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Abstract. For relatively hyperbolic groups, we investigate conditions guar-

anteeing that the subgroup generated by two relatively quasiconvex subgroups
Q1 and Q2 is relatively quasiconvex and isomorphic to Q1 ∗Q1∩Q2

Q2. The

main theorem extends results for quasiconvex subgroups of word-hyperbolic

groups, and results for discrete subgroups of isometries of hyperbolic spaces.
An application on separability of double cosets of quasiconvex subgroups is

included.

1. Introduction

This paper continues the work that started in [10] motivated by the following
question:

Problem 1. Suppose G is a relatively hyperbolic group, Q1 and Q2 are relatively
quasiconvex subgroups of G. Investigate conditions guaranteeing that the natural
homomorphism

Q1 ∗Q1∩Q2
Q2 −→ G

is injective and that its image 〈Q1 ∪Q2〉 is relatively quasiconvex.

Let G be a group hyperbolic relative to a finite collection of subgroups P, and
let dist be a proper left invariant metric on G.

Definition 1. Two subgroups Q and R of G have compatible parabolic subgroups if
for any maximal parabolic subgroup P of G either Q∩P < R∩P or R∩P < Q∩P .

Theorem 2. For any pair of relatively quasiconvex subgroups Q and R of G with
compatible parabolic subgroups, and any finite index subgroup H of Q ∩ R, there
is a constant M = M(Q,R,H, dist) ≥ 0 with the following property. Suppose that
Q′ < Q and R′ < R are subgroups such that

(1) H = Q′ ∩R′, and
(2) dist(1, g) ≥M for any g in Q′ \Q′ ∩R′ or R′ \Q′ ∩R′.

Then the subgroup 〈Q′ ∪R′〉 of G satisfies:

(1) The natural homomorphism

Q′ ∗Q′∩R′ R′ −→ 〈Q′ ∪R′〉
is an isomorphism.

(2) If Q′ and R′ are relatively quasiconvex, then so is 〈Q′ ∪R′〉.
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Theorem 2 extends results by Gitik [6, Theorem 1] for word-hyperbolic groups
and by the the first author [10, Theorem 1.1] for relatively hyperbolic groups.
Combination results with stronger hypothesis along the lines of Theorem 2 have
recently obtained by Yang including a version for HNN-extensions and applications
to subgroup separability [14] .

Definition 3. Two subgroups Q and R of a group G can be virtually amalgamated
if there are finite index subgroups Q′ < Q and R′ < R such that the natural map
Q′ ∗Q′∩R′ R′ −→ G is injective.

Let Q and R be relatively quasiconvex subgroups of G with compatible parabolic
subgroups, and let M = M(Q,R,Q ∩ R) be the constant provided by Theorem 2.
If Q ∩ R is a separable subgroup of G, then there is a finite index subgroup G′ of
G containing Q ∩ R such that dist(1, g) > M for every g ∈ G with g 6∈ Q ∩ R. In
this case, the subgroups Q′ = G′ ∩ Q and R′ = G′ ∩ R satisfy the hypothesis of
Theorem 2; hence they have a quasiconvex virtual amalgam.

Corollary 4 (Virtual Quasiconvex Amalgam Theorem). Let Q and R quasiconvex
subgroups of G with compatible parabolic subgroups, and suppose that Q ∩ R is
separable. Then Q and R can be virtually amalgamated in G.

It is known that many (relatively) hyperbolic groups have that property that
all quasiconvex or all finitely generated subgroups are separable [2, 9, 8, 13, 12, 1].
Still, it is a natural question to ask whether the corollary above holds under the
hypothesis that G is residually finite.

A special case of the Virtual Quasiconvex Amalgam Theorem is the following
(cfr. [3, Theorem 5.3]).

Corollary 5. Let G be a geometrically finite subgroup of Isom(Hn), and let Q
and R be geometrically finite subgroups of G with compatible parabolic subgroups.
Suppose that Q ∩ R is separable in G. Then Q and R have a geometrically finite
virtual amalgam.

Separability of quasiconvex subgroups and double cosets of quasiconvex sub-
groups is of interest in the construction of actions on special cube complexes [12].
The machinery we use to prove the main result also gives the following.

Corollary 6 (Double cosets are separable). Let G be a relatively hyperbolic group
such that all its quasiconvex subgroups are separable. If Q and R are quasiconvex
subgroups with compatible parabolic subgroups then the double coset QR is separable.
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referee for insightful comments and corrections. Mart́ınez-Pedroza is supported by
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2. Preliminaries

2.1. Gromov-hyperbolic Spaces. Let (X, dist) be a proper and geodesic δ-hyperbolic
space. Recall that a (λ, µ)−quasi-geodesic is a curve γ : [a, b]→ X parametrize by
arc-length such that

|x− y|/λ− µ ≤ dist(γ(x), γ(y)) ≤ λ|x− y|+ µ

for all x, y ∈ [a, b]. The curve γ is a k−local (λ, µ)−quasi-geodesic if the above
condition is required only for x, y ∈ [a, b] such that |x− y| ≤ k.
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Lemma 7. [5, Chapter 3, Theorem 1.2](Morse Lemma) For each λ, µ, δ there ex-
ists k > 0 with the following property. In an δ−hyperbolic geodesic space, any
(λ, µ)−quasi-geodesic at k-Hausdorff-distance from the geodesic between its end-
points.

Lemma 8. [5, Chapter 3, Theorem 1.4] For each λ, µ, δ there exist k, λ′, µ′ so that
any k−local (λ, µ)−quasi-geodesic in a δ−hyperbolic geodesic space is a (λ′, µ′)−quasi-
geodesic.

Fix a basepoint x0 ∈ X. If G is a subgroup of Isom(X), we identify each element
g of G with the point gx0 of X. For g1, g2 ∈ G denote by dist(g1, g2) the distance
dist(g1x0, g2x0). Since X is a proper space, if G is a discrete subgroup of Isom(X),
this is a proper and left invariant pseudo-metric on G.

Lemma 9 (Bounded Intersection). [10, Lemma 4.2] Let G be a discrete subgroup
of Isom(X), let Q and R be subgroups of G, and let µ > 0 be a real number. Then
there is a constant M = M(Q,R, µ) ≥ 0 so that

Q ∩Nµ(R) ⊂ NM (Q ∩R).

2.2. Relatively Quasiconvex Subgroups. We follow the approach to relatively
hyperbolic groups as developed by Hruska [7].

Definition 10 (Relative Hyperbolicity). A group G is relatively hyperbolic with re-
spect to a finite collection of subgroups P if G acts properly discontinuously and by
isometries on a proper and geodesic δ-hyperbolic space X with the following prop-
erty: X has a G-equivariant collection of pairwise disjoint horoballs whose union is
an open set U , G acts cocompactly on X − U , and P is a set of representatives of
the conjugacy classes of parabolic subgroups of G.

Throughout the rest of the paper, G is a relatively hyperbolic group acting
on a proper and geodesic δ-hyperbolic space X with a G-equivariant collection of
horoballs satisfying all conditions of Definition 10. As before, we fix a basepoint
x0 ∈ X − U , identify each element g of G with gx0 ∈ X and let dist(g1, g2) denote
dist(g1x0, g2x0) for g1, g2 ∈ G.

Lemma 11. [4, Lemma 6.4](Cocompact actions of parabolic subgroups on thick
horospheres) Let B be a horoball of X with G-stabilizer P . For any M > 0, P acts
cocompactly on NM (B) ∩ (X − U).

Lemma 12 (Parabolic Approximation). Let Q be a subgroup of G and let µ > 0 be a
real number. There is a constant M = M(Q,µ) with the following property. If P is
a maximal parabolic subgroup of G stabilizing a horoball B, and {1, q} ⊂ Q∩Nµ(B)
then there is p ∈ Q ∩ P such that dist(p, q) < M .

Proof. By Lemma 11, dist(q, P ) < M1 for some constant M1 = M1(Q,P ). Then
Lemma 9 implies that dist(q,Q ∩ P ) < M2 where M2 = N(Q,P,M1). Since B is
a horoball at distance less than µ from 1, there are only finitely many possibilities
for B and hence for the subgroup P . Let M the maximum of all N(Q,P, µ) among
the possible P . �

Definition 13 (Relatively Quasiconvex Subgroup). A subgroup Q of G is relatively
quasiconvex if there is µ ≥ 0 such that for any geodesic c in X with endpoints in
Q, c ∩ (X − U) ⊂ Nµ(Q).
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The choice of horoballs turns out not to make a difference:

Proposition 14. [7] If Q is relatively quasiconvex in G then for any L ≥ 0 there
is µ ≥ 0 such that for any geodesic c in X with endpoints in Q, c ∩ NL(X − U) ⊂
Nµ(Q).

3. A Lemma on Gromov’s Inner Product

Let Q and R be relatively quasiconvex subgroups with compatible parabolic
subgroups, and let H be a finite index subgroup of Q ∩R.

Let Q′ and R′ be subgroups of Q and R respectively such that Q′∩R′ = H. Let
g ∈ Q′R′ (or g ∈ R′Q′) such that g 6∈ H. Suppose g = qr (or g = rq) with q ∈ Q′,
r ∈ R′ and such that dist(1, q) + dist(1, r) is minimal among all such products.

Lemma 15. Suppose that there exists a ∈ H and a point p at distance at most A
from the geodesic segment [1, g] so that dist(p, qa) ≤ B. Then

dist(1, q) + dist(1, r) ≤ dist(1, g) + 2A+ 2B.

Proof. Let p′ ∈ [1, g] be such that dist(p, p′) < A. Then

dist(1, qa)+ dist(1, a−1r) ≤
≤ dist(1, p′) + dist(p′, qa) + dist(qa, p′) + dist(p′, g)

≤ dist(1, g) + 2A+ 2B

As g can be written as (qa)(a−1r), the minimality assumption implies dist(1, q) +
dist(1, r) ≤ dist(1, g) + 2A+ 2B �

Lemma 16. (Gromov’s Inner Product is Bounded) There exists a constant K =
K(Q,R,H) with the following property.

dist(1, q) + dist(1, r) ≤ dist(1, g) +K.

Proof. Constants which depend only on Q, R, H and δ are denoted by Mi, the
index counts positive increments of the constant during the proof. Suppose g = qr,
the other case being symmetric. The constant K of the statement corresponds to
M13.

Consider a triangle ∆ with vertices 1, q, g. Let p ∈ [1, q] be a center of ∆, i.e.,
the δ-neighborhood of p intersects all sides of ∆.

Suppose that p ∈ X −U . Then dist(p,Q), dist(p, qR) ≤M1 by relative quasicon-
vexity of Q and R. By Lemma 9, there exists a ∈ Q ∩ R so that dist(p, qa) ≤ M2.
Since H is a finite index subgroup of Q∩R, there is b ∈ H such that dist(p, qb) ≤M3.
By Lemma 15, dist(1, q) + dist(1, r) ≤ dist(1, g) + 2M3 + 2δ.

Suppose instead that p is in a horoball B, whose stabilizer is P . We can assume
dist(q,B) ≤ M8. Indeed, let p1 be the entrance point of the geodesic [q, 1] in B;
then dist(p1, Q) < M4 by quasiconvexity of Q. Notice that dist(p1, [q, g]) is at most
2δ since p is a center of ∆ and p1 ∈ [q, p] (consider a triangle with vertices p, q, p′

for p′ ∈ [q, g] so that d(p, p′) ≤ δ). By quasiconvexity of R, there is p2 ∈ [q, g] such
that dist(p1, p2), dist(p2, qR) < M5. Lemma 9 implies there is a ∈ Q ∩ R such that
dist(qa, p1), dist(qa, p2) < M6. Since H is a finite index subgroup of Q∩R, there is
b ∈ H such that dist(qb, p1), dist(qb, p2) < M7. Since g can be written as (qb)(b−1r),
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by minimality

dist(1, p1)+ dist(p1, q) + dist(q, p2) + dist(p2, g) =

= dist(1, q) + dist(1, g)

≤ dist(1, qb) + dist(1, b−1r)

= dist(1, p1) + dist(p1, qb) + dist(qb, p2) + dist(p2, g),

and therefore

2 dist(q,B) = 2 dist(p1, q)

≤ dist(p1, q) + dist(q, p2) + dist(p1, p2)

≤ dist(p1, qb) + dist(qb, p2) + dist(p1, p2)

≤ 2M8.

Since Q and R have compatible parabolic subgroups, assume that Q∩ q−1Pq ≤
R∩q−1Pq, the other case being symmetric. By quasiconvexity of Q, there is q1 ∈ Q
at distance M9 from the entrance point of [1, q] in B. In particular, the distance
from q1 to [1, g] is at most M10. By the parabolic approximation lemma applied
to {1, q−1q1} ⊂ Q ∩ NM10

(q−1B), there is an element a ∈ Q ∩ q−1Pq such that
dist(qa, q1) ≤M11. Since Q ∩ q−1Pq ≤ R ∩ q−1Pq it follows that a ∈ Q ∩R. Since
H is finite index in Q ∩ R, by increasing the constant we can assume that a ∈ H
and dist(qa, q1) ≤M12. Then Lemma 15 implies

dist(1, q) + dist(1, r) ≤ dist(1, g) +M13. �

4. Proof of Theorem 2

Let Q and R be relatively quasiconvex subgroups with compatible parabolic
subgroups, and let H be a finite index subgroups of Q ∩R.

Let K = K(Q,R,H) be the constant of Lemma 16. Let M be large enough so
that M > k, λ′µ′ where k, λ′ and µ′ are as in Lemma 8 for λ = 1, µ = K.

LetQ′ andR′ be subgroups satisfying the hypothesis of the theorem, in particular
Q′ ∩ R′ = H. Consider 1 6= g ∈ Q′ ∗Q′∩R′ R′ and suppose that g 6∈ Q′ ∩ R′. Then
g = g1 . . . gn where the gi’s are alternatively elements of Q′\Q′∩R′ and R′\Q′∩R′.
Moreover, assume that this product is minimal in the sense that

∑
dist(1, gi) is

minimal among all such products describing g.

Lemma 17. For each i, let hi = g1 . . . gi. Then the concatenation α = α1 · · ·αn−1

of geodesics αi from hi to hi+1 is an M−local (1,K)−quasi-geodesic.
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Proof. By the choice of Q′ and R′ each segment αi has length at least M . Let
x ∈ [hi−1, hi] and y ∈ [hi, hi+1]. By Lemma 16

dist(hi−1, x) + dist(x, y) + dist(y, hi+1) ≥ dist(hi−1, hi+1) ≥
≥ dist(hi−1, hi) + dist(hi, hi+1)−K =

= dist(hi−1, x) + dist(x, hi) + dist(hi, y) + dist(y, hi+1)−K.

Therefore dist(x, y) +K ≥ dist(x, hi) + dist(hi, y). �

Since M > k, Lemma 8 implies that α is a (λ′, µ′)-quasi-geodesic. Since M >
λ′µ′, it follows that α has different endpoints. Therefore we have shown that the
map Q′ ∗Q′∩R′ R′ → G is injective.

It is left to prove that if Q′ and R′ are relatively quasiconvex, then 〈Q′, R′〉 is
relatively quasiconvex. Let g ∈ 〈Q∩R〉 and let γ be a geodesic from 1 to g. Since H
is quasiconvex, if g ∈ H then γ∩(X−U) is uniformly close toH and hence to 〈Q∩R〉.
Suppose that g 6∈ H. By Lemma 7 (Morse Lemma), any (λ′, µ′)−quasi-geodesic
is at Hausdorff distance at most L from any geodesic between its endpoints. In
particular, γ∩(X−U) ⊆ NL(α)∩(X−U) where α is the quasi-geodesic constructed
above. It is enough to show that α ∩ NL(X − U) is contained in Nµ(〈Q′ ∪ R′〉).
Let p ∈ α ∩ NL(X − U) and let i be so that p ∈ [hi, hi+1] ∩NL(X − U). Assume
gi+1 ∈ Q′, the other case being symmetric. As Q′ is relatively quasiconvex and in
view of Proposition 14, there is a constant µ so that p ∈ Nµ(hiQ

′) ⊆ Nµ(〈Q′ ∪R′〉)
(as hi ∈ 〈Q′ ∪R′〉).

5. Separability of double cosets

We now show Corollary 6. Suppose that all quasiconvex subgroups of G are
separable. Let Q and R be quasiconvex subgroups with compatible parabolic sub-
groups. Let g ∈ G and suppose that g 6∈ QR. We follow an argument described
in [11, 14].

Let K = K(Q,R,Q ∩ R) be the constant of Lemma 16. As in the proof of
Theorem 2, let M be large enough so that M > k, λ′µ′ where k, λ′ and µ′ are as in
Lemma 8 for λ = 1, µ = K. In addition, assume that

(1) M > λ′ dist(1, g) + λ′µ′

Lemma 18. There are finite index subgroups Q′ and R′ of Q and R respectively
such that g 6∈ Q〈Q′, R′〉R.

Proof. Since Q ∩ R is separable, there are finite index subgroups Q′ and R′ of Q
and R respectively, such that Q′ ∩ R′ = Q ∩ R and dist(1, f) ≥ 2M for any f in
Q′ \Q′ ∩R′ or R′ \Q′ ∩R′. By Theorem 2 〈Q′ ∪R′〉 is a quasiconvex subgroup of
G isomorphic to Q′ ∗Q∩R R′.

Suppose that g ∈ Q〈Q′, R′〉R. Since g 6∈ QR it follows that g = g1 . . . g2n where
g1 ∈ Q, g2n ∈ R, g2i+1 ∈ Q′\Q ∩ R, g2i ∈ R′\Q ∩ R, and n ≥ 2. Assume that
this product is minimal in the sense that

∑
dist(1, gi) is minimal among all such

products describing g.
For each i, let hi = g1 . . . gi; let αi be a geodesic from hi to hi+1. By the choice

of Q′ and R′ each segment αi has length at least 2M except α1 and α2n−1.
Notice that g2 . . . g2n−1 represents an element of Q′ ∗Q∩R R′ and such product

is minimal in the sense of the previous section, so that by Lemma 17 the concate-
nation α2 . . . α2n−1 is an M−local (1,K)−quasi-geodesic. Minimality of g1 . . . g2n
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and Lemma 16 imply that the concatenations α1α2 and α2n−1α2n are M−local
(1,K)−quasi-geodesics. Since α2 and α2n−1 have both length at least 2M , it fol-
lows that the concatenation α = α1 · · ·α2n an M−local (1,K)−quasi-geodesic.

By Lemma 8, it follows that α is a (λ′, µ′)-quasi-geodesic between 1 and g. It
follows that dist(1, g) ≥ 4M/λ′ − µ′; this is a contradiction with (1) above. �

Since Q′ and R′ are finite index, there are q1, . . . , qk ∈ Q and r1, . . . , rm ∈ R
such that

Q〈Q′, R′〉R =
⋃
qi,rj

qi〈Q′, R′〉rj .

Since 〈Q′, R′〉 is quasiconvex, it is closed in the profinite topology. It follows that
Q〈Q′, R′〉R is a finite union of closed sets. Therefore Q〈Q′, R′〉R is a closed set in
the profinite topology containing QR and such that g 6∈ Q〈Q′, R′〉R. Since g was an
arbitrary element of g ∈ G not in QR, it follows that QR is closed in the profinite
topology of G.
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