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MULTIFACTORIAL GENETIC DISORDERS AND ADVERSE

SELECTION: EPIDEMIOLOGY MEETS ECONOMICS

By Angus Macdonald and Pradip Tapadar

abstract

Rapid advances in genetic epidemiology and the setting up of large-scale cohort studies
have shifted the focus from severe, but rare, single gene disorders to less severe, but common,
multifactorial disorders. This will lead to the discovery of genetic risk factors for common
diseases of major importance in insurance underwriting. If genetic information continues to be
treated as private, adverse selection becomes possible, but it should occur only if the individuals
at lowest risk obtain lower expected utility by purchasing insurance at the average price than by
not insuring. We explore where this boundary may lie, using a simple 2 × 2 gene-environment
interaction model of epidemiological risk, in a simplified 2-state insurance model and in a more
realistic model of heart-attack risk and critical illness insurance. Adverse selection does not
appear unless purchasers are not very risk-averse, and insure a small proportion of their wealth;
or unless the elevated risks implied by genetic information are implausibly high. In many cases
adverse selection is impossible if the low-risk stratum of the population is large enough. These
observations are strongly accentuated in the critical illness model by the presence of risks other
than heart attack, and the constraint that differential heart-attack risks must agree with the
overall population risk. We find no convincing evidence that adverse selection is a serious
insurance risk, even if information about multifactorial genetic disorders remains private.

keywords

Adverse Selection; Critical Illness Insurance; Gene-environment Interaction; Risk-aversion; UK

Biobank; Underwriting; Utility Functions

contact address

Angus Macdonald, Department of Actuarial Mathematics and Statistics, and the Maxwell Insti-

tute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K. Tel:+44(0)131-

451-3209; Fax: +44(0)131-451-3249; E-mail: A.S.Macdonald@ma.hw.ac.uk

1. Introduction

1.1 Risk and Insurance

The principle behind underwriting is to identify key risk factors that stratify appli-
cants into reasonably homogeneous groups, for each of which the appropriate premium
rate can be charged. The risk of death or ill health is affected by, among other things,
age, gender, lifestyle and genotype. However, the use of certain risk factors is sometimes
controversial. In particular, this is true of factors over which individuals have no control,
such as genotype. As a result, in many countries a ban has been imposed, or moratorium
agreed, limiting the use of genetic information. In one country, the UK, a government-
appointed Genetics and Insurance Committee (GAIC) is providing guidance to insurers
on the acceptable use of genetic test results.



Multifactorial Genetic Disorders and Adverse Selection 2

Disorders caused by mutations in single genes, which may be severe and of late
onset, but are rare, have been quite extensively studied in the insurance literature, see
Macdonald (2004) for a review. One reason is that the epidemiology of these disorders is
relatively advanced, because biological cause and effect could be traced relatively easily.
The conclusion has been that single-gene disorders, because of their rarity, do not expose
insurers to serious adverse selection in large enough markets.

The vast majority of the genetic contribution to human disease, however, will arise
from combinations of gene varieties (called ‘alleles’) and environmental factors, each of
which might be quite common, and each alone of small influence but together exerting
a measurable effect on the molecular mechanism of a disease. Some combinations may
be protective, others deleterious. These are the multifactorial disorders, and they are the
future of genetics research. Their epidemiology is not very advanced, but should make
progress in the next 5–10 years through the very large prospective studies now beginning
in several countries. One of the largest is the Biobank project in the UK, with 500,000
subjects, described in Macdonald, Pritchard & Tapadar (2006). UK Biobank will recruit
500,000 people aged 40 to 69 from the general population of the UK, and follow them
up for 10 years. The aim is to capture both genetic and environmental variations and
interactions, and relate them to the risks of common diseases. If successful, the outcome
will be much better knowledge of the risks associated with complex genotypes. Thus
the genetics and insurance debate will, in the fairly near future, shift from single-gene to
multifactorial disorders.

Any model used to study adverse selection risk must incorporate the behaviour of the
market participants. Most of those applied to single-gene disorders in the past did so in a
very simple and exaggerated way, assuming that the risk implied by an adverse genetic test
result was so great that its recipient would quickly buy life or health insurance with very
high probability. These assumptions were not based on any quantified economic rationale,
but since they led to minimal changes in the price of insurance this probably did not
matter. The same is not true if we try to model multifactorial disorders. Then ‘adverse’
genotypes may imply relatively modest excess risk but may be reasonably common, so
the decision to buy insurance is more central to the outcome.

Subramanian et al. (1999) used a continuous-time discrete-state Markov model to
estimate adverse selection costs for term insurance contracts resulting from non-disclosure
of BRCA mutation test results and/or a family history of breast and ovarian cancer. This
was the first study explicitly to link adverse selection and genetic epidemiology. They
assumed that cover would be increased if a genetic test reveals higher risk, and reduced if
it does not. The cost of adverse selection was defined as the across-the-board increase in
premiums needed for an insurer who did not observe the genetic test results to absorb the
extra cost. These increases could reach 120% in scenarios where women disclosed family
histories but not test results, However, they could exceed 200%, approaching 600% in
extreme scenarios, when family histories were not disclosed either. The authors concluded
that if companies do not identify applicants’ family histories, adverse selection costs could
become unbearable.

Information asymmetry and adverse selection have also been considered in an equilib-
rium setting. Doherty & Thistle (1996) pointed out that, under symmetric information,
insurance deters diagnostic testing. This is because the premium is a lottery whose value
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is revealed by the test, and risk-averse individuals will prefer a pooled premium. Asym-
metric information alters or abolishes the equilibrium, depending on the cost of being
tested, and whether or not low-risk individuals may choose to reveal beneficial test re-
sults. Hoy & Polborn (2000), following also Villeneuve (1996), analysed the same problem
in a life insurance model, in which lost income due to premature death is replaced. They
constructed scenarios where a new test could increase or decrease the social value of
information.

Hoy & Witt (2007) applied the results from Hoy & Polborn (2000) to the specific case
of the BRCA1/2 breast cancer genes. They simulated the market for 10-year term life
insurance policies targeted at women aged 35 to 39. They stratified the consumer base
into 13 risk categories based on family background information. This information is also
available to insurers. Then within each risk group, they checked the impact of test results
for BRCA1/2 genes on welfare effects, using iso-elastic utility functions. The authors
showed that in the presence of a high risk group, and in the presence of information
asymmetry, the equilibrium insurance premium can be as high as 297% of the population
weighted probability of death, but this was very much a worst-case scenario.

Polborn, Hoy & Sadanand (2006) developed a model where individuals, early in their
lives, know neither the levels of insurance they will demand later in life, nor their mortality
risk, which they learn over time. Under this set-up, the characteristics of the equilibrium
level of initial insurance purchase are derived, assuming both symmetric and asymmetric
information. The authors show that, under certain assumptions, regulations prohibiting
the use of genetic test information will increase welfare despite creating adverse selection.
This implies that individuals would prefer to face adverse selection costs rather than
premium risks.

Hoy (2006) concentrates on the social welfare issues related to risk classification. In
particular, he asks whether regulations that create adverse selection improve or worsen
expected welfare. Social welfare is affected by adverse selection costs on one hand and
protection against premium risk on the other. The author concludes that, on balance,
if the proportion of high-risk types within the population exceeds a certain threshold,
then regulatory adverse selection unambiguously reduces expected welfare. However, if
the proportion of high-risk individuals is sufficiently small, then welfare can be enhanced
by banning risk classification. Although we do not address social welfare issues in this
paper, we will obtain the threshold proportion of high-risk types, above which the pooled
insurance premium will become unacceptably high for low-risk individuals.

All these papers assume that the genetic epidemiology implies that genetic tests carry
very strong information about risk; true of some single-gene disorders but unlikely to be
so true of multifactorial disorders. They concentrate primarily on providing a proper
economic rationale for the impact, on the insurance market, of genetic tests for, mainly,
rare diseases. In this paper, we try to bring together plausible quantitative models for
the epidemiology and the economic issues, in respect of more common disorders, therefore
affecting a much larger proportion of the insurer’s customer base. We wish to find out
under what circumstances adverse selection is likely to occur with sufficient force to be
problematic.

We suppose that individuals are risk-averse, have wealth W and aim to buy insurance
with sum assured L ≤ W . Their decision is governed by expected utility, conditioned on
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the information available to them. Insurers, in a competitive market, charge an actuarially
fair premium P , equal to the expected present value of the insured loss, conditioned on the
information available to them. See for example Hoy & Polborn (2000) for a similar market
model. Because they are risk-averse, individuals will be willing to pay a premium up to a
maximum of P ∗ > P , provided that they and the insurer have the same information. We
can then consider the effect of genetic information that is only available to applicants.

We propose a simple model of a multifactorial disorder, with two genotypes and
two levels of environmental exposure, and either additive or multiplicative interactions
between them. These factors affect the risk of myocardial infarction (heart attack), there-
fore the theoretical price of critical illness (CI) insurance. However these price differences
are not very large. To begin with, the risk factors are not observable, because the epidemi-
ology is unknown, or the necessary genetic tests have not yet been developed. Insurers
therefore charge everyone the same premium, which is the appropriate weighted average
of the genotype and environment-specific premiums. Subsequently, genetic tests that ac-
curately predict the risk become available, but only to individuals; insurers are barred
from asking about genotype. Adverse selection therefore becomes a possibility.

2. Utility Functions

2.1 Utility of Wealth

We assume that all individuals who may buy insurance have the same utility function,
namely an increasing concave function U(w) of wealth w (so U ′(w) > 0 and U ′′(w) < 0).
Current wealth, which is deterministic, is compared with wealth after the outcome of a
probabilistic experiment via the expected utility of the outcome. Since the nature of the
probabilistic experiment underlying insurance involves the timing as well as the occurrence
of the insured event, we will measure wealth in present value terms when necessary. For
a full exposition of utility theory, see Binmore (1991).

Suppose the individual with utility function U(w) has initial wealth W but with
probability q will lose L. Their ultimate wealth is the random variable X, where X =
W − L with probability q and X = W with probability 1 − q. If they choose, they can
insure the risk for premium P , and accept W − P with certainty. They should do so if:

U(W − P ) > E[U(X)] = qU(W − L) + (1 − q)U(W ). (1)

In particular they should insure if the premium is equal to the expected loss qL since for
a risk-averse individual:

U(W − qL) = U(q(W − L) + (1 − q)W ) > qU(W − L) + (1 − q)U(W ). (2)

So in a market where competition drives insurers to charge the actuarially ‘fair’ premium
qL, insurance will be bought, but this is not the limiting case; insurance will be bought
as long as the premium is less than P ∗ where:

P ∗ = W − U−1[qU(W − L) + (1 − q)U(W )]. (3)
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Hence, P ∗ is the maximum willingness-to-pay, and P ∗ − qL is the risk premium.

2.2 Coefficients of Risk-aversion

The Arrow-Pratt measure of (absolute) risk-aversion of a utility function U(w) is
defined as:

AU(w) = −
U ′′(w)

U ′(w)
. (4)

It is well-known that two utility functions represent the same preference relation if and
only if they have the same absolute risk-aversion function. A related quantity is the
measure of relative risk-aversion, defined as:

R(w) = AU(w)w = −
U ′′(w)w

U ′(w)
. (5)

2.3 Families of Utility Functions

We introduce two families of utility functions which we will use in examples through-
out the rest of the paper.
(a) The Iso-Elastic utility functions are defined by:

UI(λ)(w) =

{

(wλ − 1)/λ λ < 1 and λ 6= 0

log(w) λ = 0.
(6)

The condition λ < 1 ensures concavity. Log-utility is the limiting case as λ → 0. The
absolute risk-aversion function of UI(λ)(w) is:

A(w) =
1 − λ

w
(7)

and the relative risk-aversion function is constant, R(w) = R = 1 − λ. Hence higher
λ means less risk aversion.

(b) The Negative Exponential family of utility functions is parameterised by a constant
absolute risk-aversion function A(w) = A, as follows:

UN(A)(w) = − exp(−Aw), where A > 0. (8)

Clearly, a higher value of A implies more risk aversion.

2.4 Estimates of Absolute and Relative Risk-aversion

To parameterise these utility functions, we need estimates of absolute or relative risk-
version coefficients. Eisenhauer & Ventura (2003) pointed out that past research was
inconclusive; estimates of average relative risk-aversion coefficients ranged from less than
1 to well over 40. Hoy & Witt (2007) illustrated their model using iso-elastic utilities with
R = 0.5, 1 and 3. We will adopt a similar strategy, as follows.

Eisenhauer & Ventura (2003) estimated the risk-aversion function based on a thought
experiment conducted by the Bank of Italy for its 1995 Survey of Italian Households’



Multifactorial Genetic Disorders and Adverse Selection 6

Income and Wealth. Under certain assumptions, they estimated that a person with an
average annual income of 46.7777 million lira had absolute risk-aversion coefficient 0.1837,
and relative risk-aversion coefficient 8.59. (Guiso & Paiella (2006), based on the same
study, estimated the relative risk aversion coefficient to be 1.92 for the 10th percentile
and 13.25 for the 90th percentile.)

Allowing for the sterling/lira exchange rate in 1995 (average £1 = 2570.60 lira
http://fx.sauder.ubc.ca/) and price inflation in the UK between July 1995 and June
2006 (Retail Price Index 149.1 and 198.5, respectively) an average income of 46.7777 mil-
lion lira in 1995 equates to about £24,226 in 2006, not very different from the actual
average of £25,810 (Jones (2005)).

We need utility functions of wealth, so an estimate of the wealth-income ratio is
required. Estimates of this ratio in the literature are quite varied. According to H.M.
Treasury (2005) in the U.K., it varies between 5 and 7 for total wealth, and between 2
and 4 for net financial wealth.

The Inland Revenue in the U.K. also publishes figures on personal wealth distribution
http://www.hmrc.gov.uk/stats/personal wealth/menu.htm. Their latest figure (for
2003) shows that 53% of the population has less than £50,000 and 83% has less than
£100,000. As the distribution of wealth is positively skewed, we will assume a total
wealth of W = £100, 000. This gives a wealth-income ratio of 4 which is consistent with
the figures published by H.M. Treasury (2005).
(a) The absolute risk-aversion function depends on the unit of wealth. Given utility

functions U(w) and V (w) related by U(cw) = V (w) for some constant c, their abso-
lute risk-aversion functions are related by AU(cw) = AV (w)/c. Using exchange and
inflation rates above, we suppose that a Briton in 2006 has absolute risk-aversion
coefficient 8.967 × 10−5 ≈ 9 × 10−5, denominated in 2006 pounds.

(b) The relative risk-aversion function does not depend on the unit of wealth and so the
estimate of 8.59 can be used without any adjustment. We will use a rounded-off value
of 9 in the remainder of the paper.

The formulation of utility functions with non-constant relative risk-aversion is an ac-
tive area of research. Meyer & Meyer (2005) specified a form of marginal utility function
which gives decreasing relative risk-aversion. Xie (2000) proposed a power risk-aversion
utility function which can produce increasing, constant or decreasing risk-aversion depend-
ing on its parameterisation. These specialised utility functions are not yet in widespread
use and we will not consider them further.

We will use the following utility functions for the purposes of illustration:
(a) Iso-elastic utilities with parameter λ = 0.5, 0 and −8, which corresponds to constant

relative risk-aversion of 0.5, 1 and 9 respectively.
(b) Negative exponential utility with absolute risk-aversion coefficient A = 9 × 10−5.

Since iso-elastic utility with λ = −8 has absolute risk-aversion coefficient equal to
9×10−5 when wealth is £100,000, our assumption of W = £100, 000 allows us to compare
the two utility functions.
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Figure 1: A two state model

3. A Simple Gene-environment Interaction Model

We will illustrate the principles of underwriting long-term insurance in the presence
of a multifactorial disorder in the simple setting of the two-state continuous-time model
in Figure 1. The insured event could be death or illness, and it is represented by an
irreversible transition from state A to state B. The probability of transition is governed
by the transition intensity λs(x), which depends on age x, and the values of various risk
factors which are labelled s (for ‘stratum’). In essence, λs(x) dx is the probability that a
person who is healthy at age x should suffer the insured event during the next small time
interval of length dx.

The risk factors arise from a 2×2 gene-environment interaction model. That is, there
are two genotypes, denoted G and g, and two levels of environmental exposure, denoted
E and e. We assume that G and E are adverse exposures while g and e are beneficial.
Therefore, there are four risk groups or strata, that we label ge, gE, Ge and GE. Let the
proportion of the population at a particular age (at which an insurance contract is sold)
in stratum s be ws. The epidemiology is defined as follows.
(a) We assume proportional hazards, so for each stratum s there is a constant ks, in-

dependent of age, such that λs(x)/λge(x) = ks for all ages x. Clearly kge = 1, and
ks > 1 for s 6= ge.

(b) We assume symmetry between genetic and environmental risks, as follows:
(1) The probability of possessing the beneficial gene g is the same as the proba-

bility of exposure to the beneficial environment e, each denoted ω. Assuming
independence, wge = ω2, wgE = wGe = ω(1 − ω) and wGE = (1 − ω)2.

(2) We assume that kgE = kGe = k.
(c) The gene-environment interaction is represented by either an additive or a multiplica-

tive model, as follows:
(1) Additive Model: kGE = kGe + kgE − kge = 2k − 1.
(2) Multiplicative Model: kGE = kGekgE/kge = k2.
See Woodward (1999) for a discussion of additive and multiplicative models.

Therefore, the epidemiology is fully defined by the parameters λge(x), ω and k along
with the choice of interaction.

This model could also be used to represent other forms of interacting risk factors,
such as fixed, non-modifiable influences on the genetic risk. For example, instead of en-
vironment, e and E could represent maternal and paternal transmission, respectively,
of the gene responsible for Huntington’s disease. As economic modelling of multifacto-
rial disorders advances from hypothetical to actual cases, the most distinctive feature of
environmental factors may be that individuals can choose to modify them.
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4. Insurance Premiums

4.1 Single Premiums

For simplicity, let the force of interest be δ = 0. (This is consistent with the assump-
tions of Doherty & Thistle (1996), Hoy & Polborn (2000) and Hoy & Witt (2007).) Then
the single premium for an insurance contract of term t years, with sum assured £1, sold
to a person aged x who belongs to stratum s is:

qs = 1 − exp

[

−

∫ t

0

λs(x + y)dy

]

= 1 − (1 − qge)
ks . (9)

If the proportion of insurance purchasers aged x is the same as the proportion in
the population, ws (for example if the stratum is not known to applicants or to insurers)
observation of claim statistics will lead the insurer to charge a weighted average premium
rate q̄ =

∑

s wsqs =
∑

s ws[1 − (1 − qge)
ks ] per unit sum assured. Given our assumption

that the ks can all be expressed as simple functions of k, the stratum-specific and average
premium rates can also be expressed as qs(k) and q̄(k).

4.2 Threshold Premium

Suppose all individuals have initial wealth W and that the net effect of suffering the
insured event in the next n years is a loss of L. Define the loss ratio f = L/W . If no-one
knows to which stratum they belong everyone will be willing to pay a single premium of
up to:

P ∗ = W − U−1[q̄(k)U(W − L) + (1 − q̄(k))U(W )]. (10)

However, someone who knows they are in stratum s will be willing to pay a single premium
of up to:

P ∗
s = W − U−1[qs(k)U(W − L) + (1 − qs(k))U(W )]. (11)

P ∗
s is smallest for stratum ge. So if the insurer, ignorant of the stratum, continues to

charge premium q̄(k)L, adverse selection will first appear if q̄(k)L > P ∗
ge. That is, if:

U(W − q̄(k)L) < qge(k)U(W − L) + (1 − qge(k))U(W ). (12)

To be ignorant of the stratum in which an applicant exists, the insurer must be unable
to observe both genotype and environment. In practice, the insurer may have partial
knowledge, even if regulations bar the use of genetic information, because important
environmental risk factors such as smoking may be freely observable.

4.3 The Additive Epidemiological Model

Replace the inequality in Equation 12 with an equality and solve for k; this represents
the relative risk (of each risk factor) with respect to stratum ge, above which persons who
know they are in stratum ge will cease to buy insurance. Doing this with iso-elastic utility
with λ 6= 0 we obtain:
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Table 1: The relative risk k above which persons in stratum ge with initial wealth W =
£100, 000 will not buy insurance, using ω = 0.5 and an additive model.

Utility loss L in £’000
Function qge 10 20 30 40 50 60 70 80 90

0.1 1.025 1.053 1.085 1.122 1.165 1.217 1.284 1.373 1.513
0.2 1.024 1.050 1.081 1.116 1.158 1.209 1.274 1.364 1.506

I(0.5) 0.3 1.022 1.047 1.076 1.110 1.150 1.200 1.263 1.352 1.497
0.4 1.021 1.044 1.072 1.103 1.142 1.189 1.251 1.339 1.486
0.5 1.019 1.041 1.066 1.096 1.132 1.178 1.238 1.324 1.472

0.1 1.051 1.110 1.180 1.264 1.368 1.504 1.691 1.976 2.524
0.2 1.048 1.104 1.170 1.250 1.350 1.479 1.659 1.939 2.488

Log 0.3 1.045 1.098 1.160 1.235 1.330 1.453 1.626 1.898 2.451
0.4 1.042 1.091 1.149 1.220 1.308 1.425 1.590 1.854 2.413
0.5 1.039 1.084 1.138 1.203 1.286 1.395 1.551 1.805 2.372

0.1 1.598 2.755 4.947 8.831 15.950 – – – –
0.2 1.546 2.512 4.153 6.972 14.430 – – – –

I(−8) 0.3 1.498 2.322 3.664 6.148 – – – – –
0.4 1.451 2.163 3.313 5.810 – – – – –
0.5 1.405 2.023 3.035 6.107 – – – – –

0.1 1.566 2.504 3.917 5.793 8.036 10.574 13.428 16.739 20.862
0.2 1.516 2.292 3.337 4.617 6.119 7.911 10.226 13.900 –

N(9e-5) 0.3 1.468 2.126 2.963 3.972 5.204 6.857 9.812 – –
0.4 1.423 1.987 2.684 3.536 4.655 6.519 – – –
0.5 1.379 1.864 2.457 3.206 4.305 7.636 – – –

(1 − q̄(k)f)λ = qge(1 − f)λ + (1 − qge). (13)

In the special case of logarithmic utility (iso-elastic utility with λ = 0) we obtain:

1 − q̄(k)f = (1 − f)qge (14)

and under negative exponential utility:

eq̄(k)AL = qgee
AL + (1 − qge) (15)

in which wealth W does not appear. Using ω = 0.5 (a uniform distribution across strata)
and an additive model, we solve Equations 13, 14 and 15 for k, given certain values of
baseline risk qge and loss L, assuming an initial wealth of W = £100, 000. The results are
in Table 1. We observe the following:
(a) For low loss ratios, even small relative risks k will cause people in the baseline stratum

to opt against insurance. This is as expected as small losses are relatively tolerable.
(b) As the loss ratio f increases, so does the relative risk at which adverse selection

appears. This is simply risk aversion at work.
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(c) The higher the baseline risk qge for a given loss ratio f , the lower the relative risk at
which adverse selection appears.

(d) Lower risk-aversion, under iso-elastic utility, (λ = 0.5) means that smaller relative
risks would discourage members of the baseline stratum to buy insurance at the
average premium, and for higher risk-aversion (λ = −8) the reverse is true.

Comparing iso-elastic and negative exponential utilities, we see that the limiting
relative risks are broadly similar for smaller losses. For larger losses, however, iso-elastic
utility functions have much greater limiting relative risks. This is because risk-aversion
increases as wealth falls under iso-elastic utility, while for negative exponential utility it
is constant. As the fair actuarial premium for bigger losses increases and depletes wealth,
risk-aversion under iso-elastic utility climbs above that under negative exponential utility,
with the result shown.

4.4 Immunity From Adverse Selection

The missing entries in Table 1 mean that adverse selection never appears, whatever
the relative risk k. Clearly, this must be related to the size of the high-risk strata, and
their ability, or otherwise, to move the average premium enough to affect the baseline
stratum. We may ask: given qge and f , is there some proportion wge in the lowest risk
stratum above which members of that stratum will always buy insurance at the average
premium rate? Begin by noting that:

lim
k→∞

q̄(k) = lim
k→∞

∑

s

ws[1 − (1 − qge)
ks ] = wgeqge +

∑

s 6=ge

ws = 1 − wge(1 − qge) (16)

and that this limit is not a function of the ks and thus holds for additive and multiplicative
models. Substituting this limiting value in Equations 13 to 15, we can solve for wge as
follows, for iso-elastic utility with λ 6= 0:

wge =
1

1 − qge

[

1 −
1 − (qge(1 − f)λ + (1 − qge))

1/λ

f

]

, (17)

for logarithmic utility:

wge =
1

1 − qge

[

1 −
1 − (1 − f)qge

f

]

(18)

and for negative exponential utility:

wge =
1

1 − qge

[

1 −
log[qgee

AL + (1 − qge)]

AL

]

. (19)

Values of ω = w
1/2
ge are given in Table 2. Values of ω < 0.5 in Table 2 correspond to

missing entries in Table 1. Table 2 shows just how uncommon an adverse exposure has
to be to avoid adverse selection.
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Table 2: The proportions ω exposed to each low-risk factor above which persons in the
baseline stratum will buy insurance at the average premium regardless of the relative risk
k, using different utility functions.

Utility loss L in £’000
Function qge 10 20 30 40 50 60 70 80 90

0.1 0.999 0.997 0.996 0.994 0.991 0.989 0.985 0.981 0.974
0.2 0.997 0.994 0.991 0.987 0.983 0.977 0.970 0.961 0.947

I(0.5) 0.3 0.996 0.992 0.987 0.981 0.974 0.966 0.955 0.941 0.919
0.4 0.995 0.989 0.982 0.974 0.965 0.954 0.940 0.920 0.890
0.5 0.993 0.986 0.978 0.968 0.956 0.942 0.924 0.899 0.860

0.1 0.997 0.994 0.991 0.986 0.981 0.974 0.965 0.951 0.926
0.2 0.995 0.989 0.981 0.973 0.962 0.949 0.932 0.906 0.859

Log 0.3 0.992 0.983 0.972 0.960 0.945 0.925 0.900 0.863 0.798
0.4 0.989 0.977 0.963 0.947 0.927 0.902 0.870 0.823 0.743
0.5 0.987 0.972 0.954 0.934 0.910 0.880 0.841 0.786 0.693

0.1 0.969 0.916 0.830 0.719 0.603 0.496 0.398 0.304 0.203
0.2 0.943 0.857 0.747 0.632 0.525 0.431 0.345 0.264 0.176

I(−8) 0.3 0.919 0.812 0.693 0.580 0.480 0.393 0.315 0.241 0.161
0.4 0.897 0.776 0.653 0.543 0.448 0.367 0.294 0.225 0.150
0.5 0.878 0.746 0.622 0.515 0.424 0.347 0.279 0.213 0.142

0.1 0.971 0.927 0.868 0.802 0.738 0.682 0.635 0.595 0.562
0.2 0.946 0.875 0.797 0.723 0.660 0.607 0.564 0.528 0.498

N(9e-5) 0.3 0.923 0.835 0.748 0.673 0.612 0.562 0.522 0.488 0.461
0.4 0.903 0.802 0.712 0.637 0.577 0.530 0.492 0.460 0.434
0.5 0.884 0.775 0.682 0.608 0.551 0.505 0.468 0.439 0.414
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Table 3: The relative risk k above which persons in stratum ge with initial wealth W =
£100, 000 will not buy insurance, using ω = 0.9 and an additive model.

Utility loss L in £’000
Function qge 10 20 30 40 50 60 70 80 90

0.1 1.126 1.269 1.433 1.625 1.855 2.140 2.511 3.033 3.899
0.2 1.120 1.258 1.419 1.613 1.852 2.158 2.577 3.212 4.419

I(0.5) 0.3 1.113 1.246 1.404 1.599 1.847 2.180 2.668 3.502 5.689
0.4 1.106 1.233 1.387 1.582 1.841 2.210 2.807 4.108 –
0.5 1.099 1.218 1.367 1.562 1.833 2.250 3.055 – –

0.1 1.257 1.563 1.934 2.399 3.004 3.839 5.101 7.368 13.841
0.2 1.246 1.546 1.923 2.418 3.107 4.170 6.164 13.981 –

Log 0.3 1.233 1.526 1.910 2.444 3.268 4.844 – – –
0.4 1.220 1.504 1.894 2.482 3.555 8.317 – – –
0.5 1.205 1.479 1.876 2.542 4.296 – – – –

0.1 4.458 18.642 – – – – – – –
0.2 4.823 – – – – – – – –

I(−8) 0.3 5.705 – – – – – – – –
0.4 – – – – – – – – –
0.5 – – – – – – – – –

0.1 4.246 13.531 – – – – – – –
0.2 4.514 – – – – – – – –

N(9e-5) 0.3 5.109 – – – – – – – –
0.4 7.984 – – – – – – – –
0.5 – – – – – – – – –

Assuming ω = 0.5 is perhaps extreme; it means that half the population possess a
significant genetic risk factor (modulated by environment) yet to be discovered. This is
by no means impossible, but we might expect most as-yet unknown risk factors to affect
a smaller proportion of the population, simply because they are as-yet unknown. So, we
increase ω to 0.9, so that only 10% of individuals are exposed to the adverse environment
or possess the adverse gene. The relative risks k at which adverse selection appears are
given in Table 3. They are larger than in Table 1 because the relative risk experienced
by the smaller number of high-risk individuals has to be much higher to have the same
impact on the average premium.

4.5 The Multiplicative Epidemiological Model

Table 4 shows relative risks above which adverse selection appears, assuming ω = 0.9
and a multiplicative model. They can be compared with the values in Table 3. We observe
the following:
(a) The missing entries are the same as in the additive model. This is because the limiting

values of q̄(k) and ω do not depend on the model structure.
(b) The relative risk in stratum GE is higher in the multiplicative model (k2 > 2k − 1)

so persons in the baseline stratum will be less tolerant towards any given value of k.
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Table 4: The relative risk k above which persons in stratum ge with initial wealth W =
£100, 000 will not buy insurance, using ω = 0.9 and a multiplicative model.

Utility loss L in £’000
Function qge 10 20 30 40 50 60 70 80 90

0.1 1.125 1.265 1.424 1.608 1.825 2.090 2.431 2.907 3.701
0.2 1.119 1.255 1.412 1.598 1.825 2.115 2.511 3.119 4.315

I(0.5) 0.3 1.113 1.243 1.398 1.586 1.824 2.144 2.617 3.447 5.660
0.4 1.106 1.230 1.381 1.571 1.822 2.181 2.773 4.086 –
0.5 1.098 1.216 1.362 1.553 1.817 2.229 3.037 – –

0.1 1.254 1.549 1.899 2.328 2.880 3.645 4.839 7.107 13.706
0.2 1.243 1.533 1.892 2.360 3.018 4.065 6.086 13.967 –

Log 0.3 1.231 1.516 1.884 2.399 3.212 4.805 – – –
0.4 1.218 1.495 1.873 2.449 3.527 8.314 – – –
0.5 1.203 1.472 1.859 2.521 4.288 – – – –

0.1 4.223 18.561 – – – – – – –
0.2 4.723 – – – – – – – –

I(−8) 0.3 5.676 – – – – – – – –
0.4 – – – – – – – – –
0.5 – – – – – – – – –

0.1 4.024 13.391 – – – – – – –
0.2 4.410 – – – – – – – –

N(9e-5) 0.3 5.073 – – – – – – – –
0.4 7.981 – – – – – – – –
0.5 – – – – – – – – –
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This is why the values in Table 4 are smaller than those in Table 3.
(c) However the differences between the additive and multiplicative models are not very

large. If k ≈ 1, then k2 ≈ 2k − 1, and for large values of ω (which arguably is most
realistic) the impact of stratum GE is relatively small. In view of this, we will use
only the additive model from now on.

4.6 Loss versus Coverage

Our simple model assumes that everyone risks the same loss L, and chooses to insure
it 100% if they insure at all. A more realistic model, as pointed out by a referee, might
assume that persons knowing themselves to be in stratum s choose insurance cover of
Cs, not necessarily equal to L (indeed not necessarily bounded by L unless the insurer
limits the coverage by reference to some objective measure of L or W ). Assuming the
insurer charges an average premium rate q̄(k) as before, Cs will be chosen to maximise
qsU(W −L+Cs− q̄(k)Cs)+(1−qs)U(W − q̄(k)Cs). This extension of the model would be
of interest in its own right; however some experiments (not shown) confirm that it does
not change the qualitative nature of our conclusions.

4.7 Genetic Information and Behaviour

The introduction of new genetic information — ability to learn one’s own genotype
— may lead high-risk people in particular to alter their behaviour to ameliorate the
risk. Thus the composition of the risk groups may not be the same before and after
genetic testing (say) becomes available. This possibility is more plausible for multifactorial
diseases than for single-gene disorders, since there will often be modifiable environmental
or lifestyle interactions. For example, if our environmental variable was E = ‘smoker’ and
e = ‘non-smoker’, persons initially in stratum GE might be particularly likely to stop
smoking, and (perhaps after some time) move to stratum Ge. The low-risk strata will
be enlarged, which will: (a) cause the weighted average premium to fall; and (b) as in
Table 2, make it more likely that low-risk individuals will buy insurance regardless of the
relative risks. Therefore, our results err on the pessimistic side.

Such behavioural effects can, in principle, be modelled by allowing transitions between
strata, after genetic testing and before insurance is purchased. For example, suppose
ω = 0.9 and 1% of the population is initially in stratum GE, but that after genetic tests
become available, half of those in stratum GE move to stratum Ge. Table 3 shows the
relative risk thresholds before, and Table 5 after, the introduction of genetic tests. There
is an appreciable difference, even though only 0.5% of the population has changed its
behaviour. However, since we have no greater insight than this into how behaviour might
change, we interpret all our results except those in Table 5 as being after any behavioural
changes have taken effect. When real epidemiological studies eventually become available,
the effect of modified behaviour should not be overlooked.

5. Critical Illness Insurance

5.1 A Heart Attack Model

We now model the specific example of CI insurance. We will focus on heart attack
risk, building upon two earlier papers, in which the reader can find full details.
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Table 5: The relative risk k above which persons in stratum ge with initial wealth W =
£100, 000 will not buy insurance, using wge = 0.81, wGe = 0.095, wgE = 0.09 and wGE =
0.005 and an additive model.

Utility loss L in £’000
Function qge 10 20 30 40 50 60 70 80 90

0.1 1.167 1.356 1.571 1.821 2.118 2.482 2.949 3.597 4.649
0.2 1.159 1.339 1.548 1.794 2.092 2.468 2.971 3.714 5.078

I(0.5) 0.3 1.150 1.321 1.523 1.765 2.067 2.462 3.023 3.951 6.272
0.4 1.140 1.302 1.496 1.734 2.040 2.463 3.125 4.508 –
0.5 1.129 1.282 1.466 1.699 2.012 2.478 3.339 – –

0.1 1.341 1.741 2.219 2.808 3.561 4.576 6.071 8.662 15.674
0.2 1.324 1.709 2.180 2.781 3.593 4.801 6.974 15.032 –

Log 0.3 1.306 1.675 2.142 2.767 3.693 5.389 – – –
0.4 1.286 1.640 2.102 2.768 3.928 8.788 – – –
0.5 1.265 1.601 2.061 2.794 4.621 – – – –

0.1 5.315 20.677 – – – – – – –
0.2 5.523 – – – – – – – –

I(−8) 0.3 6.288 – – – – – – – –
0.4 – – – – – – – – –
0.5 – – – – – – – – –

0.1 5.063 15.347 – – – – – – –
0.2 5.182 – – – – – – – –

N(9e-5) 0.3 5.666 – – – – – – – –
0.4 8.454 – – – – – – – –
0.5 – – – – – – – – –
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(a) Gutiérrez & Macdonald (2003) parameterised the CI model shown in Figure 2, using
medical studies and population data. Therefore, in particular, λ12(x) denotes the rate
of onset of heart attacks in the general population (different for males and females).

(b) Macdonald, Pritchard & Tapadar (2006) assumed that a 2 × 2 gene-environment
interaction affected heart attack risk, with genotypes G and g, and environmental
exposures E and e, upper case representing higher risk. So there are four strata for
each sex — ge, gE,Ge and GE. The authors showed that it is possible to hypothecate
assumptions on strata-specific relative risks, in a way which is consistent with the rate
of onset in the general population. We will use a similar technique here.
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Figure 2: A full critical illness model.

Consider all healthy individuals aged x. If q̄ denotes the probability that a healthy
person aged x has a heart attack before age x + t, it can be calculated from the heart
attack transition intensity of the general population as follows:

q̄ = 1 − exp

[

−

∫ t

0

λ12(x + y)dy

]

(20)

Now, for males and females separately, let c denote the relative risk in the baseline
stratum ge with respect to the general population, and let ks denote the relative risk in
stratum s with respect to stratum ge, in both cases assumed to be constant at all ages
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Figure 3: The ratio of heart attack transition intensity to total critical illness transition
intensity, by gender.

(in other words, we assume a proportional hazards model). If we denote the rate of onset
of heart attack in stratum s by λs

12(x), it is given by:

λs
12(x) = c × ks × λ12(x). (21)

Suppose that at age, x, the proportion of healthy individuals who are in stratum s is
ws. In stratum s, let qs be the probability that a healthy person age x has a first heart
attack before reaching age x + t. Then using Equations 20 and 21, we can show that:

qs = 1 − exp

[

−

∫ t

0

λs
12(x + y)dy

]

= 1 − (1 − q̄)cks . (22)

Equating the weighted average probability over all strata with the population probability,
that is, q̄ =

∑

wsqs, we have:

q̄ =
∑

ws[1 − (1 − q̄)cks ]. (23)

Given the relative risks, the population proportions and the estimated λ12(x), we can
solve this for c, which fully specifies the stratum-specific intensities λs

12(x).

5.2 Threshold Premium for Critical Illness Insurance

To extend the two-state insurance model of Section 3 to the CI model with six states,
we make some simplifying assumptions.
(a) We will model gene-environment interactions affecting heart attack risk alone, leaving

other intensities unaffected. This is not completely realistic, since many known risk
factors for heart disease are also risk factors for other disorders.
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Table 6: The premium rates of critical illness contracts of duration 15 years.

Age Male Female

25 0.013787 0.018746
35 0.048413 0.049715
45 0.136363 0.110434

(b) The heart attack transition intensity is different for males and females. Figure 3 shows
the ratio λ12(x)/

∑5
j=2 λ1j(x) for both sexes. Heart attack is the predominant CI

among middle-aged men, while among women, heart attack is increasingly prominent
from age 30 onwards, but cancer is the dominant CI at all ages. The ratio for males
stays significantly higher than the ratio for females, except at very high ages. Hence
we might expect adverse selection to appear at different relative risk thresholds for
the two sexes.

5.3 Premium Rates for Critical Illness Insurance

As examples, we model single-premium CI insurance contracts of duration 15 years
sold to males and females aged 25, 35 and 45. First, assuming all transition intensities are
as given in Gutiérrez & Macdonald (2003), we compute the single premiums as expected
present values (EPVs) of the benefit payments by solving Thiele’s differential equations
(see Norberg (1995)) numerically. Again for simplicity, we assume the force of interest
δ = 0. Table 6 gives the CI premium rates per unit sum assured for these contracts.

We make the same epidemiological assumptions as before, namely that kgE = kGe = k;
that an additive model (kGE = 2k−1) applies, and that wge = ω2, wgE = wGe = ω(1−ω),
and wGE = (1 − ω)2, where ω = 0.9 (the more realistic assumption); and also that initial
wealth is W = £100, 000. Given the relative risks, we obtain c and hence the the heart
attack intensity for each sex and stratum as in Section 5.1. This allows us to calculate
stratum-specific premium rates.

Let Ps denote the single premium rate for unit CI insurance in stratum s. Note that
apart from the stratum-specific heart attack risk, Ps also covers the risk of all other CIs,
which are assumed to be the same for all strata. Let P̄ denote the population average
premium rate for unit CI insurance (the averaging being over all strata for a given gender).
As before, since we are ignoring interest rates and profit margins, the various premium
rates defined above are the same as the probabilities of the event insured against. Then
define a function Z(P ) of a premium P as follows:

Z(P ) = U(W − P̄L) − [PU(W − L) + (1 − P )U(W )]. (24)
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Table 7: P † for males, which solves Z(P ) = 0, for different combinations of utility functions and losses, using initial wealth W
= £100,000.

Utility loss L in £’000
Function Age 10 20 30 40 50 60 70 80 90

25 0.013438 0.013068 0.012674 0.012250 0.011788 0.011277 0.010695 0.010004 0.009102
I(0.5) 35 0.047229 0.045969 0.044622 0.043167 0.041577 0.039808 0.037788 0.035378 0.032216

45 0.133321 0.130058 0.126534 0.122691 0.118448 0.113678 0.108172 0.101522 0.092679

25 0.013095 0.012374 0.011620 0.010826 0.009980 0.009065 0.008055 0.006891 0.005423
Log 35 0.046062 0.043604 0.041019 0.038282 0.035353 0.032171 0.028636 0.024543 0.019348

45 0.130316 0.123918 0.117108 0.109801 0.101879 0.093158 0.083326 0.071772 0.056865

25 0.008388 0.004503 0.002062 0.000773 0.000223 0.000045 0.000005 0.000000 0.000000
I(−8) 35 0.029922 0.016319 0.007596 0.002893 0.000849 0.000174 0.000021 0.000001 0.000000

45 0.087752 0.049912 0.024272 0.009674 0.002978 0.000642 0.000081 0.000004 0.000000

25 0.008554 0.004976 0.002733 0.001429 0.000719 0.000351 0.000167 0.000078 0.000036
N(9e-5) 35 0.030512 0.018032 0.010061 0.005349 0.002734 0.001356 0.000656 0.000312 0.000146

45 0.089459 0.055093 0.032069 0.017804 0.009517 0.004938 0.002504 0.001247 0.000613
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Table 8: P † for females, which solves Z(P ) = 0, for different combinations of utility functions and losses, using initial wealth
W = £100,000.

Utility loss L in £’000
Function Age 10 20 30 40 50 60 70 80 90

25 0.018273 0.017773 0.017239 0.016664 0.016038 0.015344 0.014554 0.013616 0.012389
I(0.5) 35 0.048500 0.047209 0.045827 0.044334 0.042702 0.040886 0.038813 0.036339 0.033093

45 0.107899 0.105188 0.102269 0.099094 0.095600 0.091684 0.087179 0.081758 0.074580

25 0.017809 0.016833 0.015811 0.014734 0.013586 0.012344 0.010971 0.009388 0.007390
Log 35 0.047304 0.044782 0.042131 0.039322 0.036315 0.033050 0.029420 0.025217 0.019880

45 0.105398 0.100089 0.094460 0.088443 0.081945 0.074821 0.066825 0.057471 0.045463

25 0.011431 0.006150 0.002823 0.001060 0.000307 0.000062 0.000007 0.000000 0.000000
I(−8) 35 0.030745 0.016778 0.007814 0.002978 0.000875 0.000180 0.000021 0.000001 0.000000

45 0.070219 0.039438 0.018924 0.007438 0.002256 0.000479 0.000059 0.000003 0.000000

25 0.011657 0.006796 0.003740 0.001961 0.000989 0.000483 0.000231 0.000108 0.000050
N(9e-5) 35 0.031351 0.018539 0.010350 0.005506 0.002817 0.001397 0.000677 0.000322 0.000151

45 0.071593 0.043550 0.025029 0.013714 0.007231 0.003700 0.001849 0.000908 0.000439
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Table 9: The population average premium rate for CI insurance, P0, as if heart attack
risk were absent (λ12 = 0).

Age Male Female

25 0.009821 0.018326
35 0.031290 0.046485
45 0.092818 0.097947

Note that Z(Pge) < 0 is the condition under which adverse selection will appear, equivalent
to Equation 12 of Section 4.2. Or, let P † be the solution of Z(P ) = 0. Then Pge < P †

is the condition for adverse selection to appear. Tables 7 and 8 show P † for males and
females respectively. It depends on the utility function but not on the epidemiological
model. For the 2-state model, Equation 12 was central in our analysis. Given: (a) a
model structure (additive or multiplicative), the baseline risk qge, and the proportion ω
with low values of each risk factor; and (b) noting that the average risk q̄ was an increasing
function of the relative risk parameter k; we obtained a minimum value of k for which
adverse selection first appears.

We would like to do the same for the CI insurance model. However, there are impor-
tant differences between the two models.
(a) In the 2-state model we specified the baseline risk and relative risks, and these deter-

mined the average risk. In the CI insurance model, we specify the average risk (given
by the population heart attack risk) and the relative risks, and these determine the
baseline risk, in the form of the relative risk c. Clearly increasing the relative risk
k will cause c to fall, hence also the premium Pge. To make this dependence clear,
we will write c(k) and Pge(k) in this section. It will also be useful to note that the
probability qge of a heart attack similarly depends on k, and write qge(k).

(b) However, unlike in the 2-state model, Pge(k) has a lower bound, denoted P0, given
by the population average premium rate for CI insurance as if heart attack risk were
absent (λ12 = 0 and c = 0). These values are shown in Table 9. They do not depend on
the epidemiological model or the utility function. Clearly Pge(k) ≥ P0, no matter how
high k becomes. Thus we have two possibilities: limk→∞ Pge(k) = P0 (equivalently
limk→∞ c(k) = 0); or limk→∞ Pge(k) > P0 (equivalently limk→∞ c(k) > 0). We return
to this point in Section 5.4.

(c) If Pge(k) is a strictly decreasing function, which it is for the utility functions we
are using, adverse selection is possible if limk→∞ Pge(k) < P †, and in such cases we
can solve Pge(k) = P † for the threshold value of k above which adverse selection
will appear. Tables 10 and 11 show these values for the various utility functions
and loss levels, for males and females respectively. The missing values correspond to
combinations of parameters such that limk→∞ Pge(k) > P †, for which adverse selection
will not appear.

(d) Another consequence of this is that there is a level of insured loss, that we denote L0,
above which adverse selection cannot occur, because fixing L > L0 in Equation 24
and solving for P † yields a solution P † < Pge(k) for all k. Table 12 gives the values
of L0, for the usual utility functions and initial wealth £100,000. The missing values
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Table 10: The relative risk k above which males of different ages in stratum ge with
initial wealth W = £100, 000 will not buy critical illness insurance policies of term 15
years, where ω = 0.9.

Utility loss L in £’000
Function Age 10 20 30 40 50 60 70 80 90

25 1.484 2.111 2.960 4.183 6.117 9.698 18.869 105.569 –
I(0.5) 35 1.376 1.846 2.450 3.262 4.420 6.226 9.509 17.715 93.578

45 1.389 1.886 2.544 3.456 4.808 7.027 11.388 24.239 –

25 2.062 3.783 7.068 15.883 122.410 – – – –
Log 35 1.808 2.998 4.917 8.530 17.855 98.596 – – –

45 1.843 3.138 5.339 9.794 23.063 765.192 – – –

25 – – – – – – – – –
I(−8) 35 – – – – – – – – –

45 – – – – – – – – –

25 – – – – – – – – –
N(9e-5) 35 – – – – – – – – –

45 – – – – – – – – –

Table 11: The relative risk k above which females of different ages in stratum ge with
initial wealth W = £100, 000 will not buy critical illness insurance policies of term 15
years, where ω = 0.9.

Utility loss L in £’000
Function Age 10 20 30 40 50 60 70 80 90

25 – – – – – – – – –
I(0.5) 35 4.031 18.470 – – – – – – –

45 2.293 4.710 10.770 52.668 – – – – –

25 – – – – – – – – –
Log 35 15.856 – – – – – – – –

45 4.459 26.155 – – – – – – –

25 – – – – – – – – –
I(−8.0) 35 – – – – – – – – –

45 – – – – – – – – –

25 – – – – – – – – –
N(9e-5) 35 – – – – – – – – –

45 – – – – – – – – –
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Table 12: The loss L0 in £,000 above which adverse selection cannot occur. Initial wealth
W = £100,000.

Utility Function
Gender Age I(0.5) Log I(−8) N(9e-5)

25 82.3 51.8 7.1 7.2
Male 35 92.3 62.6 9.2 9.5

45 89.9 60.4 8.9 9.2

25 8.9 4.5 0.5 0.5
Female 35 25.3 13.3 1.5 1.6

45 43.4 23.9 2.9 2.9

in Tables 10 and 11 occur for losses L > L0.

The general pattern of threshold relative risks for males given in Table 10 is similar
to that in Section 4; what is of most interest are their absolute values, since we have tried
to suggest plausible models for both the risk model and the utility functions.
(a) For iso-elastic utility with λ = −8 and negative exponential utility with parameter

A = 9 × 10−5, we find no evidence at all of adverse selection.
(b) For all utility functions and at all loss levels, if adverse selection can appear, it does

so at higher levels of relative risk than under the two-state model. This is because the
impact of the gene and environment on heart attack risk is diluted by the presence
of the other CIs, whose risks are assumed to be independent of the g/G genotypes
and e/E environments. Only for the lowest levels of loss are these relative risks in
the range that might be typical of relatively common multifactorial disorders; by
definition, we do not expect studies like UK Biobank to lead to the discovery of
hitherto unknown high risk genotypes.

(c) When adverse selection can appear, the relative risk threshold first decreases and then
increases with age. This is because among CIs the importance of heart attack peaks
at around age 45 as can be seen from Figure 6.

The threshold relative risks for females are given in Table 11. We observe the follow-
ing:
(a) The threshold relative risks are much higher than those for males, in all cases. This

is because heart attacks form a smaller proportion of all CIs for females, so a larger
increase in heart attack risk is needed to trigger adverse selection.

(b) As for males, at levels of absolute and relative risk-aversion that we regard as most
plausible (consistent with the Bank of Italy study) we find no evidence that adverse
selection is likely.

(c) In contrast to males, the threshold relative risks decrease with age. The reason is
clear from Figure 3; for females the relative importance of heart attack increases with
age.

(d) Adverse selection appears to be possible only for: (i) smaller losses; and (ii) extremely
low levels of risk aversion.
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5.4 High Relative Risks

In Section 4.4, we considered relative risks that increased without limit, for the simple
2-state insurance model. We saw that, even in this extreme case, if stratum ge was large
enough, adverse selection would not appear. In this section, we consider high relative
risks (of heart attack) in the CI insurance model.

We assume the heart attack rates in the general population λ12(x) are fixed at their
estimated values (Gutiérrez & Macdonald, 2003). From Equation 23 we obtain:

1 − q̄ = 1 −
∑

s

ws[1 − (1 − q̄)c(k)ks ]

= wge(1 − q̄)c +
∑

s 6=ge

ws(1 − q̄)cks . (25)

Differentiation shows the right-hand side to be a decreasing function of c and of each ks

(s 6= ge), all other quantities held constant in each case. Also, if c = 1 the right-hand side
is less than (1 − q̄) while if c = 0 it is greater than (1 − q̄). Hence, as we increase the ks

without limit, c must decrease, and being bounded below it must have a limit. The limit
could be zero or non-zero. We can easily see that if c has a non-zero limit (necessarily
positive) then the last term on the right-hand side of Equation 25 vanishes and the limit
must be:

lim
ks→∞
s 6=ge

c = 1 −
log wge

log(1 − q̄)
(26)

which in turn implies (1 − q̄) < wge. On the other hand if (1 − q̄) > wge, then c cannot
have non-zero limit, so the equation:

lim
ks→∞
s 6=ge

∑

s 6=ge

ws(1 − q̄)cks = (1 − q̄) − wge (27)

holds. Since the left-hand side is finite, at least one of the products cks tends to a finite
limit as the ks → ∞. However, we have not specified here how the quantities ks (s 6= ge)
jointly approach infinity, so the behaviour of c is not easy to analyse in general. It is
greatly simplified if the ks are simple functions of a single parameter k, which is the
case in our assumed epidemiological model (in which case we again make explicit the
dependence of c by writing c(k)). For example, under an additive model with symmetry
between genetic and environmental risks, Equation 25 can be written as:

1 − q̄ = ω2(1 − q̄)c + 2ω(1 − ω)(1 − q̄)c(k)k + (1 − ω)2(1 − q̄)c(k)(2k−1)

= (1 − q̄)c(k)[ω + (1 − ω)(1 − q̄)c(k)(k−1)]2 (28)

therefore:

k = 1 +
log[(1 − q̄)(1−c(k))/2 − ω] − log(1 − ω)

c(k) log(1 − q̄)
. (29)



Multifactorial Genetic Disorders and Adverse Selection 25

Table 13: q̄, the probability that a healthy person aged x has a heart attack before age
x + t, for policy duration t = 15 years.

Age Male Female

25 0.004743 0.000541
35 0.021454 0.004299
45 0.059959 0.017616

If ω2 > (1 − q̄) then as k → ∞, the limiting value of c(k) is non-zero. Otherwise, when
ω2 < (1 − q̄), c(k) → 0, and Equation 29 yields the finite limiting value:

lim
k→∞

c(k)k =
log[(1 − q̄)1/2 − ω] − log(1 − ω)

log(1 − q̄)
. (30)

So, in summary:

lim
k→∞

c(k) =

{

0 if wge ≤ (1 − q̄)

1 −
log wge

log(1−q̄)
if wge > (1 − q̄).

(31)

We want to find out if the baseline stratum ge can ever be large enough that adverse
selection will never appear, no matter how large k becomes. Hence we want to understand
the behaviour of limk→∞ Pge(k) as a function of wge. Equation 31 shows that we must
treat separately the cases wge ≤ (1− q̄) and wge > (1− q̄). Values of q̄ are given in Table
13. (Note that P0 + q̄ 6= P̄ , because in a competing risks model removing one cause of
decrement increases the probabilities of the other decrements occurring.)
(a) If P0 > P † the result is trivial, since limk→∞ Pge(k) ≥ P0 for any value of wge, and

adverse selection can never occur.
(b) If P0 < P † adverse selection will occur if wge ≤ (1−q̄), since then limk→∞ Pge(k) = P0.
(c) The non-trivial case is P0 < P † and wge > (1− q̄), since then limk→∞ Pge(k) > P0. We

can show that limk→∞ Pge(k) is an increasing function of wge in this range, because
the limit of the heart attack probability limk→∞ qge(k) is (use Equation 26 to write:

lim
k→∞

qge(k) = lim
k→∞

[1 − (1 − q̄)c(k)] = 1 −
(1 − q̄)

wge

(32)

and differentiate). The function limk→∞ Pge(k) is continuous and increases from P0

to P̄ as wge increases from (1 − q̄) to 1, the upper limit being attained when all the
strata have collapsed into one, and c = 1. Since P † < P̄ for any concave utility
function, the intermediate value theorem guarantees that there exists a unique value
of wge such that limk→∞ Pge(k) = P †; that is, such that adverse selection can never
appear if wge exceeds this value.

Tables 14 and 15 give the threshold values of ω = w
1/2
ge above which no adverse

selection takes place, in the additive model with gene-environment symmetry, for males
and females respectively. Missing values indicate that adverse selection will never appear.
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Table 14: The proportions ω exposed to each low-risk factor above which persons in the
baseline stratum will buy insurance at the average premium regardless of the relative risk
k, using different utility functions, for males purchasing CI insurance.

Utility loss L in £’000
Function Age 10 20 30 40 50 60 70 80 90

25 1.000 1.000 0.999 0.999 0.999 0.998 0.998 0.998 –
I(0.5) 35 0.999 0.998 0.998 0.997 0.996 0.995 0.993 0.992 0.990

45 0.998 0.995 0.993 0.990 0.987 0.984 0.980 0.975 –

25 1.000 0.999 0.999 0.998 0.998 – – – –
Log 35 0.999 0.997 0.995 0.994 0.992 0.990 – – –

45 0.996 0.991 0.986 0.981 0.976 0.970 – – –

25 – – – – – – – – –
I(−8) 35 – – – – – – – – –

45 – – – – – – – – –

25 – – – – – – – – –
N(9e-5) 35 – – – – – – – – –

45 – – – – – – – – –

When it is possible, the threshold value of ω ranges from 0.970 to 1 for males and 0.992
to 0.999 for females. As the relative risks in Tables 10 and 11 are based on ω = 0.9, this
explains the missing values in those tables.

This pattern is quite unexpected. If adverse selection can occur, then a large enough
baseline stratum does confer immunity from it, but it has to be very large indeed, all
but a few percent of the population. But once the threshold is crossed, adverse selection
cannot appear at all, even if very few people are in the baseline stratum. This had no
counterpart in the 2-state model, and it is caused by the presence of substantial other
risks not affected by the gene-environment variants.

6. Conclusions

Until now, genetical research on information asymmetry and adverse selection has
taken one of two routes — models of single-gene disorders and work on the economic
welfare effects of genetic testing. In this paper, we have represented multifactorial disor-
ders using standard epidemiological models and analysed circumstances leading to adverse
selection, taking economic factors into account in a simple way through expected utility.

We used a range of iso-elastic utilities (including the special case of logarithmic utility)
and a negative exponential utility, to represent constant relative and absolute risk aversion,
respectively. They were parameterised to be reasonably consistent with some estimates
based on survey data, but also to allow comparability, given our chosen level of wealth of
£100,000.

We used a simple 2 × 2 gene-environment interaction model, assuming that informa-
tion on status within the model was available only to the consumers and not to the insurer.
Competition leads insurers to charge actuarially fair premiums, based on expected losses
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Table 15: The proportions ω exposed to each low-risk factor above which persons in the
baseline stratum will buy insurance at the average premium regardless of the relative risk
k, using different utility functions, for females purchasing CI insurance.

Utility loss L in £’000
Function Age 10 20 30 40 50 60 70 80 90

25 – – – – – – – – –
I(0.5) 35 0.999 0.998 – – – – – – –

45 0.998 0.996 0.994 0.992 – – – – –

25 – – – – – – – – –
Log 35 0.998 – – – – – – – –

45 0.996 0.993 – – – – – – –

25 – – – – – – – – –
I(−8) 35 – – – – – – – – –

45 – – – – – – – – –

25 – – – – – – – – –
N(9e-5) 35 – – – – – – – – –

45 – – – – – – – – –

given the information they have. Adverse selection will not occur as long as members of
the least risky stratum (who know their status) can still increase their expected utility by
insuring at the average price.

First, we studied a simple 2-state insurance model, with constant relative risks in
different risk strata defined by the gene-environment model. We found that adverse
selection does not appear unless purchasers are not very risk averse, and insure only a
small proportion of their wealth; or unless the elevated risks implied by genetic information
are implausibly high, bearing in mind the nature of multifactorial risk. In many cases
adverse selection is impossible if the low-risk stratum is large enough, these levels being
quite compatible with plausible multifactorial disorders.

We applied the same gene-environment interaction model, assumed to affect the risk
of heart attacks, to CI insurance. As heart-attack risk is just part of the risk of all
CIs, the impact of the gene-environment risk factor was diluted, compared with the 2-
state insurance model where the total risk was influenced. Our results showed complete
absence of adverse selection at realistic risk-aversion levels, irrespective of the stratum-
specific risks, for males and females. Moreover, the existence of risks other than of heart
attack, and the constraint of differential heart-attack risk to be consistent with the average
population risk, introduced a threshold effect absent from the 2-state model. When
adverse selection was possible at all (low risk aversion, low loss ratios) only an unfeasibly
high proportion of the population in the low-risk stratum would avoid it, but when the
threshold was crossed adverse selection vanished no matter what the size of the low-risk
stratum.

The results from both 2-state and CI insurance models suggest that in circumstances
that are plausibly realistic, private genetic information, relating to multifactorial risks,
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that is available only to customers does not lead to adverse selection. This conclusion is
strongest in the more realistic CI insurance model.

We have not considered what might happen if insurers were allowed access to this
genetic information. The opportunity would then exist to underwrite using that informa-
tion. If one believed that social policy is best served by solidarity, the important question
is whether insurers would find it worthwhile to use the genetic information. Further
research would be useful, to investigate the costs of acquiring and interpreting genetic
information relating to common diseases, compared with the benefits in terms of possibly
more accurate risk classification, in both cases in the context of multifactorial risk.
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