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Summary

1. Invasive organisms and emerging wildlife disease pose two of the greatest threats to global
biodiversity and ecosystem functioning.

2. Typically, when parasites are considered in invasion biology, it is in the context of the
enemy release hypothesis, wherein a non-indigenous species has greater probability of invasion
success by virtue of leaving its natural enemies, including parasites, behind.

3. It is also possible that native parasites may prevent invasions, but it is clear that invasive
organisms may bring infectious diseases with them that can infect native competitors (via spill-
over), or act as competent hosts for native diseases, increasing disease prevalence among native
species (via spillback).

4. If the shared disease (either via spillover or spillback) has higher virulence in the native host
(which is particularly likely with introduced parasites), there is the potential that the disease
can act as a ‘biological weapon’ leading to a disease-mediated invasion (DMI).

5. Here, we review cases where disease may have been an important factor mediating a wide
range of invasions in vertebrates, invertebrates and plants.

6. We then focus on the invasion of the grey squirrel into the UK as a case study of a DMI,
and we discuss how mathematical models have helped us to understand the importance of this
shared disease and its implications for the management of invasive species.

7. We conclude that (i) DMIs are a widespread phenomenon, that (ii) spillover is more com-
mon in animal invasions and spillback more common among plant invasions and that (iii)
spillover DMIs are particularly important in explaining the replacement of native animals with
phylogenetically similar non-indigenous species.

Key-words: competition, conservation, disease-mediated invasions, enemy alliance, extinc-
tions, invasive species, modelling parasites, replacement, spillback, spillover

Introduction

The importance of infectious disease in shaping human
history and determining the movements and invasions of
human populations is clear. The tsetse fly belt discouraged
the Bantu from invading Southern Africa (Diamond
1999), and Malaria in the British forces aided Washing-
ton’s victory at Yorktown (McNeill 2010). During the age
of exploration, European conquistadors invaded the
Americas and introduced diseases such as smallpox that
decimated Native American populations (Diamond 1999;
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Riley 2010). Resistance to these diseases was not the only
advantage that the Europeans had over Native Americans,
but it certainly contributed to the speed and ubiquity of
the conquest. The invading Europeans inadvertently
brought biological weapons — their diseases — with them,
and concurrently, the emergence of disease within the
native populations mediated the Europeans’ invasion.
Parallel scenarios also unfold in natural communities.
Although the concept of parasite-mediated competition
has been reviewed in the past (Freeland 1983; Price et al.
1986, 1988), it is now becoming apparent that disease, spe-
cifically diseases as biological weapons, may also be a com-
mon factor mediating species invasions (Prenter et al.
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2004; Hatcher, Dick & Dunn 2006; Dunn 2009). Here, we
firstly review the role of disease-mediated invasions
(hereafter DMIs) in natural communities. Next, we discuss
how mathematical models have been applied to the best
studied example of a DMI: the invasion of grey squirrels
into the UK, and argue that the models were critical in
highlighting the importance of the disease. Our twin aims
are to highlight the importance of DMIs and to make a
case for the use of modelling to benefit conservation efforts
in the face of disease.

The role of parasites in invasions

Recently there has been an increasing interest in the roles
that disease can play in both animal (Prenter ez al. 2004;
Hatcher, Dick & Dunn 2006; Dunn 2009) and plant
(Eppinga et al. 2006) invasions. For the duration of the
review, we will refer to all infectious organisms (parasites,
pathogens, parasitoids, etc.) as ‘parasites’ for simplicity,
except when we refer to specific examples, although we
acknowledge the distinctions suggested by others (Lafferty
& Kuris 2002). Likewise, we refer to non-native plants and
animals generally as ‘non-indigenous species’, and only use
the phrase ‘invasive species’ when referring to specific spe-
cies that have indeed become invasive (Kolar & Lodge
2001). By far the most studied way in which parasites influ-
ence invasions is through their absence (Wolfe 2002; Mitch-
ell & Power 2003; Torchin et al. 2003; Torchin & Mitchell
2004). Parasites along with predators and herbivores are
the key component of the ‘enemy release hypothesis’, where
the non-indigenous species gains an advantage because it
arrives in a new habitat without its natural enemies. There
have been a number of excellent reviews (Wolfe 2002;
Mitchell & Power 2003; Torchin et al. 2003; Torchin &
Mitchell 2004) that discuss how leaving behind parasites
can have an important impact on invasions.

But how else may natural enemies and in particular dis-
ease be involved in invasion? Clearly, when a non-indige-
nous species enters a new environment, it will encounter
herbivores or predators and also parasites that it has not
previously encountered. We might expect that some of
these parasites (especially generalist parasites) will be able
to infect the non-indigenous species, that the non-indige-
nous host will have little resistance against these novel par-
asites and that infection and disease could thus prevent the
non-indigenous species from becoming invasive. For
instance, it has long been recognized that native diseases
can prevent introduced farm animals from flourishing in
their non-native ranges (cattle in Africa limited by try-
panosomiasis (Ford 1971); domestic ducks in Michigan
limited by a Leucocytozoon protozoon (Chernin 1952)).
There are, however, fundamental problems in assessing
how important this process is in nature; it is very difficult
to study failures to invade. An analysis of the data on
the potential role of parasites in failed introductions
would be an interesting contribution to the invasion
biology literature.

If the generalist parasite does not prevent the non-indig-
enous species from establishing in its new range, then the
non-indigenous host has the potential to interact with the
native host, indirectly via their shared parasite(s). If the
non-indigenous host is a poor reservoir for the parasite,
then its presence could decrease infection prevalence in the
native host population via a dilution effect (Ostfeld & Kee-
sing 2000; Keesing et al. 2006). For instance, ladybirds
introduced to North America (Harmonia axyridis) serve as
a sink for eggs of a parasitoid (Dinocampus coccinellae)
shared with the native ladybird (Coleomegilla maculate)
(Hoogendoorn & Heimpel 2002), and roundhead galaxias
fish in New Zealand (Galaxias anomalus) are parasitized
by fewer helminths when they co-occur with introduced
brown trout (Salmo trutta) (Kelly et al. 2009a). In these
examples, disease does not facilitate invasion of the non-
indigenous host, because dilution benefits the native host.

However, it is also possible that the non-indigenous spe-
cies could become infected with a native parasite and
transmit disease back to the native fauna or flora (Kelly
et al. 2009b). If such a disease were less virulent in the
non-indigenous species (or the non-indigenous host were a
more competent reservoir), such a ‘spillback’ of the para-
site may in principle facilitate the invasion (see Eppinga
et al. 2006 and the ‘accumulation of native pathogens
hypothesis’). This is especially true if the non-indigenous
species can gain advantage over its native competitors via
apparent competition (Holt 1977) mediated by their shared
parasites. We define this phenomenon as a ‘spillback
DMTI".

The other way in which disease can facilitate an invasion
occurs when the infectious parasite is introduced along
with its non-indigenous host. Disease can then ‘spillover’
from the non-indigenous host species (Power & Mitchell
2004) to infect susceptible native competitors, increasing
the probability of a successful invasion (again, via appar-
ent competition). When a non-indigenous parasite is able
to infect both non-indigenous and native hosts, we might
expect it to be more virulent among the natives. This is
because most invasions occur when small populations sur-
vive difficult journeys or escape from introduced popula-
tions; species
parasites are likely to die during the translocation process,
and managed populations are unlikely to be maintained
with virulent parasites. Therefore, only relatively avirulent

non-indigenous infected with virulent

parasites are likely to accompany hosts to new ranges.
Although these avirulent parasites are likely to be under-
studied or unknown, due to their minimal effects on their
original hosts, they may have the potential to cause
virulent infectious diseases in native species, due to native
species’ lack of previous exposure or innate physiological
differences. Then, the non-indigenous parasites can become
a biological weapon and lead to a scenario we describe as
a ‘spillover DMI.’

Spillover DMIs are of particular concern for conserva-
tion biology, because the parasites causing emergent dis-
eases are non-indigenous species themselves. Because
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parasites are generally much smaller than other non-indig-
enous species, they are arbitrarily classified as emergent
diseases instead of invasive species. However, the only fun-
damental difference between invasive species and emergent
diseases is that an emergent disease (parasite) requires
competent hosts to spread, while an invasive species
requires some other mechanism to facilitate its invasion.
Spillover DMIs are clear examples of invasional meltdown
(Simberloff & Von Holle 1999; Simberloff 2006), in which
the indirect effect of one species (the parasite) facilitates
the invasion of a second species (the non-indigenous host)
and the invasion of the host likewise facilitates the inva-
sion/emergence of the parasite/disease.

We consider both spillback and spillover DMIs to be
cases of ‘invading with biological weapons’. In both cate-
gories, rather than the non-indigenous species benefiting
from ‘enemy release’, the invader benefits from an ‘enemy
alliance” an indirect mutualism than can simultaneously
lead to a species invasion and the outbreak of disease.

Examples of DMIs

Our goal in this section is to provide a comprehensive
review of known spillover and spillback DMIs, in which a
non-indigenous species has gained an advantage over a
native competitor by virtue of using a shared parasite as a
biological weapon. We do not include ‘indirect DMIs’ that
involve additional species; for instance, if a parasite were
able to infect both native and non-indigenous hosts, but
only able to modify the behaviour/physiology of its native
host, it could render the native host more susceptible to
predation by a fourth species and indirectly mediate inva-
sion success of the non-indigenous host (Rigaud & Moret
2003; Mouritsen & Poulin 2005). Although fascinating, the
complexity of this type of interaction is beyond the scope
of this review. We also refrain from reviewing invasions in
which the parasite is host-specific and only capable of
infecting the native species.

Although spillback and spillover DMIs have received
relatively little attention in the invasion biology literature,
they have occurred repeatedly throughout ecological his-
tory and continue to threaten biodiversity and ecosystem
health today. Examples of DMIs can be found broadly
across taxa; the disease-causing organisms may be micro-
parasites, macroparasites, parasitoids or even soil patho-
gens, and host species may be vertebrate animals (reviewed
in Table 1), invertebrates (reviewed in Table 2) or plants
(reviewed in Table 3). These tables are presented chrono-
logically, beginning with historical DMIs, focusing on cur-
rent and ongoing DMIs and concluding with more
speculative DMIs.

The earliest recorded DMI was the late 18th century
invasion of introduced European birds on the Hawaii
islands, mediated by avian malaria and birdpox epidemics
in the native Hawaiian finches (Drepanidinae) (Warner
1968). Now, the remaining Drepanidinae are restricted to
high elevation sites, beyond the range of the disease vec-
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tors, while native species dominate the lowlands (van
Riper et al. 1986). Other historical DMIs include the inva-
sion of the introduced starry sturgeon (Acipenser stellatus)
into the Aral Sea in 1934, mediated by die-offs of the
native bastard sturgeon (Acipenser nudiventris) caused by
the shared monogenean, Nitzschia sturionis (Bauer,
Pugachev & Voronin 2002; Pourkazemi 2006), and also
the dramatic range of expansion of North American
white-tailed deer (Odocoileus virginianus) in the mid-1900s
and its near total replacement of moose (Alces alces) and
caribou (Rangifer turandis) in the north-eastern United
States due to transmission of a shared meningeal worm,
Parelaphostrongylus tenuis (Anderson 1972).

Some of these historical DMIs are now threatening to
become problematic again. For example, P. tenuis, the
meningeal worm of cervids, has now been identified in
mule deer (Odocoileus hemionus) in sympatry with white-
tailed deer in Nebraska, as white-tailed deer continue to
expand westward (Oates, Sterner & Boyd 2000). Likewise,
crayfish plague, caused by a fungus (Aphanomyces astaci),
decimated European crayfish populations when North
American crayfish were introduced to Italy in the 1860s;
now, invasive signal crayfish (Pacifastacus leniusculus) and
red swamp crayfish (Procambarus clarkia), which are reser-
voirs for A. astaci, threaten to replace susceptible native
crayfish species in the UK (Holdich & Reeve 1991), East-
ern Europe (Parvulescu et al. 2012) and Northern Europe
(Vralstad et al. 2011). Finally, although common pheas-
ants (Phasianus colchicus) were introduced to the UK at
least one thousand years ago, it has only recently been
determined that their competitive superiority over native
grey partridges (Perdix perdix) is in part due to pheasants
being a reservoir for a shared nematode (Heterakis gallina-
rum) that has been linked to partridge declines (Tompkins,
Draycott & Hudson 2000; Tompkins, Greenman & Hudson
2001).

Some current, ongoing DMIs are among the most well-
known and best recorded examples of DMIs. Grey squir-
rels (Scurius carolinensus) from North America threaten to
replace native red squirrels (Scurius vulgaris) in the UK, in
part due to the transmission of a Parapoxvirus that is
lethal to reds but not to greys (Tompkins ez al. 2002;
Tompkins, White & Boots 2003). This system is discussed
as a case study in the final section of this review. Varie-
gated leafthoppers (Erythroneura variabilis) from Mexico
have invaded vineyards in Southern California and are
replacing the native grape leathoppers (Erythroneura elan-
gantula) due to a combination of resource competition and
apparent competition mediated by a shared egg parasitoid
(Anagros epos) (Settle & Wilson 1990). California grass-
lands are being invaded by Eurasian grasses (including
Avena fatua and members of the genus Bromus), which
harbour dense aphid populations; these aphids are vectors
of barely/cereal yellow dwarf viruses (B/CDYVs) that
then spillback and infect the native grasses, which are
more susceptible than the invasive grasses due to differ-
ences in seasonality (Malmstrom et a/. 2005a,b). Finally,
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the sunbleak (Leucaspius delineates) was once a common
fish in European freshwater systems; now however, it is
threatened by the Asian topmouth gudgeon (Pseudorasb-
ora parva) and the generalist intracellular pathogen it car-
ries (Sphaerothecum detruens). Local invasions by P. parva
are often accompanied by local extinctions of L. delineates
because the shared pathogen is much more virulent
towards L. delineates (Gozlan et al. 2005).

New molecular techniques and increasing ecological
interest in plant—soil interactions have led to the discovery
of several plant DMIs in which non-indigenous plants
appear to use native soil pathogens as biological weapons
against native species (Eppinga et al. 2006). North Ameri-
can Siam weed (Chromolaena odorata) is invasive in the
Western Ghats of India, where it increases the abundance
of a fungal soil pathogen (tentatively identified as Fusari-
um semitectum) that inhibits growth of native plants (Man-
gla, Inderjit & Callaway 2008). Ice plant (Carpobrotus
edulis) from South Africa is invasive in Mediterranean
Europe where it forms a positive feedback loop with the
local soil biota, inhibiting growth of native species includ-
ing Cistus salviifolius. Soils conditioned by C. edulis have a
higher density of putatively pathogenic root fungi of order
Chytridiales (de la Pena et al. 2010). Mexican eupatory
(Ageratina adenophora) is invasive in Yunnan, China,
where a similar positive feedback loop with the local soil
biota results in more dense vesicular arbuscular mycorrhi-
zal fungi and a higher soil fungi : bacteria ratio. Steriliza-
tion experiments show that this change in soil biota
directly inhibits local plant species (Niu et al. 2007). In
north-western American prairies, invasive spotted knap-
weed (Centaurea maculosa) from Eastern Europe forms a
complex with the native soil biota, in particular arbuscular
mycorrhizal fungi, which increase the invader’s competitive
ability relative to the native bunchgrass, Festuca idahoensis
(Marler, Zabinski & Callaway 1999). We classify this last
example is a speculative DMI, because the effect of specific
soil pathogens has not yet been confirmed; this may even
be an example of an indirect DMI, if the dynamics of the
below-ground community are sufficiently complex.

We have included two other speculative DMIs in our
review, one with implications for the global decline in
amphibian diversity and one with implications for the
decline in plant—pollinator diversity. Chytridiomycosis, an
amphibian disease caused by the fungus Batrachochytrium
dendrobatidis (Bd), has recently emerged and already poses
one of the greatest threats ever to global amphibian diver-
sity. American bullfrogs (Lithobates catesbeiana), which
are a reservoir for Bd (Garner et al. 2006), are native to
the Eastern United States but invasive in many other parts
of the world, including South America (Akmentins &
Cardozo 2010). Recently, a range of Bd strains have been
identified in non-indigenous populations of bullfrogs in
South America (Schloegel et al. 2010; Ghirardi et al. 2011)
and Asia (Goka et al. 2009; Bai et al. 2012). In Argentina,
bullfrogs have recently invaded (Akmentins & Cardozo
2010), bullfrogs carry Bd (Ghirardi et al. 2011), and Bd

appears to cause mortality in at least one species of local
amphibian, the yellow belly frog (Elachistocleis bicolor)
(Arellano et al. 2009), although bullfrogs have not been
directly implicated. Commercially raised bumblebees are
descendents of Bombus impatiens from eastern North
America. This species is used widely in greenhouses
throughout the Americas, and escapes from greenhouses
permit B. impatiens to interact with native bee species,
including B. rufocinctus, B. bimaculatus and B. fervidus in
the Western United States. Crithidia bombi and Nosema
bombi (a trypanosome and a microsporidian) have been
implicated in bee declines and both occur at high preva-
lence within commercial colonies. Furthermore, both para-
sites can spillover to infect native bee species when
B. impatiens escape greenhouses (Otterstatter & Thomson
2008; Meeus et al. 2011). However, it is not clear whether
these escaping bees have successfully established colonies,
so again this remains as a speculative DMI.

In reviewing DMIs (Tables 1-3), several patterns emerge
(speculative DMIs are excluded from these analyses). For
instance, most disease-mediated animal invasions (seven of
eight animal DMIs), including invasive grey squirrels in
the UK (Tompkins, White & Boots 2003) and invasive
New World crayfish species in Europe (Holdich & Reeve
1991), benefit from spillover, rather than spillback. In con-
trast, most disease-mediated plant invasions (all four plant
DMIs), including invasive C. odorata in India (Mangla,
Inderjit & Callaway 2008) and invasive 4 fatua in Califor-
nia (Malmstrom et al. 2007), benefit from spillback. Spill-
over-mediated invasions may be less likely among plants
than animals because non-indigenous plants can be intro-
duced to their non-native range as seeds and may not be
accompanied by the same avirulent parasites, especially
soil pathogens, that infect them in their native ranges. In
contrast, non-indigenous animal species are often intro-
duced as adults (e.g. domestic birds introduced to Hawaii
(Warner 1968)) or escape from managed commercial popu-
lations (e.g. crayfish imported into Europe (Holdich &
Reeve 1991)) and are more likely to already carry parasites
from their home ranges with them.

It is also apparent that the DMI concept seems particu-
larly useful in explaining animal invasions in which the
non-indigenous species is phylogenetically similar to the
native species it is replacing (e.g. grey squirrels replacing
red squirrels in the UK (Tompkins, White & Boots 2003);
variegated leafhoppers replacing grape leafhoppers in
Southern California (Settle & Wilson 1990)). This is con-
sistent with the observation that physiologically similar
species compete for the same resources and can also be
infected with the same parasites (Freeland 1983). In the
case of DMIs, disease may be able to tip the competitive
balance in favour of the more resistant host species, such
that ecological replacement is catalysed by parasite-medi-
ated apparent competition. However, replacement by a
phylogenetically similar exotic species appears less com-
mon among plant invasions. Four of the eight animal
DMIs describe the replacement of a native species with a
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non-indigenous congeneric; the other four non-indigenous
animals are in the same family as the native species they
are replacing. In contrast, none of the four plant DMIs
describe the replacement of native species with a non-
indigenous congeneric; moreover, three of the non-indige-
nous plants are only related to the native species they are
replacing at the division level. Because invasive plants
seem to benefit from being phylogenetically unique from
native species assemblages (Strauss, Webb & Salamin
2006), perhaps diseases are more likely to mediate inva-
sions of plants that have already become established by
virtue of their phylogenetic uniqueness. This pattern of
host similarity could also be related to differences in
animal and plant immune systems and parasite specificity.

Invading with a biological weapon-case study
squirrels

Probably the best studied example of disease-mediated
native replacements is the invasion of grey squirrels into the
UK and subsequent decline and regional extinction of red
squirrels. Because of its introduction into the UK, the grey
squirrel has ‘replaced’ the red squirrel throughout most of
England and Wales and in parts of Scotland and Ireland
(Bryce 1997, O’Teangana et al. 2000; Gurnell et al. 2004).
There are now only restricted areas in which the red squirrel
survives, and maintaining these populations is a conserva-
tion priority (DEFRA 2007; Parrott ez al. 2009). Greys are
present in England and as far north as Central and Eastern
Scotland (Lurz 2010). Reds remain in isolated patches in
South and Central Scotland and in large continuous popu-
lations in Northern Scotland (Lurz 2010). The UK red/
grey/squirrelpox system represents the classic situation in
which a DMI may be occurring. There is a native (red) and
invading (grey) species that compete for resources, and the
squirrelpox virus which was introduced along with the inva-
der causes high mortality in the native species. Squirrelpox
virus is present in greys in England and spreading into
southern Scotland with sporadic outbreaks of squirrelpox
in the red populations in these regions (Mclnnes et al.
2009).

The disease was not traditionally part of the explanation
for the red decline probably because it is rarely seen in the
wild. Infected red squirrels suffer from obvious scabs and
lesions around the face, feet and genitals, but the disease
has a low prevalence (Sainsbury & Gurnell 1995). Faced
with a rare disease, it is perhaps natural to feel that it has
not played an important role in the dramatic decline we
have observed. However, classic ecological theory predicts
that highly virulent diseases will have a low visibility,
because they kill individuals quickly, but are more likely to
be involved in regulating host populations (Anderson &
May 1981). Such general theoretical models are designed
to examine what the impacts of different biological pro-
cesses are likely to be in general. But they are also well sui-
ted to examining our key question of whether the disease
is likely to have been important in the replacement of the
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red squirrel despite its low prevalence. Using this
approach, Tompkins, White & Boots 2003; argued that
squirrel pox is implicated in the rapid replacement of red
populations. The number of infections was predicted to be
low in the model (Tompkins, White & Boots 2003), yet the
effect on the population dynamics was marked, emphasiz-
ing within this system-specific model that low visibility
does not imply low importance of the disease. It is likely
that the difficulty in observing such infections in the field
often results in disease being overlooked. In the case of
squirrel pox, it took over 50 years for the first observation
of disease (Middleton 1930) to the identification of the
virus (Scott, Keymer & Labram 1981), a further 14 years
before its impact on red population persistence was sug-
gested (Sainsbury & Gurnell 1995) with the current view
that squirrel pox is unequivocally linked to the replace-
ment of red squirrels (Bosch & Lurz 2012).

Understanding the role of the shared disease in the
replacement of red by grey squirrels in the UK is a good
example of how models can play an important role in
understanding problems in population ecology. For a com-
plete understanding of an ecological problem a combina-
tion of observation, experimentation and theoretical
modelling would be optimal. In conservation problems
such as the red squirrel replacement, there is often obser-
vational data, but there is no opportunity of designing and
carrying out experiments. There is the potential for natural
experiments if disease is not present in all populations
because we can gain some insight to be gained from
comparison of these populations. Without a natural exper-
iment where the disease becomes introduced to the disease-
free population (see Settle & Wilson 1990), however, the
only two routes we can take are to improve the observa-
tion of the system with more systematic surveys and to use
models to gain insights. Models can integrate the existing
data and incorporate key system-specific biological pro-
cesses to provide a formal framework for understanding
the mechanisms that drive the population biology of the
system. Ecological systems are often nonlinear, and intui-
tion in the absence of formal models may let us down as it
did in the case of the squirrel system. In contrast, another
good example of the use of a model in this context is that
of Hoogendoorn & Heimpel (2002) that suggests that the
invasive ladybird beetle actually reduces disease in a more
susceptible native as it acts as a sink for a shared parasit-
oid. This again emphasises the importance of using models
to understand these complex nonlinear interactions: it is
not enough to show that there is a shared disease between
competitors to show that there is a DMI.

Perhaps more controversial than whether models are
useful in understanding ecological systems is what type of
model is most appropriate. The invasion of the grey squir-
rel and the role of disease in this invasion provide an inter-
esting case study to examine this. The first significant
squirrel competition model was developed by one of the
founders of mathematical ecology (Okubo et al. 1989).
This model uses reaction-diffusion equations to examine
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the spread of the grey squirrel assuming that there is only
competition between reds and greys. The straightforward
model framework and well-defined assumptions of this
type of model provide very clear predictions that are easy
to replicate or extend to other systems. An alternative
approach was taken in the early 1990s where individual
based models were used to examine the same problem
(Rushton et al. 1997) leading to broadly similar conclu-
sions. In these models, simulations are used where individ-
ual squirrels are modelled explicitly, and the population
outcomes result from rule-based algorithms that are over-
laid on a realistic spatial habitat (developed using GIS).
This allows considerable complexity to be included in the
model and can include rules to represent detailed behav-
iour and life-history patterns. These models have predic-
tive power, but it is difficult to isolate the key drivers of
the population dynamics due to the complicated choice of
rules and large number of parameters. Nevertheless,
because more of the biological complexity that is known
to exist in the real system can be included in these rule-
based approaches, they are widely used. The first model
that included disease and competition was an extension of
these individual rule-based models (Rushton et al. 1997,
2000). The conclusion of this model was that either disease
alone or competition alone could account for the replace-
ment of red squirrels with the combined action of competi-
tion and disease only having a small additional effect. In
contrast, the second model that considered the role of dis-
ease and competition in the squirrel system (Tompkins
et al. 2002) used a system of ordinary differential equa-
tions to represent the dynamics within a spatial patch (i.e.
it assumed populations were spatially mixed at the patch
level) and linked patches by dispersal. This model sug-
gested that the disease in combination with competition
was critical in explaining the speed of replacement that
was seen in field observations. A question therefore is what
it is about the assumptions of the two models that can
explain this difference in inference. However, the difficulty
in determining the key drivers of the population behaviour
in complex rule-based systems makes this comparison
problematic.

While including additional biological detail in model
frameworks can be important, it should not be the overrid-
ing aim of a model. Indeed in its extreme, we can start
with a real system that we do not understand and build a
model that has a similar level of complexity to the real sys-
tem that we also do not understand. The complexity of the
model should depend on our understanding of the biologi-
cal processes and the amount of data available. Often
there is not enough data to appropriately simulate the sys-
tem; rather, the aim should be to use data and models to
gain an insight into the processes that are at play in the
system. For example, theoretical work using simple general
but spatially implicit models (Bell et a/. 2009) makes the
clear prediction that the disease is likely to spread in
advance of the wave of grey squirrels and therefore impact
on red abundance in the absence of greys (or following the

removal of greys). Evidence of disease outbreaks in red
strongholds (priority regions that support red populations)
supports this finding and results in high mortality of reds
and therefore increases the local extinction threat (Bruem-
mer et al. 2010). The observation that outbreaks occur in
the red-only populations could be interpreted as evidence
for the grey squirrel being less important than previously
thought, but the modelling makes it clear that the observa-
tion is what we expect if the system is a spillover DMI. We
argue that the best approach is to build appropriate simple
models initially in order to gain insight into the role of dif-
ferent processes in the system and then build on this
understanding with more complex models if we want to
make predictions concerning management interventions.

Future directions

Many of the examples of DMIs that we have reviewed and
in particular the red/grey/squirrelpox system in the UK are
characterized by dramatic extinctions, invasions, epidemics
or combinations of all three. Although these well-publi-
cized cases illustrate the concept well, more subtle cases
may have gone unnoticed, and therefore, the phenomenon
may be much more common than we currently think.
Without a comprehensive understanding of how all gener-
alist parasites will interact with their hosts, we cannot hope
to identify all DMIs before they occur. However, we can
recognize and interpret patterns from known DMIs and
use this knowledge to inform management decisions. For
instance, we know that the fungus Geomyces destructans
(Gd) causes white-nose syndrome (WNS) in North Ameri-
can bats and that it has already killed millions of bats in
the north-eastern United States and Canada since 2006
(Turner et al. 2011). We also know that this virulent Gd
strain appears to have been introduced from Europe (War-
necke et al. 2012), where Gd has been isolated from bats in
eight countries, none of which have experienced WNS-
associated bat declines (Puechmaille e al. 2011). We there-
fore strongly advise against any introduction of European
bat species into North America, for fear of increasing the
spread of WNS, accelerating the extinction of local bat
species and/or facilitating a replacement of native bat
species with invasive European bat species.

In terms of modelling, there is considerable potential to
develop the theory on the importance and characteristics
of DMIs. If the aim is to make conservation and manage-
ment predictions, it will be necessary to include additional
biological realism in models. In particular because initial
invasions/infection levels occur at low density, it is essen-
tial to account for the stochastic nature of the dynamics as
this may lead to disease fade-out or unsuccessful invasion
attempts and can better reflect the population behaviour
of natural systems. Moreover, it may be important to
include key system-specific life-history properties. Addi-
tional realism in the form of seasonality, age structure,
environmental variability and system-specific representa-
tions of transmission and immunity have been shown to be
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important drivers of the population and epidemiological
dynamics in single host—parasite systems (Altizer et al.
2006; Earn et al. 2000; Childs & Boots 2010; Keeling &
Rohani 2008; Tompkins et al. 2011). Therefore, an under-
standing of their role in shared disease systems is urgent.
This type of model is likely to fall between the determinis-
tic and rule-based approaches that have been applied to
the red/grey squirrel system and will need to provide a
realistic representation of invasive spread and success, in
which the key mechanisms that drive the dynamics can be
understood. These approaches have great potential to be
used to develop conservation and management strategies
to protect native species from the threat caused by disease-
carrying invaders.

Conclusions

We have reviewed a number of cases where disease-medi-
ated processes have been implicated in invasions and con-
clude that (i) DMIs are a widespread phenomenon, that
(i1) spillover is more common in animal invasions and
spillback more common among plant invasions and that
(iii) spillover DMIs are particularly important in explain-
ing the replacement of native animals with phylogeneti-
cally similar exotic species. We have argued that detailed
modelling of the type used in the grey squirrel invasion
(Tompkins ez al. 2003) is a useful approach to gain an
understanding in which of these specific examples the dis-
ease is likely to be or have been important. Even in cases
where the amount of empirical data is limited simple mod-
els can give at least an indication of the circumstances
under which the disease may have been important. Fur-
thermore, they can inform on the most important pieces of
data to collect in order to better understand the invasive
process. Another important question is whether there are
particular evolutionary consequences of DMIs. On one
level, it is clear that native organisms will be selected for
higher resistance or tolerance (Boots et al. 2009) in the
face of the DMI. However, it is unclear whether the char-
acteristics of DMIs are more or less likely to allow the evo-
lution of defence, and therefore, we need evolutionary
models that include the particular epidemiological feed-
backs intrinsic to DMIs. Taken as a whole, the question of
DMI warrants further study: it may prove to be a major
force in the invasion of non-indigenous species.
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