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� Detailed study of a seasonally forced host–macroparasite system.
� Multiple solutions readily occur in seasonally forced host–macroparasite systems.
� A wider range of periods observed compared to similar seasonally forced systems.
� Seasonality may explain the wide range of population cycles for red grouse.
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a b s t r a c t

Seasonal forcing represents a pervasive source of environmental variability in natural systems. Whilst it
is reasonably well understood in interacting populations and host–microparasite systems, it has not
been studied in detail for host–macroparasite systems. In this paper we analyse the effect of seasonal
forcing in a general host–macroparasite system with explicit inclusion of the parasite larval stage and
seasonal forcing applied to the birth rate of the host. We emphasise the importance of the period of the
limit cycles in the unforced system on the resulting dynamics in the forced system. In particular, when
subject to seasonal forcing host–macroparasite systems are capable of multi-year cycles, multiple
solution behaviour, quasi-periodicity and chaos. The host–macroparasite systems show a larger potential
for multiple solution behaviour and a wider range of periodic solutions compared to similar interacting
population and microparasite systems. By examining the system for parameters that represent red
grouse and the macroparasite nematode Trichostrongylus tenuis we highlight how seasonality could be
an important factor in explaining the wide range of seemingly uncorrelated cycle periods observed in
grouse abundance in England and Scotland.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Seasonal forcing is a ubiquitous force in nature affecting species
through their life-history parameters, with an annual pulse of
births in spring and summer seen as perhaps its most pervasive
manifestation (Turchin, 2003). Seasonal forcing has been shown to
be important in generating the cycles observed in many ecological
and epidemiological systems. For example, by including seasonal
forcing to represent changes in transmission during the school
year, modelling results have been shown to be consistent with
observations of measles case reports (Altizer et al., 2006; Earn et
al., 2000; Finkenstadt and Grenfell, 2000). Numerous other exam-
ples exist in which seasonal forcing has been shown to be a driver
of fluctuations including outbreaks of influenza (Dushoff et al.,
2004), plankton–fish dynamics (Doveri et al., 1993) and vole
population cycles (Smith et al., 2008; Taylor et al., 2013b). Thus,

within the field of interacting populations and host–microparasite
systems, the importance of seasonal forcing is both well-
established and well-studied (Altizer et al., 2006; Sherratt and
Smith, 2008).

Seasonal forcing within host–macroparasite systems is less
well identified and studied. In part, this may be because season-
ality is associated with its ability to produce cyclic dynamics and
these are less frequently reported in macroparasite compared to
microparasite systems (Gulland, 1995; White et al., 1996). How-
ever, there are significant examples where macroparasites are
thought to be influential in driving population cycles. Red grouse
fluctuate irregularly across England and Scotland (Cattadori et al.,
2005b; Haydon et al., 2002) and the role of nematode parasites,
alongside territorial dynamics, in driving these cycles has been
strongly argued (Dobson and Hudson, 1992; Hudson et al., 1998;
Redpath et al., 2006). Soay sheep have population crashes every
3–4 years, which have been attributed to nematode parasites in
combination with harsh winters and malnutrition (Coulson et al.,
2001; Gulland and Fox, 1992; Gulland, 1992). There is considerable
evidence to indicate that seasonal forcing alters many aspects of
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both these systems, such as the host birth rate, the maturation of
parasite larvae in the environment, and arrested development of
larvae within the host (Anderson, 2000), which could impact on
the dynamics. However, no detailed analysis has been attempted
to elucidate the effect of seasonal forcing alongside parasitism for
these systems.

Theoretical studies of seasonal forcing in general host–macro-
parasite systems have been of two types. Roberts and Grenfell
(1991, 1992) explored system specific model frameworks to
understand the effect of a periodic pulse on the level of acquired
host immunity and how environmental forcing on maturation of
the nematode larvae affects the epidemiological dynamics of
farmed ruminants. This work has been extended to consider
wildlife systems, focussing on how host immunity and the
relationship between host age and parasite intensity changes over
one season within the host (Cattadori et al., 2005a; Cornell et al.,
2008). These studies found that the host immune response was
affected by both seasonal changes in larvae transmission and the
month of host birth; therefore different host age–parasite intensity
curves exist for different birth cohorts. General host–macropar-
asite models have examined the role of seasonality on population
dynamics by representing annual reproduction as a step-function
(White et al., 1996) and a pulse of births (White and Grenfell,
1997). When free-living stages are considered explicitly, season-
ality can increase the period and amplitude of population cycles
and there is evidence of multiple population attractors (White
et al., 1996), although there has not been a detailed investigation
of these findings. Therefore a detailed examination of the role of
seasonality on host–macroparasite dynamics is lacking and could
utilize the recent developments in computational bifurcation
theory and resonance-based analysis that have been applied to
understand population cycles in microparasite and interacting
systems (Bolzoni et al., 2008; Choisy et al., 2006; Greenman et
al., 2004; Taylor et al., 2013a).

Experimental and theoretical studies highlight the need to
explore seasonal effects in host–macroparasite systems. In this
paper we propose to undertake a comprehensive analysis of the
role of seasonality on host–macroparasite population dynamics
that utilizes the new developments in the study of forced coupled
systems (Taylor et al., 2013a). We will undertake this analysis in a
system that explicitly represents free-living stages of the parasite,
since White et al. (1996) indicated that seasonality could have a
marked effect in such systems. This allows us to understand the
wide range of outcomes occurring from seasonal forcing in general
host–macroparasite systems. In particular, we will show the
importance of the unforced dynamics on the seasonally forced
system and the possibility of multiple solution behaviour, multi-
year cycles and period doubling to chaos. Furthermore, such model
formulations without seasonal forcing have been parameterised to
represent the red grouse – Trichostrongylus tenuis system (Dobson
and Hudson, 1992) and therefore our results will provide impor-
tant insight into the influence of seasonality on the population
dynamics in a specific ecological system.

2. Methods

Macroparasites (helminths) differ from microparasites (viruses,
bacteria, protozoa) in that they reproduce by releasing free-living
infective stages, which mature in the environment or a secondary
host before being transmitted to the definitive host. They usually
have a relatively long life span and are persistent in the host with
multiple re-infections being typical (Anderson and May, 1992).
This added complexity in the life cycle of the macroparasite leads
to the necessity of modelling the parasite burden within each host
explicitly. A pattern seen across a wide range of different host and

parasite species is that a minority of hosts within the population
harbour the majority of parasites (Anderson and May, 1978;
Wilson et al., 2002); regularly more than 80% of parasites are
contained within 20% of the hosts (Anderson and May, 1992).
Macroparasites can cause a reduction in breeding capabilities of
the host, by modifying host behaviour or lowering the average
brood size. Reduced survival is also possible indirectly, by making
the host more susceptible to predation, and when hosts contain
large numbers of parasites, this can become a direct cause of death
(Anderson and May, 1978, 1992; Gulland, 1995; Hudson et al.,
1992).

Numerous models have been used to represent host–macro-
parasite systems, with different frameworks for including aggre-
gation, the effect of immunity, arrested development and larval
dynamics (Anderson and May, 1978; Diekmann and Kretzschmar,
1991; May and Anderson, 1978; Rosà and Pugliese, 2002; White
et al., 1996; White and Grenfell, 1997). In this paper we build on
previous studies by using a general model formulation which
includes exponential growth of the host, models the larval stage
explicitly, and the aggregation of parasite spread throughout hosts
is represented by the commonly used negative binomial distribu-
tion (Anderson and May, 1978; Rosà and Pugliese, 2002; White
and Grenfell, 1997). This produces the following system of equa-
tions:

dH
dτ

¼ ðan�bÞH�ðαþδnÞP

dP
dτ

¼ βnLH�ðμnþbþαÞP�α
P2

H
kþ1
k

� �

dL
dτ

¼ λP�γnL�βnLH: ð2:1Þ

A derivation of this model is provided in Appendix A. HðτÞ is the
number of host species at time τ, PðτÞ is the total number of adult
parasites contained within all of the hosts at time τ and LðτÞ is
the number of free-living larval stage parasites. The host species
undergoes exponential birth and death, with rates an and b
respectively, as well as death, αP, and reduced fecundity, δnP,
caused by the parasite. The term βnLH denotes the rate of
transmission of larvae to hosts leading to adult parasites. Parasites
are lost due to natural mortality with rate μn, natural death of the
host (rate b) and parasite induced death of the host. However, host
death due to parasitism requires knowledge of expected number
of parasites within each host, and we assume a negative binomial
distribution for the parasites with aggregation parameter k (which
leads to the form of (2.1)). Finally, the larvae are produced by adult
parasites laying eggs at rate λ and die at rate γn.

We non-dimensionalise this model, with the scalings,
h¼ βnH=b, p¼ αβnP=b2, l¼ αβnL=λb and t ¼ bτ. The new para-
meters are a¼ an=b, δ¼ δn

=α, β¼ λ=b, μ¼ ðμnþαÞ=b and γ ¼ γn=b.
This produces the following model:

dh
dt

¼ ða�1Þh�ð1þδÞp
dp
dt

¼ βlh�ðμþ1Þp�p2

h
kþ1
k

� �

dl
dt

¼ p�γl� lh: ð2:2Þ

Our work is not specifically focussed on red grouse; rather we
use this example to elucidate our results for the effects of
introducing a seasonally forced birth rate into host–macroparasite
systems. Red grouse (Lagopus lagopus scoticus) are a common case
study for macroparasites due to the relative simplicity of the
parasite dynamics, the interesting cyclic dynamics seen across
England and Scotland and the availability of data from hunting
records. The adult nematode Trichostrongylus tenuis lives in the
caeca of the grouse, passing eggs out of the host through the caecal
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faeces. The larvae mature in the environment (if conditions are
suitable) and then migrate to the tips of heather. The grouse ingest
these larvae by eating the heather, their main food plant
(Anderson, 2000; Hudson et al., 1992). Experimental studies have
shown that the nematode Trichostrongylus tenuis reduces repro-
duction in red grouse populations through lower clutch sizes,
egg mortality and chick loss (Hudson et al., 1992), thus Dobson
and Hudson (1992) emphasised the reduced fecundity term, δ. In
Dobson and Hudson (1992) the above model (2.1) is parameterised
for the red grouse system as shown and also when there is the
addition of a logistic growth term. For consistency with other
studies of host–macroparasite systems (White et al., 1996; White
and Grenfell, 1997), we use the exponential growth model and the
parameter values provided by Dobson and Hudson (1992), which
after rescaling become a¼1.7, β¼ 10=1:05, μ¼ 1:0003=1:05, k¼1
and γ ¼ 10=1:05. These rates are defined per year. Dobson and
Hudson (1992) let δ¼ 1:667, which combined with the other
parameter values leads to diverging cycles driving the hosts and
parasites to extinction. This can be counteracted by adding host
regulation through logistic growth or by varying the value of δ and
analysing the effect of this on the dynamics, which is shown
throughout this study. The influence of seasonal forcing in the
model with host regulation included would be a natural area for
future study.

We introduce seasonal forcing into the birth rate of the host,
using a sinusoidal form, a common method for representing
seasonal changes (Choisy et al., 2006; Dietz, 1976; Rinaldi et al.,
1993). The birth rate becomes

aðtÞ ¼ að1þϵ sin ð2πtÞÞ ð2:3Þ
where a is the mean value of the forced birth rate (the same value
as in the unforced case, a¼1.7) and ϵ is the amplitude of the
forcing.

2.1. Unforced dynamics

In order to understand the effect of seasonal forcing, we first
need to consider the unforced dynamics. The system (2.2) under-
goes a Hopf bifurcation when δ is varied, with a stable equilibrium
for δo0:78 and stable limit cycles for δ above this value. Explicit
inclusion of the larval stage is somewhat akin to the addition of a
time delay and this is fundamental in causing the cycles. In Fig. 1
the period and the amplitude of these limit cycles are plotted as a
function of δ.

As shown in Fig. 1, the period of the limit cycles starts at
5.9 years and increases rapidly as δ increases. Previous studies
(Greenman et al., 2004; Rinaldi et al., 1993; Taylor et al., 2013a)
have shown how yearly forcing can resonate with the unforced
period at integer values to produce multi-year cycles of that
integer period or multiples thereof. Thus, we do not expect to be
able to find multi-year solutions which have period less than 6
(since that is the smallest integer period that can be exhibited in
the model for our parameter choice). The amplitude plot in Fig. 1
(b) shows the amplitude of the limit cycles also increasing rapidly as
δ increases (and explains why divergent cycles leading to extinction
occur for δ¼ 1:667 in Dobson and Hudson, 1992).

2.2. Bifurcation method

We will investigate the effects of seasonal forcing in this
example by varying both δ and ϵ and show the multi-year
dynamics and multiple solution behaviour that occur using a
two-dimensional bifurcation diagram. We will then move on to a
more general framework to understand seasonal forcing within
host–macroparasite systems in greater detail. We begin with a
brief overview of the necessary bifurcation theory; for more

information see references Kuznetsov (1995) and Taylor et al.
(2013a). There are three main bifurcation curves, namely period-
doubling bifurcation curves, fold bifurcation curves and Neimark–
Sacker bifurcation curves. The standard procedure for locating
bifurcations uses the Poincaré (or stroboscopic) map that trans-
forms the continuous system into a discrete one by sampling the
solution once in each forcing period; once per year in our case.
Note that the stable/unstable annual cycles become stable/
unstable fixed points of the Poincaré map. Discrete bifurcation
theory reveals that this fixed point is unstable if one of the
eigenvalues of its linearisation has modulus larger than 1. Changes
in stability are of three possible types. If the eigenvalue is equal to
�1, it is a period-doubling (flip) bifurcation; if the eigenvalue is
equal to þ1 it is a fold (saddle-node, tangent) bifurcation; and if
there is a pair of complex conjugate eigenvalues with modulus 1, it
is a Neimark–Sacker (torus) bifurcation.

At a period-doubling bifurcation curve, which we denote by
PDk, a stable cycle of period k loses stability and a stable cycle of
period 2k arises. On one side of a fold bifurcation curve denoted by
FDk there is no solution but on the other side there are both stable
and unstable solution branches of a cycle of period k, which meet
at a fold at the bifurcation point. A Neimark–Sacker bifurcation is
often described as a discrete version of a Hopf bifurcation because
for a standard supercritical bifurcation, the fixed point on the
Poincaré section becomes unstable and a stable closed invariant
curve arises around the point. Typically, each iteration of the
Poincaré map brings the solution back to a different point on the
closed invariant curve. Therefore, in the continuous setting when
crossing a Neimark–Sacker bifurcation curve, denoted by NSk, a
cycle of period k loses stability and a quasi-periodic solution arises.
That is, the solution may superficially appear periodic but in fact it
has no finite period. Thus, there are different Neimark–Sacker
bifurcation curves and separate regions of quasi-periodicity
related to each of the different periodic solutions.

We use AUTO bifurcation software (Doedel, 1981) to produce the
bifurcation diagrams and Matlab (ode15s) to produce numerical
simulations. The simulations were run for 7000 years with initial
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Fig. 1. In (a) the period of the limit cycles is plotted as δ is varied. In (b) the
amplitudes of the steady state and the limit cycles are plotted as δ is varied.
Stability and instability are indicated by the solid and dashed lines respectively.
All other parameter values are kept constant with the following values: a¼1.7,
β¼ γ ¼ 10=1:05, μ¼ 1:0003=1:05 and k¼1.
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conditions randomly chosen; arbitrarily we use a uniform dis-
tribution between 0 and 1. We then tested whether they had an
exact period of between 1 and 16 years. If the simulations did not
have an exact period within this range, they were labelled as
quasi-periodic. Note that we also log-transformed the equations to
speed up computational time as the solutions spend a large
proportion of each cycle very close to zero and it takes a long
time for the transient dynamics to die out. Log-transforming the
equations significantly improves both computational time in
Matlab and accuracy in AUTO. However, we reverse this log-
transformation before presenting results.

3. Results

We consider first the host–macroparasite system with the
red grouse parameters. This highlights key properties of seasonal
forcing in host–macroparasites systems, such as a wide range of
multi-year cycles of different periods, multiple solution behaviour
and the possibility for increases in the amplitude of seasonal
forcing alone to significantly change the dynamics. We then vary
the model parameters, which has the effect of changing the
unforced dynamics of the system and allows us to explore the
effect of seasonal forcing on the host–macroparasite dynamics
more generally.

3.1. The red grouse dynamics

In Fig. 2, a two-dimensional bifurcation diagram is plotted for
parameters representing the red grouse system showing the fold
bifurcation curves and the Neimark–Sacker bifurcation curve. The
Neimark–Sacker bifurcation curve (NS1) hits the ϵ¼0 axis where
the unforced system has a Hopf bifurcation. Below this curve there
are stable yearly cycles – the effect of annual forcing on a stable
equilibrium. Above the Neimark–Sacker bifurcation quasi-
periodicity exists, caused by the annual forcing on the stable limit
cycles. The Neimark–Sacker curve is almost horizontal, indicating
that the unforced dynamics are a good predictor, in this case, of
the split between yearly cycles and quasi-periodic dynamics. There

are also regions of periodicity due to the resonance between the
annual forcing and limit cycles with integer period, leading to the
fold bifurcation curves. These curves originate from the ϵ¼0 axis
and diverge as ϵ increases with periodic behaviour possible within
the fold boundaries. Note, however, that the curves indicate the
existence of multi-year cycles but not their stability, which we will
discuss later. The fold curves start at period 6 (FD6) which is
the first integer greater than the lowest possible period in the
unforced system (which is 5.9). The fold regions get larger as the
period increases from period 6 to period 11 (FD6 is very narrow
and FD11 is significantly wider). The fold regions decrease in size
for regions greater than period 11 (not shown in Fig. 2 but see
Fig. 5). No period doubling of the yearly cycle occurs thus we do
not find solutions with periods between 2 and 5 years inclusive.

The fold curves hit the axis at the value of δ at which the
unforced limit cycles have the corresponding period, and the regions
widen as ϵ increases from 0. The rapid increase of the unforced
period with δ, as seen in Fig. 1, leads to an overlap of the fold curves
and indicates that there is potential for multiple solution behaviour.
Moreover, some of the fold curves extend below the Neimark–
Sacker bifurcation curve for larger values of ϵ. Thus, increasing the
amplitude of seasonal forcing from 0 to 1 can change the system
from a stable equilibrium to a yearly cycle to multi-year cycles, with
no change in any other parameter (Fig. 3). The multi-year cycles also
have a significant increase in amplitude in comparison to the yearly
cycle. Therefore, the inclusion of seasonal forcing can have a
dramatic effect on the dynamics of the host and parasite for
parameters corresponding to the red grouse system.

3.2. General host–macroparasite dynamics

We wish to investigate further the effect of the unforced
dynamics on the resulting multi-year cycles when forcing is
introduced into the system. When the red grouse parameters are
used, the model does not exhibit any multi-year cycles with period
less than 6 (and the 6 year cycles only for a very narrow range of δ-
values). In comparison, interacting population and epidemiological
systems frequently exhibit cycles with periods of 3–4 years (Earn
et al., 2000; Korpimaki and Krebs, 1996). Are these higher period
cycles observed purely because of the parameter values that are
relevant for red grouse dynamics, or are they representative of our
general host–macroparasite system?

To answer this question we consider the unforced dynamics
in more detail and investigate the period at the Hopf bifurcation.
As mentioned previously, the forcing only resonates with integer
periods expressed in the unforced limit cycles. Thus, we investi-
gated whether it is possible to reduce the initial period arising at
the Hopf bifurcation so that the system will be able to resonate
with lower period limit cycles. We varied the parameters in pairs,
in order to stay on the Hopf bifurcation, and calculated the initial
period at the Hopf bifurcation. We found that the host birth rate
parameter a was the key driver of the period in the unforced
system (regardless of the other parameter that was varied
concurrently).

In Fig. 4, we show how changing a affects the period at
the Hopf bifurcation, and the corresponding changes in δ that
are required in order to stay on the Hopf bifurcation. For ao1 only
the trivial steady state exists (where the host and parasite are
absent). As a increases from 1 the period of the unforced system
decreases with a minimum period of 2.3 years for a¼5.9. As a
increases further the period increases and there is a rapid increase
in period for a48 as δ approaches 1. For δ41, there are diverging
cycles that drive the host and parasite to extinction (Dobson and
Hudson, 1992). For larger a the steady state increases in value
because there is no host self-regulation in (2.2). The host and
parasite populations experience exponential growth for parameter
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Fig. 2. A two-dimensional bifurcation diagram in δ and ϵ. The Neimark–Sacker
bifurcation curve is green, the fold curves are red. The FD6 curve lies almost on top
of the NS1 curve. More fold curves exist with period higher than 11 but these are
omitted to avoid over-complication. There is no period-doubling bifurcation. Only
existence and not stability of the multi-year solutions is shown, outlined by the fold
curves. The points labelled as (a), (b) and (c) refer to the corresponding simulations
in Fig. 3. All other parameters values are kept constant with the following values:
a¼1.7, β¼ γ ¼ 10=1:05, μ¼ 1:0003=1:05 and k¼1. (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version
of this paper; Neimark–Sacker curve is dotted, fold curves are solid in print.)
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values in region 5 in Fig. 4 as the parasites are unable to regulate
the host population. Importantly, this shows that there is potential
for lower period cycles in this model system. To understand how
seasonal forcing interacts with the underlying period of the
unforced system, we produce bifurcation diagrams in δ and ϵ for
different values of a (Fig. 5).

In Fig. 5 the fold regions (red lines) for the different periods are
plotted separately for each value of a. For lower values of a there
are empty plots in the upper region of Fig. 5 since here the cycle
period is less than the initial period of the unforced dynamics
(Fig. 4). The fold regions are small if the period is close to the initial
period. For example, suppose that the initial period at the Hopf

bifurcation is either 5.2 or 5.9. The lowest possible period for
multi-year cycles will be 6 years in both cases, but the 6 year fold
region will be much smaller for the latter case. The fold regions
start to decrease in size once the period is much larger than the
initial period expressed in the unforced system. In general, there is
a pattern of the largest fold regions occurring across a diagonal
from top-right to bottom-left in Fig. 5.

There is a significant difference between existence and stability
of multi-year cycles in terms of the resulting dynamics of the
system, and thus it is important to consider the region of stability
of the multi-year cycles within each of the fold curves (i.e.
the shaded regions in Fig. 5). The presence of Neimark–Sacker
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bifurcation curves and period-doubling curves inside the fold
curves leads to loss of stability of the multi-year cycles. For
example, if we focus on the 3 year fold region for a¼5 (i.e. the
top right plot in Fig. 5), the 3 year cycles are stable in the shaded
region, but crossing the Neimark–Sacker bifurcation curve for
larger δ results in quasi-periodicity while crossing the period-
doubling curve through increasing ϵ produces stable 6 year cycles.
The size of the regions of stability follows a similar pattern to the
fold regions: it decreases as the period increases for each value of
a, mostly due to the period-doubling region inside the fold curves
increasing in size. Notably, many of the fold curves contain only
very small regions of stability, especially for the higher period
cycles.

To investigate the potential for multiple solutions we super-
impose the stable regions of the different multi-year solutions in

Fig. 5 for each value of a (Fig. 6). The yearly Neimark–Sacker
bifurcation curve (NS1) is shown but the fold, period-doubling and
Neimark–Sacker curves for each of the multi-year cycles are
omitted for clarity. There is considerable overlap of different stable
multi-year regions implying that multiple solutions are possible
for a fixed set of parameters. Fig. 6 highlights the large effect that
varying a has on the stability of multi-year cycles. This is further
emphasised by noting that the stability regions shown in Fig. 6
(a) predominantly correspond to 10–14 year cycles whereas those
in ðf Þ have periods of 3–5 years, as seen in Fig. 5.

To examine the likelihood of multiple solutions we ran simula-
tions of our model system for four different parameter sets
(indicated by the crosses in Fig. 6) for 200 sets of initial conditions
selected at random. Fig. 7 indicates that multiple solution beha-
viour was observed. Both of the points which lie above the
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Neimark–Sacker bifurcation curves in Fig. 6 (Fig. 7(a), (c)) exhibit
quasi-periodic dynamics while the two points below the curves
(Fig. 7(b), (d)) show yearly cycles as well as the multi-year cycles.
Fig. 7 also shows typical host population solutions for the four
parameter sets, indicating that a range of annual, multi-year and
quasi-periodic behaviour can be exhibited. A wide range of
amplitude is seen across the 12 simulations. This varies with cycle
period, and with the values of ϵ, δ and a. For the case a¼5, it
would be expected that there would mainly be low period cycles
due to their larger regions of stability but there are some 16 year
cycles. These 16 year cycles have peaks every 4 years, which
suggests that they have arisen due to period doubling (we
examine this below). In comparison, a 16 year cycle that has
arisen through the 16 year fold curve would usually have only one
peak in the 16 year period.

In this more general framework of the host–macroparasite
model we have shown that changing a has an important impact
on the periodic solutions possible, with a greater likelihood of
lower period multi-year cycles for the higher values of a tested.
The overlap of stable regions for these multi-year cycles has been
highlighted, and we have confirmed that multiple solution beha-
viour is possible, involving a wide range of cycle periods and
amplitudes. We now move on to some of the more complicated
aspects of these bifurcation diagrams for different values of a, such
as the period-doubling bifurcations in Fig. 5 and the overall effect
of increasing the forcing amplitude ϵ.

3.3. Period doubling and chaos

One aspect of Fig. 5 which requires further attention is period
doubling inside the fold loci. Nearly all of the fold regions in Fig. 5
contain period-doubling curves which indicate not only the loss of
stability of the cycles generated at the folds but also the generation
of stable higher period cycles. Trying to show all this information
on one plot, such as Fig. 5, is rather complicated and thus we
highlight one case (the 4 year cycles for a¼4) to show the full
range of dynamics that can occur due to period doubling (Fig. 8).

In Fig. 8 there are three fold regions plotted, the largest being
the 4 year fold region (FD4) in which the 4 year cycles lose stability
as ϵ increases through a period-doubling bifurcation (PD4) leading

to stable 8 year cycles. These 8 year cycles also undergo period
doubling (PD8) leading to stable 16 year cycles. Also shown is the
8 year fold region (FD8), in which the 8 year cycles lose stability
through a period-doubling bifurcation (PD8) leading to stable 16
year cycles. And lastly, there is the 16 year fold region (FD16)
which also indicates a region of stable 16 year cycles. All 3 of these
stable 16 year regions lose stability through more period-doubling
bifurcations (PD16). Moreover, period-halving occurs for large ϵ in
the 4 year fold region, leading to more regions of stable 8 and 16
year cycles (although the additional 16 year stable region is very
small and not visible at this scale). This highlights that there are
several routes that can lead to 16 year population cycles. It is
interesting to note that the region of stability for the 16 year cycles
resulting from two successive period doublings of the 4 year cycles
is larger than that for the 16 year fold curve, so that these period-
doubling bifurcations are of key importance in providing informa-
tion on the stable dynamics of the system. Also, the form of the
period 16 cycles resulting from period doubling and from the 16
year fold curve are very different, with only one peak every 16
years for the fold curve compared to a peak every 4 years for the
period-doubled solution. There is also a significant difference in
amplitude, which is much larger for the fold curve solution (this
has been seen through extensive simulation; results not shown).

Fig. 8 raises the possibility of chaos in this system through a
period-doubling cascade. Within the 4 year fold curve there is
a region after the 16 year cycles have lost stability before the
period-halving begins, in which there is the suggestion of period
doubling to chaos. Simulation results have shown solutions which
appear chaotic (Fig. 9), although we have not tested this in detail.

Fig. 8 is useful for exhibiting the complexities of the host–
macroparasite model with seasonal forcing, especially when it is
remembered that there are many other multi-year fold curves
omitted from this figure, all with period-doubling regions which
might lead to chaos. One common factor of all the multi-year
cycles, as seen in Figs. 5, 6 and 8 is that they lose stability as
ϵ increases. Thus, an increase in seasonal forcing, with no changes
in any other parameters, can change the dynamics dramatically
from multi-year limit cycles, to multi-year cycles of potentially
different periods due to the multiple solution behaviour and
period doubling, to quasi-periodicity and chaos. This again
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highlights the substantial impact of increasing the strength of the
seasonal forcing on the dynamics.

The overlap of stable multi-year regions and the abundance
of multiple solution behaviour indicate that the system may be
sensitive to small perturbations in parameters or to noise. In
Fig. 10, a simulation shows the effect of a perturbation in the host
population abundance (but no change of any parameters), which
leads to a change in cycle period and amplitude. A similar
perturbation in the corresponding unforced case would always
settle back to the stable equilibrium as there are no multiple
solutions.

Overall, the host–macroparasite model when subject to seaso-
nal forcing is a complicated system with a wide range of possible
dynamics depending on parameter values, the amplitude of the
seasonal forcing and the initial conditions.

3.4. Results summary

We have considered a general host–macroparasite model
with reduced fecundity and explicit inclusion of a larval stage
and explored the effects of introducing seasonal forcing through
the host birth rate. When seasonal forcing is introduced into this
host–macroparasite model it leads to stability of multi-year cycles,
multiple stable solutions, period doubling to higher period cycles,
quasi-periodicity and apparently chaotic behaviour. We studied
this for different values of the host birth rate, parameter a in (2.2),
as this leads to changes in the initial period of the unforced system
at the Hopf bifurcation. For all values of a shown the unforced
period of the limit cycles increases rapidly from the initial period
at the Hopf bifurcation, and this results in fold curves of different
periods on the ϵ¼0 axis being very close together (as seen in
Fig. 5). This leads to an overlap of fold curves of many different
periods and to multiple solution behaviour being possible, as
shown for two values of a in Fig. 7. Furthermore, in all cases the
effect of increasing ϵ (the strength of the seasonal forcing) is
substantial when the parameter choice gives rise to both a stable
equilibrium and stable limit cycles in the unforced system.

Whilst there are many similarities in the bifurcation diagrams
for the different values of a, variation in the initial period of
the unforced system has important consequences for the different
dynamics possible in the forced system, specifically the range of
stable periodic solutions. Lower period cycles are only possible for
the larger values of a tested. Apart from this difference in period,

the bifurcation diagrams change more generally, as seen in Fig. 6,
where the Neimark–Sacker bifurcation curve for the yearly cycles
(NS1) moves up in δ as a increases. In the a¼5 case, the Neimark–
Sacker curve also becomes less horizontal so that it is possible to
move from a stable equilibrium to quasi-periodicity and chaos by
increasing ϵ and keeping all other parameters constant. The fold
regions are also much wider for a¼5 indicating that seasonal
forcing has an effect for a wider range of δ values in this case. From
Fig. 5 and 6, it is clear that there is a considerable difference in the
dynamics between low values of a, say a¼1.5 or 1.7 which are in
the range given for the red grouse system, compared to a¼5, with
the inference that seasonal forcing has more of an impact for the
higher values of a tested.

The largest fold and stability regions for a¼4 and a¼5 are
much larger than those for lower values of a (as seen in Fig. 5). This
raises an interesting question: is this occurring because lower
period cycles resonate more, creating more stability for the multi-
year cycles of lower period, in comparison to those of higher
period? This could be because the 3 and 4 year cycles are closer in
period to the forcing (1 year). Or are the regions larger because
the initial amplitude of the limit cycles in the unforced system is
higher, causing more resonance when forcing is introduced? Or is
it the fact that a is nowmuch larger: since a is the parameter being
annually forced this could lead to greater resonance and hence
larger fold regions? One approach to gain some insight into this
would be to produce a similar figure to Fig. 5 with the same range
of a values, but with a different parameter being seasonally forced.
This is a natural area for future study.

4. Discussion

Seasonal forcing has been well studied in both interacting
population and microparasite systems (Choisy et al., 2006;
Greenman et al., 2004; Kuznetsov and Piccardi, 1994; Rinaldi
et al., 1993). As in this host–macroparasite study, these have all
shown that seasonal forcing can lead to multi-year cycles, quasi-
periodicity, chaos and multiple solution behaviour. Other simila-
rities include the increased amplitude in population abundance of
the multi-year cycle solutions compared to the yearly cycle and
the significant impact on the dynamics observed through
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increasing the amplitude of forcing. The similarities are particu-
larly true for systems in which there is a Hopf bifurcation present
in the unforced dynamics, since this is the determining factor for
the existence of quasi-periodicity and is influential in the produc-
tion of the fold curves (although these can occur when non-cyclic
systems are forced (Kuznetsov and Piccardi, 1994; Taylor et al.,
2013a)).

However, seasonal forcing within this host–macroparasite
system shows some important differences to ecological and
microparasite systems. One of the most noticeable aspects of this
host–macroparasite system is the existence of a wide range of
different period solutions, with sizable regions of stability for 3–16
year cycles as well as an 18 year cycle found by simulation and the
numerous period-doubling bifurcations to higher period cycles.
This indicates that host–macroparasite interactions, including the
red grouse system, are able to experience many different periodic
solutions. In contrast, data for predator–prey systems often show a
smaller range of cycles such as 3–5 years for Fennoscandian voles
(Bjørnstad et al., 1995) or 8–11 years for the snowshoe hare and
lynx cycles (Murray, 2000). Also, in the measles literature, cycles of
1–3 years are most common, although there is the possibility of
cycles with periods of up to 8 years (Earn et al., 2000). In the host–
macroparasite system the wide range of cyclic dynamics occurs
due to the rapid increase of the limit cycle period from the Hopf
bifurcation in the unforced system.1 Thus the bifurcation diagram
shows that the fold curves overlap to a much greater extent than is
typical for interacting population and microparasite systems
(Kuznetsov and Piccardi, 1994; Rinaldi et al., 1993). Not only does
this rapid increase in the unforced period lead to the wide range of
different period cycles but most importantly, it also leads to an
increased chance of multiple solution behaviour. While multiple
solutions do occur in interacting population and microparasite
systems, it is often for a small number of parameter sets and is
usually restricted to 2 or 3 different solution possibilities (Earn et
al., 2000; Taylor et al., 2013b). In contrast, Fig. 6 shows that
multiple solution behaviour is possible for a wide range of δ and ϵ
values for all values of a tested, and in Fig. 7 the points tested have
at least 5 different solutions possible. Furthermore, the wide range
of periodic dynamics and the multiple solution behaviour combine
so that both higher and lower period cycles can be found in the
resulting dynamics for the same parameter values. For example, in
Fig. 7(c) both 4 and 18 year cycles occur in simulations for the
same parameter values but different initial conditions.

There are other aspects of the bifurcation diagrams shown
here for host–macroparasite systems which differ from seasonal
models of interacting population and microparasite systems. The
Neimark–Sacker bifurcation curves are, generally, almost horizon-
tal (Fig. 6) which is not usually the case for interacting population
and microparasite systems (Kuznetsov and Piccardi, 1994;
Rinaldi et al., 1993), and indicates that the unforced dynamics
are a good predictor of the split between yearly cycles and quasi-
periodic dynamics. Also, our results indicate several regions of
(apparently) chaotic behaviour, due to the many period-doubling
bifurcation curves which can give rise to period-doubling cascades
(Aron and Schwartz, 1984). This multitude of period-doubling
cascades is not readily observed in other seasonal systems
(O'Regan et al., 2013; Rinaldi et al., 1993). Our study also shows
that period-halving can occur, which has not been reported in
previous studies of seasonally forced models. This highlights the
importance of the period-doubling bifurcations on the resultant
population dynamics.

Small perturbations in the strength of the seasonal forcing
or other parameters can lead to significantly different dynamics
through a change of period and amplitude, or to quasi-periodic or
chaotic solutions. This is in contrast to the unforced model, where
a small change in parameter values would lead to a relatively
small change in the period of the limit cycles (unless the
parameters are very close to the Hopf bifurcation, in which case
switches between a stable equilibrium and limit cycles could
occur). In Fig. 10, a simulation showed the effect of a perturbation
in the host population abundance (but no change of any para-
meters), which led to a change in cycle period and amplitude. This
sensitivity to perturbations leads to difficulties in determining
the factors that are the key drivers of population cycles and in
explaining the causes of shifts in population behaviour. Further-
more, since multiple solutions can exist for a single parameter set
it is not possible at the outset to predict the resulting population
dynamics.

The literature on red grouse documents a very wide range of
periods of population cycles in England and Scotland, with
reported periods varying between 4 and 8 years (Hudson et al.,
1998), 3 and 13 years (Cattadori et al., 2005b) or 2 and 15 years
(Haydon et al., 2002). The driver of red grouse cycles is subject to
debate, with infection from the nematode macroparasites and
territorial behaviour seen as the most likely causative factors
(Dobson and Hudson, 1992; Hudson et al., 1998; Redpath et al.,
2006). It has also been shown that there is no strong latitudinal
variation in periodicity but rather a plethora of intermixing
periods across the whole of England and Scotland (Haydon et al.,
2002). Both these aspects are consistent with our results. With
parameter values corresponding to red grouse populations across
England and Scotland, the host–macroparasite model showed a
wide range of periodic cycles and multiple solution behaviour
(Figs. 5 and 7). In the model it is possible for two geographically
close populations of red grouse to have very similar life-history
parameters and yet show exceedingly different dynamics such as
low period and high period cycles with different amplitudes.
Furthermore, the sensitivity to perturbations may explain the
difficulty in determining cyclicity and the presence of only weakly
cyclic time-series data (Haydon et al., 2002). This suggests that
seasonal forcing may be an important factor in producing the wide
range of cyclic periods observed in red grouse population
dynamics and can have a significant impact on the dynamics of
host–macroparasite systems in general.

Appendix A. Model details

To aid readers unfamiliar with mathematical models of host–
macroparasite systems, a full description of the derivation of (2.1)
is provided here. The number of parasites within each host is
modelled explicitly producing an infinite set of equations. Let pi(t)
be the number of hosts which are infected with i parasites at time
t (hence p0ðtÞ are hosts which have no parasites at time t). This
leads to ∑1

i ¼ 0pi equalling total host population and ∑1
i ¼ 0ipi the

total macroparasite population. We include birth and death of
hosts, transmission and death of parasites and explicitly model the
free-living larval stage of the parasites, L(t), the total number of
larvae at time t. This produces the following model equations:

dp0
dt

¼ an ∑
1

i ¼ 0
pi�δn ∑

1

i ¼ 0
ipi�bp0�βnLp0þμnp1

dpi
dt

¼ �bpi�αipi�μnipiþμnðiþ1Þpiþ1�βnLpiþβnLpi�1

for i¼ 1…1
dL
dt

¼ λ ∑
1

i ¼ 0
ipi�γnL�βnL ∑

1

i ¼ 0
pi: ðA:1Þ

1 Comparison of rapidity of the increase is based upon observing the relative
width of the fold curves in comparison to the distance between the cusp of each
fold curve on the axis.
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The first two equations show how the populations of hosts with
no parasites and i parasites change with time. a* is the birth rate of
hosts; any host can give birth but all new hosts are free from
parasites hence all births arrive into this first class. δ* is the
reduction in fecundity caused by the parasite, which decreases the
birth of new hosts in proportion to the number of parasites within
each host. This term can cause the birth rate to become negative
when there are large numbers of parasites, which is clearly
unrealistic. Nevertheless, the linear relationship is suggested by
field experiments. Several authors have used nonlinear terms to
prevent the possibility of a negative birth rate (Diekmann and
Kretzschmar, 1991; Rosà and Pugliese, 2002), but they do not find
significant differences in results for realistic parameter values.
Therefore we retain the original formulation of (May and
Anderson, 1978), which is also used in other models (Dobson
and Hudson, 1992; White et al., 1996). The rate of natural host
death is given by b; we assume that death of a host leads to death
of the parasites within that host. A host becomes infected by a
macroparasite through contact with larvae L, with transmission
rate β*. In the second equation, this leads to gains into the pi class
through a host with i�1 parasites becoming infected by another
parasite and similarly, losses are caused by a host with i parasites
gaining a new parasite and moving into the piþ1 class. μ* is the
natural death rate of parasites within hosts, consequently leading
to hosts moving from having i parasites to having i�1 parasites,
where any of those i parasites can die. This leads to the two terms
involving μ* in the second equation. Death of hosts caused by the
parasites occurs at rate αi i.e. it is proportional to the number of
parasites within the host. Lastly, in the larvae equation all the
parasites are able to produce larvae at rate λ and the larvae have
natural death rate of γ*. The larvae come into contact with hosts
and have successful transmission at rate β*. We assume that once a
larvae enters a host it becomes a mature parasite.

We now let H¼∑1
i ¼ 0pi and P ¼∑1

i ¼ 0ipi. Hence the following
hold true:

dH
dt

¼ dp0
dt

þ ∑
1

i ¼ 1

dpi
dt

dP
dt

¼ 0 � dp0
dt

þ ∑
1

i ¼ 1
i � dpi

dt
: ðA:2Þ

When performing these calculations many terms cancel each other
out, which leads to the following equations:

dH
dτ

¼ ðan�bÞH�ðαþδnÞP
dP
dτ

¼ βnLH�ðμnþbÞP�α ∑
1

i ¼ 0
i2pi

dL
dτ

¼ λP�γnL�βnLH: ðA:3Þ

The last term in the second equation arises because the number of
parasites within a host affects the likelihood of a host dying due to
parasitism. Thus, it is necessary to know how the parasites are
spread throughout the host population. To do this, we first change
variable by letting ~pi ¼ pi=H and interpret ~pi as the probability that
a host has i parasites. This leads to the following change in (A.3):

α ∑
1

i ¼ 0
i2pi ¼ αH ∑

1

i ¼ 0
i2 ~pi: ðA:4Þ

The negative binomial distribution is commonly assumed for
the distribution of ~pi (Anderson and May, 1978; Diekmann and
Kretzschmar, 1991; Rosà and Pugliese, 2002), as it represents the
fact that a minority of hosts harbour the majority of parasites. The
negative binomial can be described using two parameters, m and
k, where m is the mean number of parasites per host, i.e. m¼ P=H
and k is the aggregation parameter. The parasites become more
evenly spread amongst hosts as k increases. Thus, the negative

binomial assumption leads to

∑
1

i ¼ 0
i2 ~pi ¼

P
H
þ P

H

� �2kþ1
k

; ðA:5Þ

which produces the form of (2.1) when substituted into (A.3).
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