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a b s t r a c t

We investigate how the loss of previously evolved diversity in host resistance to disease is dependent on the

complexity of the underlying evolutionary trade-off. Working within the adaptive dynamics framework, using

graphical tools (pairwise invasion plots, PIPs; trait evolution plots, TEPs) and algebraic analysis we consider

polynomial trade-offs of increasing degree. Our focus is on the evolutionary trajectory of the dimorphic

population after it has been attracted to an evolutionary branching point. We show that for sufficiently

complex trade-offs (here, polynomials of degree three or higher) the resulting invasion boundaries can form

closed ‘oval’ areas of invadability and strategy coexistence. If no attracting singular strategies exist within

this region, then the population is destined to evolve outside of the region of coexistence, resulting in the loss

of one strain. In particular, the loss of diversity in this model always occurs in such a way that the remaining

strain is not attracted back to the branching point but to an extreme of the trade-off, meaning the diversity

is lost forever. We also show similar results for a non-polynomial but complex trade-off, and for a different

eco-evolutionary model. Our work further highlights the importance of trade-offs to evolutionary behaviour.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this paper is to investigate the role that trade-offs

between beneficial mutations and fitness costs play in determining

evolutionary outcomes, particularly the loss of diversity. Our focus

is on the problem of how complex a trade-off must be in order for

previously evolved dimorphism to be subject to evolutionary loss. Our

study is undertaken in the context of the evolution of host resistance

to micro-parasitism (but we expect our key findings to apply more

generally).

In common with much contemporary work in evolutionary ecol-

ogy our investigation is conducted within the framework of adaptive

dynamics [1, 2], which allows the study of trait substitution sequences

resulting from the challenge of a resident strain by a closely similar

mutant. In particular, we use PIPs (pairwise invadability plots) and

TEPs (trait evolution plots), and augment these with numerical sim-

ulation of the evolutionary process. Our focus on trade-offs reflects

the widely recognised view in life-history theory that they are crit-

ical in determining evolutionary behaviour (see [3,4] for reviews).

Moreover, there is experimental support for their importance in the

evolution of host resistance in particular [5–7]. Our concern with the

complexity (algebraic, geometric) of the trade-off reflects the find-
∗ Corresponding author: Tel.: +44 1142223825.

E-mail address: a.best@shef.ac.uk (A. Best).
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ng that the shape of these functions is crucial to the outcomes in a

ange of ecological systems and is central to much of adaptive dy-

amics theory [8–10]. Naively, we may expect that increasing the

omplexity of the trade-off may lead to a more complex outcome;

ertainly we might expect more local evolutionary niches to exist

long the trade-off curve and therefore an increase in diversity. Here,

owever, we shall show the opposite; that a more complex trade-off

auses a reduction in diversity as evolutionary branches are driven to

xtinction.

Other adaptive dynamics studies have addressed the question of

he extinction of evolutionary branches in which the evolutionary

rajectory of coexisting strategies leads out of the domain of trait val-

es where those strategies are able to coexist [11]. This may lead to

ranching-extinction cycles, whereby following evolutionary branch-

ng one of the coexisting strategies becomes extinct and the other

volves back to the branching point (and the cycle repeats) [11,12]

r to a monomorphic population following the extinction of one of

he strategies (e.g. [13,14]). The extinction of evolutionary branches

and particularly branching-extinction evolutionary cycles) has also

een observed in stochastic simulation models that represent a range

f ecological systems/scenarios [15–20]. Our approach differs from

revious studies in that we explicitly focus on the role of trade-offs

n the extinction of evolutionary branches.

To make our investigation concrete we concentrate on a sys-

em for which the application of the method of trade-off and in-

asion plots (TIPs) [10, 21] has allowed certain properties to be firmly

http://dx.doi.org/10.1016/j.mbs.2015.03.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2015.03.011&domain=pdf
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stablished [22], namely the evolution of host resistance to

arasitism. In this system, when host defence comes at accelerat-

ng costs (each additional unit of benefit is met by an increased cost)

n evolutionary singularity is both evolutionarily stable (ES) and con-

ergent stable (CS) and hence is an attractor or continuously stable

trategy; when this trade-off is sufficiently strongly decelerating it

s neither ES nor CS and hence an evolutionary repeller; when the

rade-off is sufficiently weakly decelerating it is not ES but is CS and

ence a branching point. In this last case, diversity evolves since close

o the singularity an initial monomorphic population splits into two

oexisting strains and becomes dimorphic. These results are local and

etermine behaviour near a singularity. To investigate what happens

lobally – and in particular whether diversity can be lost – we turn to

he algebraic presentation of adaptive dynamics and the representa-

ion in terms of pairwise invadability plots (PIPs) and trait evolution

lots (TEPs) [1,2]. This has the advantage of showing a global pic-

ure of invasion boundaries (which separate regions where a resident

train can and cannot be invaded by any mutant) and of associated

volutionary singularities. What is lost in the presentation of any

ne PIP/TEP is the ability to discuss the effect of varying the trade-off.

owever, for the present purposes this is manageable as we are inter-

sted in whether dimorphic orbits emerging from branching points

an subsequently cross boundaries of regions of mutual invadabil-

ty/strain coexistence. We can investigate this algebraically without

pecifying the precise trade-off but only its ‘complexity’ – for example

ts polynomial degree. Using explicit trade-offs, this can be then be il-

ustrated with PIPs/TEPs and we highlight the evolutionary behaviour

sing simulations of the adaptive dynamics process.

In the next section, we introduce our model and present an anal-

sis for polynomial trade-offs of increasing degree. We undertake al-

ebraic analysis and illustrate our results using PIPs and TEPs. In par-

icular, the TEPs display regions of mutual invadability/coexistence

ia the overlap of a PIP and its refection in the graph of the identity

unction. Furthermore, they show representative dimorphic orbits

btained from the solution of the canonical equation [23]. In our use

f TEPs we focus on the region in the upper part of the plane. Our plots

elate to numerical examples and are augmented by simulations of

he evolutionary process, presented as strain or coexisting strains vs

ime (using methods in e.g. [24]). It transpires that the number of

imultaneous branches of the invasion boundary on the PIP is piv-

tal, in particular, via the possibility that these enclose ’oval’ areas

f invadability and potentially distinct, enclosed, regions of strategy

oexistence on the TEP. When such oval areas occur, in the absence

f a co-singular attractor, the evolutionary orbit emanating from a

ranching point is destined to cross a boundary of mutual invadabil-

ty causing evolutionary loss of evolved diversity. The question we

ddress is how does the occurrence of such behaviour depend on the

omplexity of the trade-off.

. The model and its analysis

We focus our investigations on a model [22] of hosts evolving

esistance to infection (but show that our results also apply to a

redator–prey system in Appendix B). In particular we use an SIS

susceptible–infected–susceptible) framework, with the dynamics of

usceptible, X, and infected, Y, hosts as follows

dX/dt = aX − qX(X + Y)− bX − βXY + γ Y
dY/dt = βXY − (α + b + γ )Y

(1)

Hosts are born susceptible at rate a, which is reduced due to crowd-

ng by q(X + Y) (infected hosts do not reproduce). All hosts suffer back-

round mortality at rate b. Disease transmission is modelled by a mass

ction term between susceptible and infected hosts with transmis-

ion coefficient β . Infected hosts suffer additional mortality at rate α
virulence) and recover to susceptibility at rate γ .
We assume a mutant strain, with parameters a’ and β ’, emerges at

ow density in an environment set by the resident, with stable equi-

ibrium (X∗, Y∗) of Eq. (1) (see Appendix A). A proxy for the invasion

tness is (see Appendix A)

(β,β ′) = (α + b + γ )
(
a′ − q(X∗ + Y∗)− b − β ′Y∗) + γβ ′Y∗ (2)

The notation anticipates the introduction of a trade-off a = f(β).

o simplify the algebra in a way which does not affect the general

rgument we take q = b = γ = α = 1. This gives

(β,β ′) = 3a′ − 9
(aβ + β)

β(2β + 3)
− 3 − 6β ′(aβ − β − 3)

β(2β + 3)
. (3)

It follows that the fitness is zero when

β(−a′β + β ′a)+ 18(β − β ′)+ 9β(a − a′)+ 6β(β − β ′) = 0 (4)

hich, as must be the case, is satisfied when the two strains are

dentical.

Our aim in this paper is to reveal the role that the complexity of the

rade-off plays in determining aspects of the evolutionary behaviour.

e shall discuss polynomial trade-offs of increasing degree (although

ee a sinusoidal example in Appendix B) and largely – though not

xclusively – concentrate on evolutionary behaviour leading to the

oss of previously evolved diversity. As argued above closed regions

ovals) on the PIP are implicated in such behaviour.

We first briefly summarise the known behaviour of this model for

monomorphic host population. From (2) it is easy to show that an

volutionary singular point occurs when

∂s

∂β ′

∣∣∣∣
β ′=β

= 0 ⇒ da

dβ
= (α + b)Y∗

(α + b + γ )

Given this condition, the evolutionary (ES) and convergence (CS)

tability properties at this point are

S :
∂2s

∂β ′2

∣∣∣∣∣
β ′=β

= d2a

dβ2
(α + b + γ ) < 0

S :
∂2s

∂β ′2

∣∣∣∣∣
β ′=β

+ ∂2s

∂β ′∂β

∣∣∣∣
β ′=β

= d2a

dβ2
(α + b + γ )

− q(α + b)(α + b + γ )2

β2[q(α + b + γ )+ β(α + b)]
< 0

The following outcomes at the singular point are therefore possi-

le:

• If d2a
dβ2 < 0, the singular point is both ES and CS and the point is an

attractor;
• If 0 < d2a

dβ2 <
q(α+b)(α+b+γ )

β2[q(α+b+γ )+β(α+b)]
, the singular point is CS but not ES

and so is an evolutionary branching point, causing the generation

of two coexisting strains;

• If d2a
dβ2 >

q(α+b)(α+b+γ )
β2[q(α+b+γ )+β(α+b)]

, the singular point is neither ES nor

CS and so is a repeller, and the population will evolve to either an

extreme of evolution or another singular point.

In particular we note the importance of the trade-off curvature,
2a/dβ2 for the evolutionary outcome, and that a weakly decelerating

rade-off is required at the singular point for evolutionary branching.

ur focus in this study will be on the potential generation of diver-

ity through branching, and the subsequent extinction of one of the

trains.

For completeness we start with the case of a general linear trade-

ff

= f (β) = Aβ + B. (5)

Here (4) simplifies to give a PIP on which, aside from β ’ = β , we

ave another branch

= 6/(2B − 3A − 2). (6)
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(a) (b)

Fig. 1. (a) shows a PIP for the model represented by Eq. (1) with a linear trade-off in which a = f(β) = 0.2273β + 2.09091. Here invadable regions (positive fitness) are black

and uninvadable regions (negative fitness) white. (b) shows a simulation of the adaptive dynamics process indicating that traits evolve towards the singular point at β = 4. The

trade-off function is shown in the inset figure in (b). Other parameters are b = 1, q = 1, α = 1 and γ = 1.
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This is a vertical straight line and obviously there are no closed re-

gions on the PIP. For a numerical example we take a = f(β) = 0.2273β
+ 2.09091 which gives the vertical branch at β = 4. The PIP is as

in Fig. 1(a) where we use a range of β between 3 and 5 (here the

resident has positive density and is stable and the trade-off has pos-

itive gradient). We use this range of β for subsequent figures. The

PIP in Fig. 1 shows that there is an evolutionary singularity at β = 4

which is marginally evolutionarily stable (ES) and is convergent sta-

ble (CS). This is in accord with routine adaptive dynamics analysis

[2] which locates the singularity via .∂s/∂β ′|β=β ′ = 0 (which has the

solution β = 4 here) and characterises it as ES if at the singularity

∂2s/∂β ′2|β=β ′ < 0 (the value is 0 here) and as CS if at the singularity

∂2s

∂β ′2 |β ′=β + ∂2s
∂β ′∂β

|β ′=β < 0 (which applies here). A simulation for the

case of the linear trade-off is shown in the Fig. 1(b) and shows the

expected attractor at β = 4.

We now turn to the case of a general quadratic trade-off

a = f (β) = Aβ2 + Bβ + C. (7)

Here (4) simplifies to give

3(β − β ′)(3Aβ2 + 2Aβ2β ′ + β(2 + 3B − 2C)+ 3Aββ ′ + 6) = 0.

(8)

On the PIP aside from β = β ’ we have another branch

β ′ = −(3Aβ2 + β(2 + 3B − 2C)+ 6)/(Aβ(2β + 3)). (9)

For any value of β this gives a unique value of β ’ and so this branch

gives rise to no closed regions of either invadability or mutual invad-

ability. However, we can have an open region on which a strain could

in principle be lost on crossing the boundary (9). Since there are limits

on the feasible range of β , there will also be other ‘absorbing’ bound-

aries corresponding to the extreme values of this parameter. From (3)

we see that near the origin the fitness varies as 6(β ’ − β)/β and so

non-invadability is the case below β ’ = β . Now (9) is continuous for

positive β and hence the lowest of any pair of (positive) singularities

must be attracting and the candidate to be a branching point. This is

illustrated in our numerical example a = f(β) = 0.0057β2 + 0.1818β
+ 2.1818 which displays generic features. The PIP is shown in Fig. 2(a)

and highlights a singularity at β = 4 which is not ES but is CS (there is

another singularity near β = 8.5 which is not ES or CS, see Fig. 4 later).

The singularity at β = 4 is a branching point; thus quadratic trade-

offs can certainly lead to diversity. A simulation is presented in the
gure and this shows the expected branching point; after branching

he two strains diverge and respectively tend to the lower and upper

easible values of β . As shown, the orbit does not cross the bound-

ries on the TEP in Fig. 2(b) – which has the region of coexistence in

rey – but approaches the top left corner. This is guaranteed by the

ack of nullclines in the co-existence region. Such nullclines can only

ntersect the boundary of coexistence at specific points on the TEP,

amely vertically above/below singular points or where the bound-

ry of the coexistence region is vertical [13]. The coexistence region

as no such points in the quadratic case, no nullclines appear and

election is uni-directional within the coexistence region. Inasmuch

s this behaviour is generic (and there is a caveat here, we have only

umerical studies in evidence) we conclude that quadratic as well as

inear trade-offs do not display the behaviour we seek; diversity can

volve but not its subsequent loss.

For the cubic case we consider the following trade-off

= f (β) = Aβ3 + Bβ2 + Cβ + D (10)

The fitness is now zero (using 4) when β ’ = β and

β(2β + 3)β ′2 + β(2Aβ2 + (3A + 2B)β + 3B)β ′ + 3Aβ3

+ 3Bβ2 + (3C − 2D + 2)β + 6 = 0 (11)

Now on the PIP, aside from β = β ’, we have another two branches

hich are the solutions of the above quadratic equation for β ’. We

an write the solutions in the form

′ = −t(β)±
√

d(β)

k(β)
(12)

ith the obvious identifications of the smooth functions t, d, k. When

(β) > 0, this gives rise to two simultaneous branches on the PIP

qually spaced above and below β ′ = −t(β)/k(β). As β approaches

point where d(β) = 0 these branches join each other continuously

ith vertical gradient. Generically, further change in β takes us into

n interval of β for which d(β) < 0 and here the only branch on the PIP

s β = β ’. If we allow β to change in the opposite direction, then we

ither approach another point where d(β) = 0 or reach the end of the

easible range of β . In the first case we have a closed region on the PIP;

n the second there is a closed region with a boundary which cannot

e crossed. The above assumes k(β) � 0; if this is not so, asymptotes

ay modify the picture a little but generically we effectively still have

losed regions. (If d, k vanish simultaneously, then the two branches

re absent one side of the asymptote.) In summary the cubic case
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(a) (b) (c)

Fig. 2. (a) shows a PIP for the model represented by Eq. (1) with a quadratic trade-off in which a = f(β) = 0.0057β2 + 0.1818β + 2.1818. Here invadable regions (positive fitness)

are black and uninvadable regions (negative fitness) white. (b) shows a TEP with the grey region indicating where two traits can coexist and with representative evolutionary

trajectories. (c) shows a simulation of the adaptive dynamics process indicating that traits evolve towards the branching point at β = 4 and when nearby undergo disruptive

selection to form a dimorphic population. The TEP and the simulations indicate that the dimorphic population will evolve to be composed of the minimum and maximum trait

values. The trade-off function is shown in the inset figure in (c). Other parameters are b = 1, q = 1, α = 1 and γ = 1.
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ives rise to closed regions on the PIP and the possibility of the loss

f strain coexistence.

We take a specific numerical example for this cubic case as given

n the figure legend. (We note that the high precision given here is to

nsure the singular point is at precisely β = 4. The precision can be

elaxed and the key behaviours still occur). This gives in addition to β
β ’ two branches which are solutions of the corresponding explicit

orm of (11) and the PIP is shown in Fig. 3a. This displays the type of

losed region described above as well as regions where there is only

he branch β = β ’. The figure shows two evolutionary singularities

nd indicates that the lower is neither ES nor CS whilst the higher

hile not ES is CS. Applying the above adaptive dynamics techniques

ocates the singularities at β = 3.879 and β = 4 and verifies the ES/CS

esults. The singularity at β = 4 is a branching point; thus cubic trade-

ffs can lead to diversity and also its loss because of the closed region.

simulation for the cubic case is shown in the Fig. 3(c) which shows

he expected branching point near β = 4 but in addition shows the

oss of diversity with increasing time. The TEP showing the region

f coexistence indicates the oval coexistence region and nullclines

hich now do appear within this region (Fig. 3(b)). The nullclines do

ot cross therefore there is no further singular point in the dimorphic

ystem and evolutionary loss is inevitable. The subsequent loss of di-

ersity is illustrated further by plotting the evolutionary trajectory on

he TEP. The positioning of the nullclines is such that once the tra-

ectory reaches the boundary of coexistence the strain with lower β
s necessarily beyond the monomorphic repeller. As the boundary is

rossed it can be seen in the PIP that the strain with the lower (higher)

alue of β has positive (negative) fitness, meaning that it is the lower

train that will survive the extinction. Since this strain is necessar-

ly beyond the repeller it will not be attracted back to the branching

oint but be selected to ever lower beta values until the minimum

ound of the trade-off is reached, as seen in the simulation (Fig. 3(c)).

n this case, therefore, the host has reached a state of maximum de-

ence. For cubic trade-offs (and quartic trade-offs, see later) we have

erformed numerical investigations that indicate that whenever we

ave a branching point, and the bounds of evolution are such that

‘full’ oval exists on the PIP, then we see the behaviour described.

e can also demonstrate analytically that up to and including cubic

rade-offs there can be no ‘internal’ singular point.

What perspective can be cast on our results by considering a trade-

ff of general degree n? Eq. (4) has now a (combined) degree in β , β ’
 i
f n + 2. Thus, with this trade-off invoked ,after the factor β − β ’ has

een removed (4) yields

(β − β ′)P(β,β ′) = 0 (13)

here P has degree n + 1. Concentrating on the second factor gives

s a plane algebraic curve of this degree. Such curves consist of a

nite number of smooth monotone segments which in either direc-

ion have endpoints which have horizontal or vertical tangents or are

athematical singularities (such as cusps, double points or isolated

oints); additionally segments may be unbounded (see Fig. 4, and

elow). Ovals can occur as a result of this structure. The evolution-

ry singularities of interest here are double points of the plane curve

btained by adding β ’ = β . The equation P(β , β) = 0 locating them

ields a maximum number of n + 1 (alternating attracting/repelling)

volutionary singular points. Regarded as a polynomial in β ’, P has,

rom (4), degree n − 1 which is therefore the maximum number of

imultaneous branches on the PIP additional to β ’ = β .

The examples studied above conform to this behaviour as is illus-

rated in Fig. 4 which shows only zero contours of the fitness but uses

broader (often unfeasible) range of β . The linear case n = 1 (not

hown) is slightly anomalous since we might expect P to have degree

but, quite generally, it follows from (4) and (5) that the quadratic

erm in [14] vanishes and P is of degree 1 and a linear function of β
lone. This means there is a second vertical branch on the PIP and

ne singularity at the intersection of this branch and the branch β ’

β (see (6) above and the numerical example follow it). (Formally,

hese results still conform to our results on the maximum numbers

f singularities and branches on the PIP).In the quadratic example n

2 (Fig. 4a) we have two feasible singularities one repelling and one

ttracting (there is a third unfeasible one) and we see at most one PIP

ranch additional to β ’ = β . In the cubic example (Fig. 4b) we can

ow distinguish a second region contained between smoothly join-

ng curves and their asymptote (the vertical axis) and a third region –

ith asymptote β = −3/2. There is again an attracting/repelling pair

f feasible singularities (there are now two unfeasible singularities)

nd the maximum number (2) of simultaneous branches is certainly

ot exceeded. The cubic case illustrates the fact that the above general

roperties of plane algebraic curves allow for the existence of ovals

n the PIP.

As a final illustration we consider a quartic trade-off, given explic-

tly in the figure legend. The PIP is shown in Fig. 5(a) and the results



90 A. Best et al. / Mathematical Biosciences 264 (2015) 86–93

(a) (b) (c)

Fig. 3. (a) shows a PIP for the model represented by Eq. (1) with a cubic trade-off in which a = f(β) = −0.06723484848β3 + 0.8125β2 − 3.045454546β + 6.484848483. Here

invadable regions (positive fitness) are black and uninvadable regions (negative fitness) white. (b) shows a TEP with the grey region indicating where two traits can coexist, isoclines

represented by white lines and with representative evolutionary trajectories. (c) shows a simulation of the adaptive dynamics process indicating that traits evolve towards the

branching point at β = 4 and when nearby undergo disruptive selection to form a dimorphic population. The TEP and the simulations indicate that the dimorphic population will

evolve to trait values that cross the boundary of coexistence and here one trait becomes extinct. The trade-off function is shown in the inset figure in (c). Other parameters are b =
1, q = 1, α = 1 and γ = 1.

(a) (b) (c)

Fig. 4. Extended PIPs showing only zero contours of the fitness and using a broader (often unfeasible) range of β . (a) The quadratic example of Fig. 2. (b) The cubic example of

Fig. 3. (c) The quartic example of Fig. 5. The diagrams show that in accord with general theory on this broad range, for a trade-off of degree n, there are a maximum of n + 1

singularities and n − 1 simultaneous PIP branches in addition to β ’ = β .
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are similar to the cubic example. The figure again shows two evo-

lutionary singularities and indicates that the lower is neither ES nor

CS whilst the higher while not ES is CS. Applying the above adaptive

dynamics techniques locates the singularities at β = 3.8572 and β =
4 and verifies the ES/CS results. The singularity at β = 4 is a branching

point; thus quartic trade-offs can also lead to diversity and – because

of the closed region – its loss. In Fig. 5(c) we show a simulation for the

quartic case which shows the expected branching point near β = 4

and also loss of diversity. The trajectory after branching is also plotted

on the TEP (Fig. 5(b)) which shows very similar behaviour to the cubic

case discussed above. Again, there is no dimorphic singular point and

when the coexistence boundary is crossed it is necessarily the lower

strain, which is beyond the repeller, that survives. Again, therefore,

the host population reaches a point of maximum defence. The final

graph in Fig. 4 presents the result on a broader range. This agrees

with the general results that there are a maximum of 5 evolutionary
ingular points (there are two complex ones here) and that the max-

mum number of simultaneous branches on the PIP is 3.

. Discussion

Our results are concerned with the evolutionary loss of previously

volved diversity (explicitly dimorphism). We have studied this in

he context of host resistance to micro-parasitism using a trade-off

etween increased defence in the host and reduced reproductive abil-

ty. By considering polynomial trade-offs of increasing degree we have

een that linear trade-offs cannot display the behaviour of interest;

uadratic ones can give rise to dimorphism but this is unlikely to be

ost in subsequent evolution; cubic and higher degree trade-offs can

isplay branching leading to dimorphism and furthermore this may

e subsequently lost. We have traced this behaviour to the occur-

ence of ovals in plane curves representing invasion boundaries on
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(a) (b) (c)

Fig. 5. (a) shows a PIP for the model represented by Eq. (1) with a quartic trade-off in which a = f(β) = −0.01β4 + 0.1007651515β3 − 0.2434999998β2 − 0.1014545467β +

3.412848488. Here invadable regions (positive fitness) are black and uninvadable regions (negative fitness) white. (b) shows a TEP with the grey region indicating where two

traits can coexist, isoclines represented by white lines and with representative evolutionary trajectories. (c) shows a simulation of the adaptive dynamics process indicating that

traits evolve towards the branching point at β = 4 and when nearby undergo disruptive selection to form a dimorphic population. The TEP and the simulations indicate that the

dimorphic population will evolve to trait values that cross the boundary of coexistence and here one trait becomes extinct. The trade-off function is shown in the inset figure in (c).

Other parameters are b = 1, q = 1, α = 1 and γ = 1.
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IPs. Such ovals only appear when the curve is of sufficiently high de-

ree and here this degree is related to that of the trade-off. Naively one

ight expect that more complex trade-off forms may lead to greater

iversity since they may create a series of local niches (or more for-

ally, attracting singular points) where multiple strains could coex-

st. In fact, we have shown the opposite to be true. It is natural to

peculate that rather generally trade-offs of low ‘complexity’ might

ot lead to evolutionary loss of previously evolved diversity whereas

hose of higher complexity might well do so.

Previous studies have shown other examples of eco-evolutionary

odels that generate dimorphism through evolutionary branching

ollowed by the evolutionary extinction of one strain as the popula-

ion evolves outside of the region of coexistence [11,12,14,20]. The

henomenon of evolutionary extinction is therefore clearly not re-

ated to trade-off geometries alone but more deeply embedded in eco-

volutionary dynamics. However, for the most part in these examples

he extinction occurs in such a way that the remaining strain is once

gain attracted towards the original evolutionary branching point,

reating a branching-extinction cycle [11,12,19,20]. In contrast, our

esults show that after the extinction the remaining strain has crossed

n evolutionary repeller, and will instead move to a further attracting

ingular point or extremes of its trade-off. Kisdi [14] showed simi-

ar behaviour to this in an asymmetric competition model for certain

rowth functions. We have shown that this behaviour is guaranteed

y the shape that the ‘oval’ region of coexistence creates on the TEP.

The creation of a closed region on pairwise invasion plots (PIPs)

nd trait evolution plots (TEPs) requires the fitness function to be of

ufficiently high degree. This may come as a result of, for example,

n asymmetric competition term [14] where interactions are depen-

ent on trait values in a non-linear manner. Here we have shown that

uch closed regions can be easily generated through trade-offs of suf-

ciently high degree, namely 3rd order or higher. We may speculate

hat in general if the fitness function is of sufficiently high degree due

o inherent non-linearities then not only branching to diversity but

ubsequent extinction is increasingly likely. We find this behaviour

f we consider a different, non-polynomial but complex (sinusoidal),

rade-off for our model system and if we consider a polynomial trade-

ff in a different model system (namely the predator–prey system

onsidered in [25]; see Appendix B). We further note that the sinu-

oidal trade-off (Appendix B) demonstrates a case where the remain-

ng host evolves to minimum defence (high transmission) whereas
he two cases in the main text saw the host evolve to maximum

efence. Generically, the host may evolve to a maximum, minimum

r a further attracting singular point depending on the number and

rdering of singular points.

We have shown that if trade-offs are simply linear only monomor-

hic populations can ever exist, if they are non-linear of low-order (i.e.

uadratic) then branching to dimorphism is possible, and if they are

on-linear of high-order (cubic and above) then branching followed

y extinction of one branch can occur. An important question is clearly

ow likely it is that trade-offs will be sufficiently complex in nature

or our results to have relevance. It seems entirely possible that all

volutionary trade-offs, for example those arising through resource

llocation or pleiotropy, are non-linear. However, experimental data

s generally analysed purely to find the existence of trade-offs be-

ween life-history traits [3,5,6]. Information about the shape of the

rade-off is limited and often found by fitting data with linear mod-

ls, or perhaps non-linear models of low degree (see [7]). However, it

s perfectly reasonable to suppose that a highly non-linear trade-off

unction would fit the data just as well. As one example, from a mech-

nistic perspective, we might expect such complex trade-off shapes

f defence (in our example here) is made up of multiple defence re-

ctions as seen, for example, in Drosophila melanogaster which uses

hysical barriers as well as local and systemic immune responses to

athogens [26]. Such complex trade-offs may be critical in determin-

ng the evolutionary behaviour of the system.
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ppendix A

Eq. (1) yields an infected equilibrium, (X, Y) = (X∗, Y∗) where

∗ = (α + b + γ )/β and

∗ = (α + b + γ )(aβ − bβ − q(α + b + γ ))

β(αβ + bβ + q(α + b + γ ))
(A1)
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A proxy for the invasion fitness is obtained from the invasion

dynamics

dX′/dt = a′X′ − qX′(X∗ + Y∗ + X′ + Y ′)− bX′ − β ′X′(Y∗ + Y ′)+ γ Y ′

dY ′/dt = β ′X′(Y∗ + Y ′)− (α + b + γ )Y ′ (A2)

via the Jacobian J(0, 0) obtained from J(X’, Y’) by evaluation at (X’, Y’)

= (0, 0). Only a and β vary between strains. The determinant of J(0,

0) yields for the fitness

s(β,β ′) = (α + b + γ )
(
a′ − q(X∗ + Y∗)− b − β ′Y∗) + γβ ′Y∗ (A3)

where the notation anticipates the introduction of a trade-off a = f(β).

In our case q = b = γ = α = 1 we find

X∗ = 3/β and Y∗ = 3(aβ − β − 3)/
(
β(2β + 3))

)
(A4)

and

s(β,β ′) = 3a′ − 9
(aβ + β)

β(2β + 3)
− 3 − 6β ′(aβ − β − 3)

β(2β + 3)
. (A5)
(a) (b

Fig. A1. (a) shows a PIP for the model represented by Eq. (1) with a sinusoidal trade-off in

fitness) are black and uninvadable regions (negative fitness) white. (b) shows a TEP with the gr

trajectories. (c) shows a simulation of the adaptive dynamics process indicating that traits

selection to form a dimorphic population. The TEP and the simulations indicate that the dimo

here one trait becomes extinct. The trade-off function is shown in the inset figure in (c). Othe

(a) (b)

Fig. A2. (a) shows a PIP for the predator–prey model represented by Eq. (B1) with a cub

(positive fitness) are black and uninvadable regions (negative fitness) white. (b) shows a TEP

evolutionary trajectories. (c) shows a simulation of the adaptive dynamics process indicatin

disruptive selection to form a dimorphic population. The TEP and the simulations indicate th

one trait becomes extinct. The trade-off function is shown in the inset figure in (c). Other par
We can see that the perspective of this paper may well apply to

more general class of eco-evolutionary models. The dynamics of

uch models are often linear in parameters and of a particularly sim-

le polynomial form in the densities which leads to the equilibria

eing rational functions of the parameters. The proxy for the fitness

btained from the invasion Jacobian is then polynomial in the param-

ters and equilibrium densities and hence rational in the parameters.

his has the consequence that the invasion boundaries are polyno-

ial in the parameters. Such a structure underlies the more explicit

nalysis of this paper and – with polynomial trade-offs imposed –

eads us in this more general setting to the consideration of invasion

oundaries which are plane algebraic curves.

ppendix B

We present figures from two more examples in this appendix.

irstly, we show plots for the host-parasite model of the main text
) (c)

which a(β) = 3 + 0.5(β − 4) − 0.0145sin(π (β − 4)). Here invadable regions (positive

ey region indicating where two traits can coexist and with representative evolutionary

evolve towards the branching point at β = 4 and when nearby undergo disruptive

rphic population will evolve to trait values that cross the boundary of coexistence and

r parameters are b = 1, q = 1, α = 1 and γ = 1.

(c)

ic trade-off in which r(c) = −7.5c3+ 22.75c2 − 20.4c + 8.75. Here invadable regions

with the grey region indicating where two traits can coexist and with representative

g that traits evolve towards the branching point at c = 1 and when nearby undergo

at the dimorphic population will evolve to cross the boundary of coexistence and here

ameters are d = 1, e = 1 and h = 1.
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sing a sinusoidal trade-off, a(β) = 3 + 0.5(β − 4) − 0.0145sin(π (β −
)) in Fig. A1. This shows very similar behaviour to the higher degree

olynomial trade-offs in Figs. 3 and 4 in the main text. This highlights

hat it is not polynomial trade-offs per se, but sufficiently ‘complex’

rade-offs, that results in evolutionary loss of diversity. (Parameter

alues and methods are as described in the main text.)

We also present results from a predator–prey model to highlight

hat our results are more generally applicable. We take the predator–

rey system from Bowers et al. [25],

dN

dt
= N(r − hN − cP)

dP

dt
= P(ceN − d). (B1)

aking h, e, d = 1 and a cubic prey trade-off of r(c) = −7.5c3+ 22.75c2

20.4c + 8.75. This produces the plots shown in Fig. A2, which looks

ery similar to the results from the cubic host-parasite model, in

articular showing evolutionary loss of diversity.
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