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Present Values and
Accumulations

Effective Interest

Money has a time value; if we invest $1 today, we
expect to get back more than $1 at some future time
as a reward for lending our money to someone else
who will use it productively. Suppose that we invest
$1, and a year later we get back $(1 + i). The amount
invested is called the principal, and we say that i is
the effective rate of interest per year. Evidently, this
definition depends on the time unit we choose to use.
In a riskless world, which may be well approximated
by the market for good quality government bonds,
i will be certain, but if the investment is risky, i is
uncertain, and our expectation at the outset to receive
$(1 + i) can only be in the probabilistic sense.

We can regard the accumulation of invested money
in either a retrospective or prospective way. We may
take a given amount, $X say, to be invested now
and ask, as above, to what amount will it accumulate
after T years? Or, we may take a given amount, $Y
say, required in T years’ time (to meet some liability
perhaps) and ask, how much we should invest now,
so that the accumulation in T years’ time will equal
$Y ? The latter quantity is called the present value of
$Y in T years’ time. For example, if the effective
annual rate of interest is i per year, then we need
to invest $1/(1 + i) now, in order to receive $1 at
the end of one year. In standard actuarial notation,
1/(1 + i) is denoted v, and is called the discount
factor. It is immediately clear that in a deterministic
setting, accumulating and taking present values are
inverse operations.

Although a time unit must be introduced in the
definition of i and v, money may be invested over
longer or shorter periods. First, consider an amount
of $1 to be invested for n complete years, at a rate i
per year effective.

• Under simple interest, only the amount originally
invested attracts interest payments each year, and
after n years the accumulation is $(1 + ni).

• Under compound interest, interest is earned each
year on the amount originally invested and inter-
est already earned, and after n years the accumu-
lation is $(1 + i)n.

Since (1 + i)n ≥ (1 + ni) (i > 0), an astute investor
will turn simple interest into compound interest just
by withdrawing his money each year and investing
it afresh, if he is able to do so; therefore the use
of simple interest is unusual, and unless otherwise
stated, interest is always compound.

Given effective interest of i per year, it is easily
seen that $1 invested for any length of time T ≥ 0
will accumulate to $(1 + i)T . This gives us the rule
for changing the time unit; for example, if it was more
convenient to use the month as time unit, interest of
i per year effective would be equivalent to interest
of j = (1 + i)1/12 − 1 per month effective, because
(1 + j)12 = 1 + i.

Changing Interest Rates and the Force of
Interest

The rate of interest need not be constant. To deal
with variable interest rates in the greatest gener-
ality, we define the accumulation factor A(t, s) to
be the amount to which $1 invested at time t will
accumulate by time s > t . The corresponding dis-
count factor is V (t, s), the amount that must be
invested at time t to produce $1 at time s, and clearly
V (t, s) = 1/A(t, s). The fact that interest is com-
pound is expressed by the relation

A(t, s) = A(t, r)A(r, s) for t < r < s. (1)

The force of interest at time t, denoted δ(t), is defined
as

δ(t) = 1

A(0, t)

dA(0, t)

dt
= d

dt
log A(0, t). (2)

The first equality gives an ordinary differential equa-
tion for A(0, t), which with boundary condition
A(0, 0) = 1 has the following solution:

A(0, t) = exp

(∫ t

0
δ(s) ds

)

(
so V (0, t) = exp

(
−

∫ t

0
δ(s) ds

))
. (3)

The special case of constant interest rates is now
given by setting δ(t) = δ, a constant, from which we
obtain the following basic relationships:

(1 + i) = eδ and δ = log(1 + i). (4)
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The theory of cash flows and their accumulations
and present values has been put in a very general
framework by Norberg [10].

Nominal Interest

In some cases, interest may be expressed as an annual
amount payable in equal instalments during the year;
then the annual rate of interest is called nominal.
For example, under a nominal rate of interest of
8% per year, payable quarterly, interest payments
of 2% of the principal would be made at the end
of each quarter-year. A nominal rate of i per year
payable m times during the year is denoted i(m).
This is equivalent to an effective rate of interest of
i(m)/m per 1/m year, and by the rule for changing
time unit, this is equivalent to effective interest of
(1 + i(m)/m)m − 1 per year.

Rates of Discount

Instead of supposing that interest is always paid at
the end of the year (or other time unit), we can sup-
pose that it is paid in advance, at the start of the
year. Although this is rarely encountered in prac-
tice, for obvious reasons, it is important in actuarial
mathematics. The effective rate of discount per year,
denoted d, is defined by d = i/(1 + i), and receiv-
ing this in advance is clearly equivalent to receiving
i in arrears. We have the simple relation d = 1 − v.
Nominal rates of discount d(m) may also be defined,
exactly as for interest.

Annuities Certain

We often have to deal with more than one payment,
for example, we may be interested in the accumula-
tion of regular payments made into a bank account.
This is simply done; both present values and accu-
mulations of multiple payments can be found by
summing the present values or accumulations of each
individual payment.

An annuity is a series of payments to be made
at defined times in the future. The simplest are level
annuities, for example, of amount $1 per annum. The
payments may be contingent on the occurrence or
nonoccurrence of a future event – for example, a
pension is an annuity that is paid as long as the

recipient survives – but if they are guaranteed regard-
less of events, the annuity is called an annuity certain.
Actuarial notation extends to annuities certain as
follows:

• A temporary annuity certain is one payable for
a limited term. The simplest example is a level
annuity of $1 per year, payable at the end of each
of the next n years. Its accumulation at the end
of n years is denoted sn , and its present value at
the outset is denoted an . We have

sn =
n−1∑
r=0

(1 + i)r = (1 + i)n − 1

i
, (5)

an =
n∑

r=1

vr = 1 − vn

i
. (6)

There are simple recursive relationships between
accumulations and present values of annuities
certain of successive terms, such as sn+1 = 1 +
(1 + i)sn and an+1 = v + van , which have very
intuitive interpretations and can easily be verified
directly.

• A perpetuity is an annuity without a limited term.
The present value of a perpetuity of $1 per year,
payable in arrear, is denoted a∞ , and by taking
the limit in equation (5) we have a∞ = 1/i. The
accumulation of a perpetuity is undefined.

• An annuity may be payable in advance instead of
in arrears, in which case it is called an annuity-
due. The actuarial symbols for accumulations and
present values are modified by placing a pair of
dots over the s or a. For example, a temporary
annuity-due of $1 per year, payable yearly for n
years would have accumulation s̈n after n years or
present value än at outset; a perpetuity of $1 per
year payable in advance would have present value
ä∞ ; and so on.
We have

s̈n =
n∑

r=1

(1 + i)r = (1 + i)n − 1

d
, (7)

än =
n−1∑
r=0

vr = 1 − vn

d
, (8)

ä∞ = 1

d
. (9)
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• Annuities are commonly payable more frequently
than annually, say m times per year. A level annu-
ity of $1 per year, payable in arrears m times a
year for n years has accumulation denoted s

(m)
n

after n years and present value denoted a
(m)
n at

outset; the symbols for annuities-due, perpetu-
ities, and so on are modified similarly. We have

s
(m)
n = (1 + i)n − 1

i(m)
, (10)

a
(m)
n = 1 − vn

i(m)
, (11)

s̈
(m)
n = (1 + i)n − 1

d(m)
, (12)

ä
(m)
n = 1 − vn

d(m)
. (13)

Comparing, for example, equations (5) and (10),
we find convenient relationships such as

s
(m)
n = i

i(m)
sn . (14)

In precomputer days, when all calculations
involving accumulations and present values of
annuities had to be performed using tables and
logarithms, these relationships were useful. It was
only necessary to tabulate sn or an , and the ratios
i/i(m) and i/d(m), at each annual rate of interest
needed, and all values of s

(m)
n and a

(m)
n could be

found. In modern times this trick is superfluous,
since, for example, s

(m)
n can be found from first

principles as the accumulation of an annuity of
$1/m, payable in arrears for nm time units at
an effective rate of interest of (1 + i)1/m − 1 per
time unit. Accordingly, the i(m) and s

(m)
n notation

is increasingly of historical interest only.
• A few special cases of nonlevel annuities arise

often enough so that their accumulations and
present values are included in the international
actuarial notation, namely, arithmetically inc-
reasing annuities. An annuity payable annually
for n years, of amount $t in the t th year, has
accumulation denoted (Is)n and present value
denoted (Ia)n if payable in arrears, or (I s̈)n and
(I ä)n if payable in advance.

(Is)n = s̈n − n

i
, (15)

(Ia)n = än − nvn

i
, (16)

(I s̈)n = s̈n − n

d
, (17)

(I ä)n = än − nvn

d
. (18)

(Is)
(m)
n (and so on) is a valid notation for increas-

ing annuities payable m times a year, but note that
the payments are of amount $1/m during the first
year, $2/m during the second year and so on,
not the arithmetically increasing sequence $1/m,
$2/m, $3/m, . . . at intervals of 1/m year. The
notation for the latter is (I (m)s)

(m)
n (and so on).

• In theory, annuities or other cash flows may be
payable continuously rather than discretely. In
practice, this is rarely encountered but it may
be an adequate approximation to payments made
daily or weekly. In the international actuarial
notation, continuous payment is indicated by a bar
over the annuity symbol. For example, an annuity
of $1 per year payable continuously for n years
has accumulation sn and present value an . We
have

sn =
∫ n

0
(1 + i)n−t dt =

∫ n

0
eδ(n−t) dt

= (1 + i)n − 1

δ
, (19)

an =
∫ n

0
(1 + i)−t dt =

∫ n

0
e−δt dt

= 1 − vn

δ
, (20)

a∞ =
∫ ∞

0
(1 + i)−t dt =

∫ ∞

0
e−δt dt = 1

δ
. (21)

Increasing continuous annuities may have a rate
of payment that increases continuously, so that at
time t the rate of payment is $t per year, or that
increases at discrete time points, for example, a
rate of payment that is level at $t per year during
the t th year. The former is indicated by a bar that
extends over the I, the latter by a bar that does
not. We have

(Is)n =
n−1∑
r=0

(r + 1)

∫ r+1

r

(1 + i)n−t dt

= s̈n − n

δ
, (22)
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(Ia)n =
n−1∑
r=0

(r + 1)

∫ r+1

r

(1 + i)−t dt

= än − nvn

δ
, (23)

(I s)n =
∫ n

0
t (1 + i)n−t dt = sn − n

δ
, (24)

(Ia)n =
∫ n

0
t (1 + i)−t dt = an − nvn

δ
. (25)

Much of the above actuarial notation served to
simplify calculations before widespread computing
power became available, and it is clear that it is now
a trivial task to calculate any of these present values
and accumulations (except possibly continuous cash
flows) with a simple spreadsheet; indeed restrictions
such as constant interest rates and regular payments
are no longer important. Only under very particular
assumptions can any of the above actuarial formulae
be adapted to nonconstant interest rates [16].

For full treatments of the mathematics of interest
rates, see [8, 9].

Accumulations and Present Values Under
Uncertainty

There may be uncertainty about the timing and
amount of future cash flows, and/or the rate of
interest at which they may be accumulated or dis-
counted. Probabilistic models have been developed
that attempt to model each of these separately or in
combination. Many of these models are described in
detail in other articles; here we just indicate some of
the major lines of development.

Note that when we admit uncertainty, present val-
ues and accumulations are no longer equivalent, as
they were in the deterministic model. For example,
if a payment of $1 now will accumulate to a ran-
dom amount $X in a year, Jensen’s inequality (see
Convexity) shows that E[1/X] �= 1/E[X]. In fact,
the only way to restore equality is to condition on
knowing X, in other words, to remove all the uncer-
tainty. Financial institutions are usually concerned
with managing future uncertainty, so both actuarial
and financial mathematics tend to stress present val-
ues much more than accumulations.

• Life insurance contracts define payments that
are contingent upon the death or survival of one

or more individuals. The simplest insurance con-
tracts such as whole life insurance guarantee to
pay a fixed amount on death, while the sim-
plest annuities guarantee a level amount through-
out life. For simplicity, we will suppose that
cash flows are continuous, and death benefits are
payable at the moment of death. We can (a) rep-
resent the future lifetime of a person now age
x by the random variable Tx ; and (b) assume a
fixed rate of interest of i per year effective; and
then the present value of $1 paid upon death is
the random variable vTx , and the present value
of an annuity of $1 per annum, payable continu-
ously while they live, is the random variable aTx

.
The principle of equivalence states that two series
of contingent payments that have equal expected
present values can be equated in value; this is
just the law of large numbers (see Probability
Theory) applied to random present values. For
example, in order to find the rate of premium P x

that should be paid throughout life by the person
now age x, we should solve

E[vTx ] = P xE[aTx
]. (26)

In fact, these expected values are identical to the
present values of contingent payments obtained
by regarding the life table as a deterministic
model of mortality, and many of them are repre-
sented in the international actuarial notation. For
example, E[vTx ] = Ax and E[aTx

] = ax . Calcu-
lation of these expected present values requires a
suitable life table (see Life Table; Life Insurance
Mathematics). In this model, expected present
values may be the basis of pricing and reserv-
ing in life insurance and pensions, but the higher
moments and distributions of the present values
are of interest for risk management (see [15] for
an early example, which is an interesting reminder
of just how radically the scope of actuarial science
has expanded since the advent of computers).
For more on this approach to life insurance math-
ematics, see [1, 2].

• For more complicated contracts than life
insurance, such as disability insurance or income
protection insurance, multiple state models were
developed and expected present values of extre-
mely general contingent payments were obtained
as solutions of Thiele’s differential equations
(see Life Insurance Mathematics) [4, 5]. This
development reached its logical conclusion when
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life histories were formulated as counting
processes, in which setting the familiar expected
present values could again be derived [6] as
well as computationally tractable equations for
the higher moments [13], and distributions [3]
of present values. All of classical life insurance
mathematics is generalized very elegantly using
counting processes [11, 12], an interesting
example of Jewell’s advocacy that actuarial
science would progress when models were
formulated in terms of the basic random events
instead of focusing on expected values [7].

• Alternatively, or in addition, we may regard
the interest rates as random (see Interest-
rate Modeling), and develop accumulations and
present values from that point of view. Under
suitable distributional assumptions, it may be
possible to calculate or approximate moments
and distributions of present values of simple
contingent payments; for example, [14] assumed
that the force of interest followed a second-
order autoregressive process, while [17] assumed
that the rate of interest was log-normal. The
application of such stochastic asset models
(see Asset–Liability Modeling) to actuarial
problems has since become extremely important,
but the derivation of explicit expressions for
moments or distributions of expected values and
accumulations is not common. Complex asset
models may be applied to complex models of
the entire insurance company, and it would be
surprising if analytical results could be found; as
a rule it is hardly worthwhile to look for them,
instead, numerical methods such as Monte Carlo
simulation are used (see Stochastic Simulation).
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