DNA sequence encodes a
protein or other molecule. Genes can be regulated to
produce more or less of their gene product as required
by the body. A mutated gene has an altered DNA
sequence so it produces a slightly different protein
or other product. If this causes disease, it is usually
eliminated from the gene pool by selective pressure,
hence genetic disorders are relatively rare. However,
many mutations are harmless, so different varieties of
the same gene called alleles may be common, leading
to different physical characteristics (such as blue and
brown eyes) called the phenotype, but not necessarily
to disease.

Sperm and eggs each contain just 23 chromo-
somes, one of each type. When they fuse at con-
ception, the fertilized egg has a full complement of
chromosomes, hence two copies of each gene (other
than those on the X and Y chromosomes). Sometimes
different alleles of a single gene cause an unam-
biguous variation in the fully developed person. The
simplest example is a gene with two alleles, and this
is the basis of Mendel’s laws of inheritance, first pub-
lished in 1865. For example, if we denote the alleles
A and a, then the possible genotypes are AA, Aa,
and aa. The distribution of genotypes of any person’s

parents depends on the distribution of the A and a

alleles in the population. Assuming that each par-
ent passes on either of their alleles to any child with
probability 1/2, simple combinatorics gives the prob-
ability distribution of the genotypes of the children
of given parents. The distribution of the childrens’
phenotypes depends on whether one of the alleles
is dominant or recessive. A dominant allele over-
rules a recessive allele, so if A is dominant and a

is recessive, genotypes AA and Aa will display the A

phenotype, but only aa genotypes will display the a

phenotype. Simple combinatorics again will give the
distribution of phenotypes; these are Mendel’s laws.

Simple one-to-one relationships between genotype
and phenotype are exceptional. The penetrance of a
given genotype is the probability that the associated
phenotype will appear. The phenotype may be present
at birth (eye color for example) or it may only
appear later (development of an inherited cancer for
example). In the latter case, penetrance is a function
of age. In the case of disease-causing mutations, the
burden of disease results from the frequency of the
mutations in the population, their penetrances, and
the possibilities, or otherwise, of treatment.

Developments in Human Genetics

Human genetics has for a long time played a part in
insurance underwriting, though it has only recently
attracted much attention. Some diseases run strongly
in families, with a pattern of inheritance that con-
forms to Mendel’s laws; these are the single-gene
disorders, in which a defect in just one of the 30 000
or so human genes will cause disease. A few of these
genes cause severe disease and premature death, but
with onset deferred until middle age, typically after
having had children; this is why these mutations
are able to persist in the population. Examples are
Huntington’s disease (HD), early-onset Alzheimer’s
disease (EOAD), adult polycystic kidney disease
(APKD), and familial breast cancer (BC). When a
family history of such a disorder is disclosed on an
insurance proposal form, the decision has often been
to charge a very high extra premium or to decline the
proposal.

Quite different from the single-gene disorders are
the multifactorial disorders, in which several genes,
influenced by the environment, confer a predisposi-
tion to a disease. The majority of the genetic influ-
ences on common diseases like cancer or coronary
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heart disease (CHD) are of this type. Underwriters
have often used the proposer’s parents’ ages at death
and causes of death as risk factors, for example, for
CHD, but without ever knowing how much of the
risk within a family might be genetic and how much
the result of shared environment. Not all familial risk
is genetic by any means.

Beginning in the early 1990s, geneticists began
to locate and to sequence the genes responsible for
major single-gene disorders. This work has tended
to show that their apparent simplicity, when all that
could be observed was their Mendelian mode of
inheritance, is not usually reflected in the underly-
ing genetic mutations. Thus, HD was found to be
caused by an expanding segment of DNA of variable
length; two major genes were found to be responsi-
ble for most familial BC, and each of those to have
many hundreds of different disease-causing muta-
tions; APKD was found to have two forms and so
on. Single genes have also been found to be associ-
ated with several diseases; thus, the discovery that an
allele of the APOE gene was associated with heart
disease gave rise to suggestions of genetic screening,
which were stopped dead when it was also discov-
ered to be associated with Alzheimer’s disease (AD),
which is currently untreatable.

The sequencing of major disease-causing genes
meant that DNA-based genetic tests would become
available, which would be able to distinguish with
high reliability between people who did and did not
carry deleterious mutations, and among those who
did, possibly even the prognosis given a particu-
lar mutation. In the absence of such tests, all that
could be known is the probability that a person had
inherited a mutation, given their family history. For
example, HD is dominantly inherited, meaning that
only one of the two copies of the huntingtin gene (one
from each parent) need be mutated for HD to result.
But HD is very rare, so the probability that anyone’s
parents have more than one mutated huntingtin gene
between them is negligible, even in a family affected
by HD. Mendel’s laws then lead to the conclusion
that any child of a parent who carries a mutation will
inherit it with probability 1/2, and without a genetic
test, the only way to tell is to await the onset of
symptoms. Other forms of family history, for exam-
ple, an affected grandparent but unaffected parent,
lead to more elaborate probabilities [31]. As an at-
risk person ages and remains free of symptoms, the
probability that they do carry a mutation is reduced by

their very survival free of symptoms. For example, let
p(x) be the probability that a carrier of a HD muta-
tion is free of symptoms at age x. Then the probability
that a child of an affected parent who is healthy at age
x is a carrier is 1/(1 + p(x)). This may be reflected
in underwriting guidelines, for example, in respect
of HD [5] recommended declinature below age 21,
then, extra premiums decreasing with age until stan-
dard rates at ages 56 and over. A DNA-based genetic
test resolves this uncertainty, which could result in
the offer of standard rates to a confirmed noncarrier,
but probably outright declinature of a confirmed car-
rier. Thus, the insurance implications of genetic tests
were clear from an early stage.

Research into multifactorial disorders lags far
behind that of single-gene disorders. The helpful fac-
tors of Mendelian inheritance and severely elevated
risk are generally absent, so multifactorial genotypes
are hard to find and the resulting risks are hard to
measure. Very large-scale studies will be needed to
make progress, for example, in the United Kingdom
the Biobank project aims to recruit a prospective sam-
ple of 500 000 people aged 45–69, to obtain DNA
samples from all of them and to follow them up
for many years. Even such a huge sample may not
allow the detection of genetic associations with rela-
tive risks lower than about 1.5 or 2 times normal [37].

The differences between the single-gene disorders
and multifactorial disorders are many. As far as insur-
ance is concerned, the subset of single-gene disorders
that matters includes those that are rare, Mendelian,
highly penetrant, severe and often untreatable, or
treatable only by surgery. Multifactorial disorders are
common, non-Mendelian, are likely mostly to have
modest penetrance and to confer modest extra risks,
and may be amenable to medication or change in
lifestyle. It is not entirely clear why the great con-
cerns over genetics and insurance, which have been
driven by single-gene disorders, should carry over to
multifactorial disorders with equal strength.

Responses to Genetics and Insurance
Issues

Public concerns center on privacy and the inappropri-
ate use of genetic information, often naming insurers
and employers as those most eager to make mischief.

Potential difficulties with privacy go beyond the
usual need to treat personal medical information con-
fidentially, because information may be requested
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about a proposer’s relatives without their being aware
of it, and any genetic information gained about
the proposer may also be informative about their
relatives. However, the actuarial dimension of this
question is limited and we will not discuss privacy
further.

Inappropriate use of genetic information means, to
many people, using it in the underwriting of insurance
contracts. The principles involved are no different
from those surrounding the use of sex or disability
in underwriting (except perhaps that the privacy of
persons other than the proposer may be invaded), but
genetics seems to stimulate unusually strong fears
and emotions. Many governments have responded
by imposing, or agreeing with their insurance indus-
tries, moratoria on the use of genetic information,
usually up to some agreed limit beyond which exist-
ing genetic test results may be used. There is general
agreement that insurers need not and should not ever
ask someone to be tested, so only existing test results
are in question.

The United Kingdom and Australia are of partic-
ular interest, because their governments have tried to
obtain evidence to form the basis of their responses
to genetics and insurance. In the United Kingdom,
the Human Genetics Commission (HGC) advises the
government [19, 20], and was instrumental in decid-
ing the form of the moratorium (since 2001, genetic
test results may not be used to underwrite life insur-
ance policies of up to £500 000, or other forms of
insurance up to £300 000). The industry body, the
Association of British Insurers (ABI) introduced a
code of practice [1] and appointed a genetics adviser,
who drew up a list of eight (later seven) late-onset,
dominantly inherited disorders of potential impor-
tance to insurers. The Genetics and Insurance Com-
mittee (GAIC), under the Department of Health, has
the task of assessing the reliability and actuarial rele-
vance of particular genetic tests, for use with policies
that exceed the ceilings in the moratorium. In 2000,
GAIC approved the use of the test for HD in under-
writing life insurance, but following reports that were
very critical of the industry [18, 19], the policy has
been reformed and the basis of that decision may
be reconsidered. In Australia, the Australian Law
Reform Commission (ALRC) has produced the most
thorough examination of the subject to date [2–4].
It recommends that a Human Genetics Commission
in Australia (HGCA) should be set up, and this
would approach the regulation of the use of genetic

information in a manner quite similar to the GAIC
process. It remains to be seen if these interesting
and evidence-based approaches to the subject will
be followed by other countries; see [7, 25] for more
details.

In the course of the whole genetics debate, the
question of what exactly is genetic information [40]
has been raised. The narrowest definition would
include only information obtained by the direct exam-
ination of DNA [1], while the broadest would include
any information relating to any condition that might
be in any way genetic in origin. Differing views have
been reflected in the moratoria in different countries,
for example, that in Sweden covers family history
as well as genetic tests, while that in the United
Kingdom does not (though the HGC indicated that
it would revisit this in 2004).

Actuarial Modeling

Most actuarial modeling has concentrated on single-
gene disorders, because it necessarily relies on genetic
epidemiology to parameterize any models, and that
is where the epidemiology is most advanced. We can
identify two broad approaches.

• A top-down approach treats whole classes of
genetic disorder as if they were homogeneous.
This avoids the need to model individual disor-
ders in detail, which in the case of multifactorial
disorders may be impossible just now anyway.
If, under extremely adverse assumptions, either
extra premiums or the costs of adverse selec-
tion are small, this is a useful general conclusion;
see [22–24] for examples. In the long run, this
approach is limited.

• A bottom-up approach involves detailed model-
ing of individual disorders, and estimating the
overall premium increases or costs of adverse
selection by aggregation. Examples include mod-
els of BC and ovarian cancer [21, 28, 29, 36, 39],
HD [14, 15, 34], EOAD [11–13], APKD [16]
and AD [26, 27, 33, 38].

Multiple-state models are well suited to modeling
single-gene disorders because these naturally divide
the population into a reasonably small number of
subpopulations.

Figure 1 shows a model that includes all the
features needed to represent genetics and insurance
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State 10
Not tested
Not Ins'd

State 12
Tested

Not ins'd

State 13
Tested
Insured

State 11
Not tested

Insured

State 14
CI event

State 15
Dead

i = 1: Not at risk

i = 2: At risk, APKD mutation absent i = 3: At risk, APKD mutation present

State 21
Not tested

Insured

State 20
Not tested
Not ins'd

State 22
Tested

Not ins'd

State 23
Tested
Insured

State 31
Not tested

Insured

State 30
Not tested
Not ins'd

State 32
Tested

Not ins'd

State 33
Tested
Insured

State 24
CI event

State 25
Dead

State 34
CI event

State 35
Dead

Figure 1 A Markov model of critical illness insurance allowing for family history of APKD and genetic testing. Source:
Gutiérrez & Macdonald [16]

problems, using critical illness (CI) insurance and
APKD as an example. APKD is rare (about 1 per
1000 persons), dominantly inherited and has no cause
except mutations in the APKD1 or APKD2 (or pos-
sibly other) genes. Therefore, at birth, 0.1% of per-
sons have an APKD mutation, 0.1% are born into
families affected by APKD but do not carry a muta-
tion, and 99.8% are born into families unaffected by
APKD and are not at risk. This determines the initial
distribution of the population in the starting states
10, 20, and 30. In these states, a person has not yet
bought insurance, nor have they had a genetic test.
They may then buy insurance without being tested
(move to the left) or be tested and then possibly buy
insurance (move to the right). Clearly, their decision
to buy insurance may be influenced by the result of a
test, and adverse selection may arise. At any time, a
person can suffer a ‘CI event’ – an illness that triggers
a claim, which would include kidney failure caused
by APKD – or can die. All the transition intensities
in this model may be functions of age, so it is Markov
(see Markov Chains and Markov Processes), and
computationally straightforward. Life insurance can
be modeled similarly but often survival after onset of
a genetic illness is age- and duration-dependent, and
a semi-Markov model results.

As well as adverse selection, this model captures
the market size (through the rate of insurance pur-
chase), the prevalence of genetic testing, and the

frequency of mutations, all of which influence the
cost of adverse selection. It is also possible to group
states into underwriting classes, within each of which
the same premiums are charged, and thereby to rep-
resent underwriting based on family history, or under
any form of moratorium. And, just by inspecting the
expected present values (EPVs) of unit benefits and
unit annuities conditional on presence in an insured
state, the extra premiums that might be charged if
insurers could use genetic information can be found
(a simpler multiple decrement model would also suf-
fice for this).

Parameterizing such a model is challenging. Inten-
sities relating to morbidity and mortality can be
estimated in the usual way, relying on the medical
literature for rates of onset of the genetic disorder.
Intensities relating to insurance purchase can plausi-
bly be based on market statistics or overall market
size. The rate of genetic testing is very difficult to
estimate. Testing is still fairly recent, so there is no
long-term experience. The take-up of testing varies a
lot with the severity of the disorder and the availabil-
ity of treatment, so that even after nearly 10 years
of HD tests, only 10 to 20% of at-risk persons have
been tested [30].

Once the intensities in the model have all been
fixed or estimated, we proceed by solving Kol-
mogorov’s forward equations (see Markov Chains
and Markov Processes) for occupancy probabilities,
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or Thiele’s equations (see Life Insurance Mathe-
matics) for EPVs of insurance cash flows [17]. With
µ

jk
x , the transition intensity between distinct states

j and k, and tp
jk
x , the probability that a person in

state j at age x will be in state k at age x + t (the
occupancy probability), Kolmogorov’s equations are:

∂

∂t
tp

jk
x =

∑
l �=k

tp
jl
x µlk

x+t −
∑
l �=k

tp
jk
x µkl

x+t . (1)

(Note that we omit the i denoting genotype gi for
brevity here.) We can add insurance cash flows to the
model, with the convention that positive cash flows
are received by the insurer. If a continuous payment
is made at rate b

j
x per annum while in state j at age

x, or a lump sum of b
jk
x is made on transition from

state j to state k at age x, Thiele’s equations for the
statewise prospective reserves tV

j
x , at force of interest

δ, at age x + t are

∂

∂t
tV

j
x = δ tV

j
x + b

j
x+t

−
∑
k �=j

µ
jk
x+t

(
b

jk
x+t + tV

k
x − tV

j
x

)
. (2)

These must be solved numerically.
The conclusions from such models, applied to

single-gene disorders, are consistent. We give an
example, for HD and life insurance, based on [14,
15]. The age at onset of HD is inversely related to
the number of times the trinucleotide CAG (cytosine-
adenine-guanine) is repeated in a certain region of
the huntingtin gene on chromosome 4. Brinkman
et al. [6] estimated the age-related penetrance for 40
to 50 CAG repeats, by Kaplan–Meier methods (see
Survival Analysis); these are shown in Figures 2
and 3. Also shown, as smooth curves, are modeled
penetrance functions from [15]. Brinkman’s study [6]
is, in fact, an unusually good and clear basis for
the fitted model, since the actual numbers in the
graphs were tabulated; many genetical studies merely
give penetrances in the form of point estimates at
a few ages or graphs of Kaplan–Meier estimates,
but we must acknowledge that actuarial models are
relatively demanding of the data. On the basis of this
model, and a conventional analysis of survival after
onset of HD [10], premium rates for life insurance
of various ages and terms are shown in Table 1
(expressed as a percentage of the standard rate that
would be paid by a healthy applicant). Note that these

are specimens only, based on the mortality of the
population of England and Wales as expressed in the
English Life Table No. 15; an insurance company
might take account of the lower mortality typical
of insured persons, which would result in higher
premiums than in Table 1. This table shows the
following features:

• Premiums increase rapidly with the number of
CAG repeats. Nevertheless, if there were fewer
than about 45 repeats, terms could be offered
within normal underwriting limits (in the UK,
cover would usually be declined if the premium
exceeded about 500% of the standard rate).

• The premiums vary greatly with age and term,
suggesting the need for a model that takes account
of the heterogeneity of HD mutations. Note that
many other single-gene disorders could be as
heterogeneous, but few have such a simple under-
lying cause of heterogeneity as the length of a
trinucleotide repeat.

As mentioned above, the take-up of genetic testing
for HD is quite low, so many applicants may present
a family history of HD, and in some jurisdictions
this can be used in underwriting. Table 2 shows
premiums (as percentages of standard) in respect of
applicants who have an affected parent or sibling.
Note that these need the distribution of CAG repeat
length at birth among HD mutation carriers, see [15],
another complicating feature of any heterogeneous
disorder.

• The premium rates based on family history decr-
ease to negligible levels by age 50, consistent
with [5], because most HD mutations are so
highly penetrant that anyone who is free of symp-
toms at age 50 is unlikely to be a carrier.

• Comparing Table 2 with Table 1, we see that
premiums based on a small number of CAG
repeats can sometimes be lower than those based
on family history, because the latter are in a
loose sense averaged over all CAG repeat lengths.
This raises the prospect of a person with (say)
40 or 41 CAG repeats requesting a premium
based on that information, even though it derives
from an adverse genetic test result that could not
be used under most moratoria. Again, this may
be a recurring feature of heterogeneous genetic
disorders.
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Figure 2 Penetrance estimates of onset of HD with 40 to 45 CAG repeats (crosses) and 95% confidence intervals, from
Gutiérrez & Macdonald [15], based on data from Brinkman et al. [6]. Also shown are fitted penetrance curves

The cost of adverse selection under any given
moratorium depends on the mutation frequencies, the
size of the market for any particular type of insurance,
the rate at which genetic testing takes place, how
people will react to learning that they carry a more
or less serious mutation, and the precise form of the
moratorium, as well as the mutation penetrance. The

cost can conveniently be expressed as the percentage
premium increase that would be needed to recover
it. In the case of HD and probably every other
single-gene disorder, the rarity of mutations is the
most important factor in any but a very small market,
and even quite extreme adverse selection would be
unlikely to require premium increases of more than
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Figure 3 Penetrance estimates of onset of HD with 46 to 50 CAG repeats (crosses) and 95% confidence intervals, from
Gutiérrez & Macdonald [15], based on data from Brinkman et al. [6]. Also shown are fitted penetrance curves

a fraction of 1%, if the use of family history was
still allowed. Higher costs are possible if family
history may not be used, and the cost for critical
illness insurance could be considerably greater than
for life insurance. References [13, 15, 16, 22–24,
36] suggest that, taking all genetic disorders together,
premium increases of 10% would be a conservative

upper limit for the cost of adverse selection in life
insurance.

Outstanding Issues

Molecular genetics is racing ahead of epidemiology,
and it may be some time before we have an accurate
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Table 1 Level net premium for level life insurance cover for persons with a known HD mutation, with 40 to 50 CAG
repeats, as a percentage of the premium for standard risks

Premium as percentage of standard

Number of CAG repeatsAge at Policy
Sex of entry term 40 41 42 43 44 45 46 47 48 49 50
applicant (years) (years) % % % % % % % % % % %

Female 20 10 100 100 100 102 105 114 132 166 219 293 387
20 101 105 117 147 209 315 475 690 951 1242 1545
30 112 138 192 288 432 624 853 1107 1371 1631 1877
40 141 192 272 381 513 664 825 990 1154 1310 1456

30 10 101 106 117 139 175 225 285 349 414 477 535
20 116 146 208 307 438 588 741 885 1014 1125 1220
30 147 206 294 408 535 662 780 884 972 1044 1104

40 10 106 114 126 141 158 174 190 205 219 231 242
20 142 181 229 279 326 366 401 430 454 474 491

50 10 108 114 120 126 132 137 142 147 151 155 158
Male 20 10 100 100 100 101 102 105 111 123 142 169 203

20 101 102 108 121 148 196 269 367 487 621 760
30 106 118 146 195 270 369 490 624 764 902 1032
40 119 144 186 244 316 399 488 581 672 760 842

30 10 101 103 108 120 139 165 196 230 264 298 329
20 109 126 161 219 295 384 475 561 638 705 762
30 124 155 205 270 344 419 490 552 604 648 684

40 10 103 107 113 121 130 138 147 155 163 170 176
20 120 140 165 192 218 241 261 278 292 304 314

50 10 102 104 106 108 109 111 113 114 116 117 119

Table 2 Level net premiums for level life
insurance cover as percentage of the level pre-
mium for standard risks, for persons with a
family history of HD (affected parent or sibling)

Age at Policy
entry term Females Males
(years) (years) (%) (%)

20 10 114 105
20 211 150
30 297 202
40 293 203

30 10 122 112
20 187 151
30 208 160

40 10 107 103
20 130 115

50 10 102 101

picture of the financial impact of all the genetic
knowledge that is emerging from the laboratory.
Bodies like GAIC have a difficult task to perform,
as politicians and others demand answers before
the evidence base is properly in place. Almost by

default, genetics seems to be leading the way towards
‘evidence-based underwriting’.

• At what point in the spectrum of genetic disor-
ders, from highly penetrant single-gene disorders
to complex multifactorial disorders, should nor-
mal underwriting be allowed? Is genetic informa-
tion so exceptional that nothing with the slightest
genetical content should be accessible to insurers?

• There is often evidence that a rare mutation may
be highly penetrant, but its rarity prevents the
reliable estimation of relative risks. Amyloid pre-
cursor protein (APP) mutations associated with
EOAD is an example (from the ABI’s list). How
should this be handled within the framework of
evidence-based underwriting?

• Heterogeneity leads to two problems. The first
is the obvious statistical one, that sample sizes
quickly become too small to be useful. Occasion-
ally, as with HD, there is structure underlying the
heterogeneity that offers a basis for a model, but
that may be unusual. The second problem is that
if family history may be used in underwriting,
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premiums on that basis can exceed premiums
based on the less severe mutations, creating pres-
sure for the use of adverse test results when that
would be to the applicant’s advantage.

• The impact of multifactorial disorders on insur-
ance is as yet largely unexplored, but we can
expect that many of the discoveries that will be
made in the future will concern them.
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