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Abstract

We analyse the adaptive dynamics of a generalised type of Lotka–Volterra model subject to an explicit
trade-off between two parameters. A simple expression for the fitness of a mutant strategy in an envi-
ronment determined by the established, resident strategy is obtained leading to general results for the
position of the evolutionary singular strategy and the associated second-order partial derivatives of the
mutant fitness with respect to the mutant and resident strategies. Combinations of these results can be used
to determine the evolutionary behaviour of the system. The theory is motivated by an example of prey
evolution in a predator–prey system in which results show that only (non-EUS) evolutionary repellor
dynamics, where evolution is directed away from a singular strategy, or dynamics where the singular
strategy is an evolutionary attractor, are possible. Moreover, the general theory can be used to show that
these results are the only possibility for all Lotka–Volterra systems in which aside from the trade-offs all
parameters are independent and in which the interaction terms are of quadratic order or less. The appli-
cability of the theory is highlighted by examining the evolution of an intermediate predator in a tri-trophic
model. � 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The analysis presented in this article depends on two basic ideas. The first of these is that of
adaptive dynamics [1–3] – an evolutionary theory which provides a dynamic counterpart to the
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theory of evolutionarily stable strategies. The second is that of trade-offs between evolving life-
history constraints [4,5] – due to energetic constraints a gain in one area must be balanced by a
loss in another.
The aim of this paper is to initiate the general theory – adaptive dynamics with trade-offs – which

results when these two ideas are combined. Since this is a first attempt at such a theory, we set out
to provide a baseline which addresses the most fundamental aspects of the behaviour in question.
To this end we focus attention on a particular class of generalised Lotka–Volterra models in which
life-history parameters appear in a relatively simple way. This provides our baseline – a firm
background against which future, more detailed and complicated behaviour can be viewed.
The theory of adaptive dynamics [1–3] arose by closing a critical feedback – that individuals

who constitute a population, ‘the residents’, will necessarily affect the environment they populate.
New types of individuals arise at low density from small mutations around the resident strategy
and for this mutant to be successful it must initially prosper in the environment determined by the
resident. Successful mutants increase in density and begin to shape the environment. In the long
term the mutant may coexist with the original resident or oust it to become the new resident itself.
The theory imposes a clear separation of the (slow) evolutionary and (fast) population dynamical
time scales, that is, mutations occur sufficiently infrequently that the population has reached its
attractor before a new mutation occurs. This is a very realistic assumption for almost all evolu-
tionary situations.
Although the theory of adaptive dynamics has only recently been outlined it is at the forefront

of theoretical attempts to explain speciation through a process of evolutionary branching. Studies
have highlighted various methods by which branching can occur, such as evolving reproductive
compatibility or dispersal rates between population types, environmental heterogeneity, or asym-
metric competition (see [6,7] and references therein). The theory has been applied successfully to
empirical problems relating to the management of evolving fish stocks [8] and the evolution of
seed size and germination strategy [9].
The key expression in the analysis of adaptive dynamics is the fitness function of the mutant

strategy which is calculated as the per capita growth rate of a mutant strategy, y, in an envi-
ronment determined by the resident population, x, and denoted sxðyÞ. If sxðyÞ is negative the
mutant dies out; if sxðyÞ is positive it will spread. Given that mutations are small, the population
will evolve in the direction of the local fitness gradient, ½osxðyÞ=ox�y¼x, until it reaches the neigh-
bourhood of a ‘singular strategy’, xs, for which the fitness gradient is zero. The behaviour at the
singular strategy is determined from combinations of the associated second-order partial deriv-
atives of the fitness function with respect to the mutant and resident strategies and characterised
by four properties (Table 1). For instance if xs is an Evolutionary Unbeatable Strategy (EUS) and
Convergence Stable (CS), then it is necessarily an evolutionary attractor (called a continuously
stable strategy or CSS [1,3]), if it is not EUS and not CS it is a (non-EUS) evolutionary repellor
[1]. The phenomenon of branching occurs when xs is CS but not EUS. Here we evolve towards xs
but when close by undergo disruptive selection and two distinct strategies coexist either side of xs.
(See [1–3] for more details on the theory of adaptive dynamics.)
In this study a mutant is characterised as having a small, discrete difference in some of its

parameters (or life history characteristics) compared with those of the resident population. One
might expect that a mutation would only affect one parameter, but it is becoming increasingly
accepted that a benefit gained in one area of a species life history will trade-off with a cost in
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another. Thus, it has been argued using simple game theory that without such trade-offs species
variation would not occur, as a single type will always have the highest fitness [4]. Trade-offs have
been reported in experimental systems where species strains with higher resistance to disease pay a
cost in terms of a reduced rate of disease-free reproduction [5] and an exceptional study by [10]
showed that the adaptive behaviour and in particular the occurrence of branching was different
for three separate trade-off functions which associate higher intrinsic growth rate with higher
transmission of infection in host-parasite systems. Thus, explicit relationships between parame-
ters, or trade-offs, are fundamental in the real world.
In this study we will explicitly link parameter pairs using a functional trade-off. Previous studies

using adaptive dynamics [7,11,12] have not focussed on the explicit relationships between pa-
rameters but rather linked parameters by a relationship with a trait value. Functional trade-offs
make clear the connection between parameters and are a subset of the parameterised relationships
(for example the parameterised relationships in Refs. [7,11] could not be represented as functional
trade-offs) so it is important to examine the evolutionary consequences of this restriction. We shall
derive a baseline theory for the adaptive dynamics of (generalised) Lotka–Volterra systems (of
any dimension) with functional trade-offs between parameter pairs. Lotka–Volterra systems have
been chosen as it is relatively easy to compute the mutant fitness function and because they
represent a very important class of models in biology and ecology [1,13,14]. To motivate the
general theory we shall first consider an example of prey evolution in a predator–prey system. We
shall then develop a general theoretical scheme that can represent multi-strain, multi-species
Lotka–Volterra systems (such as the predator–prey system in the example, but also more com-
plicated systems) which include the realistic effect of trade-offs between two parameters. The
trade-off assumption allows us to reduce the complexity of this fitness function and general results
relating to the position and stability of an evolutionarily singular strategy can be determined. By
further assuming that all the parameters other than those connected by the trade-off are inde-
pendent (and that the interaction terms are of quadratic order or less) it is possible to provide a
general classification of the adaptive dynamics. This classification limits the evolutionary be-
haviour in an important way. In particular, branching points are not possible and this directs
attention (see Section 4) to mechanisms which may be necessary for speciation to occur. The
applicability of the general theory is highlighted using an example of evolution of an intermediate
level predator in a tri-trophic system.

Table 1

Properties of the singular strategy, xs

Property Characteristics

Evolutionarily unbeatable strategy (EUS) B < 0
Convergence stable (CS) A� B > 0
Singularity can spread (SPR) A > 0
Mutually invadable (MI) Aþ B > 0

A ¼ o2sxðyÞ
ox2

�����
y¼x¼xs

; B ¼ o2sxðyÞ
oy2

�����
y¼x¼xs
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2. Example: Prey evolution in a predator–prey system with trade-offs

To motivate the general theory we will first consider prey evolution in a multi-strain predator–
prey system where we trade-off the prey growth rate against the ability of the prey to avoid
predation. If Ni represents the density of the prey strain i when i 2 A1 (the set of all possible prey
strains) and the density of predator strain i when i 2 A2 (the set of all possible predator strains)
then the dynamics satisfy

dNi

dt
¼ Ni ai

 
�
X
j2A1

bijNj �
X
j2A2

cijNj

!
for i 2 A1; ð1Þ

dNi

dt
¼ Ni

 
� di þ

X
j2A1

eijNj

!
for i 2 A2; ð2Þ

where the parameter ai is the intrinsic growth rate of prey strain i, bij is the rate of competition of
prey strain j on prey strain i, cij is the rate of predation of predator strain j on prey strain i, di is the
death rate of predator strain i and eij is the rate of conversion of predator attacks on prey strain j
into births of predator strain i. We wish to consider the invasion of a mutant prey strain y into an
established (monomorphic in each species) resident community X consisting of prey strain x and
predator strain z (i.e., X ¼ fx; zg). The fitness of the mutant prey type attempting to invade the
resident population is denoted sX ðyÞ and, from (1), satisfies

sX ðyÞ ¼ ay � byxN �
x � cyzN �

z ; ð3Þ

where N �
x and N �

z , the equilibrium densities of the resident prey and predator populations re-
spectively, are given by

N �
x ¼ dz

ezx
; N �

z ¼ ezxax � bxxdz
ezxcxz

: ð4Þ

Since the resident population is in equilibrium we know that the fitness of prey strain x in the
population X, denoted sX ðxÞ, is zero. Thus, the following expression holds:

sX ðxÞ ¼ ax � bxxN �
x � cxzN �

z ¼ 0: ð5Þ
(Note, it is the simultaneous solution of (5) with the parallel result for the predator (sX ðzÞ ¼ 0)
which gives the equilibrium densities in (4).) We can combine (3) and (5) to get

sX ðyÞ ¼ ðay � axÞ � ðbyx � bxxÞN �
x � ðcyz � cxzÞN �

z : ð6Þ
We now introduce the trade-off by assuming that the mutant and resident parameters are the same
except for the two parameters linked by the trade-off function. Therefore

byx ¼ bxx and aj ¼ f ðcjzÞ for j 2 A1: ð7Þ
For f to be a trade-off function in (7) we recognise that f 0 > 0 (i.e., energetic constraints will mean
that an increase in growth (a) will be bought at the cost of an increased rate of predation (c)). Eq.
(6) simplifies to

sX ðyÞ ¼ ðf ðcyzÞ � f ðcxzÞÞ � ðcyz � cxzÞN �
z : ð8Þ
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Since we have freedom to choose a 1-1 relationship between prey strains and parameter values we
can identify cxz with x and cyz with y. (We can do this because the predator strain z is fixed – it
refers to a different species in which the same resident strain affects both mutant and resident prey
strains.) We can then write (8) as

sX ðyÞ ¼ ðf ðyÞ � f ðxÞÞ � ðy � xÞN �
z ; ð9Þ

where we recall that the equilibrium density N �
z depends on x but not y.

The population will evolve in the direction of its local fitness gradient [1–3] defined as
osX ðyÞ=oyjy¼x, which from (9) can be expressed as

osX ðyÞ
oy

����
y¼x

¼ f 0ðyÞ � N �
z : ð10Þ

Hence, from (10), if f is a not a trade-off, the fitness gradient has negative sign and evolution
continues until the minimum value of x is reached. In the other case – on which we shall con-
centrate – the fitness gradient may change sign and here evolution may continue until the mini-
mum or maximum value of x is obtained or until it reaches a neighbourhood of a strategy for
which the fitness gradient is zero. Such a strategy is known as evolutionarily singular and occurs
when

f 0ðxÞ ¼ N �
z : ð11Þ

To determine the properties of the singular strategy requires knowledge of the second-order
partial derivatives of sX ðyÞ with respect to mutant and resident strategies at the singular strategy xs
[1–3]. It is easy to show that

o2sX ðyÞ
ox2

����
x¼y¼xs

¼ �f 00ðxsÞ; ð12Þ

o2sX ðyÞ
oy2

����
x¼y¼xs

¼ f 00ðxsÞ: ð13Þ

In terms of Table 1 this means that A ¼ �B. Hence, we are exactly on the boundary of the region
where there are nearby dimorphisms. Further consideration yields a complete classification of
possible singularities. When f 00ðxsÞ < 0 (trade-off convex), the singularity is an EUS, is necessarily
CS and the singularity can spread (SPR) so that it is certainly a CSS and therefore an evolutionary
attractor. When f 00ðxsÞ > 0 (trade-off concave), the singularity is not EUS, CS or SPR: one thinks
of a (non-EUS) evolutionary repellor. (The non-generic case f 00ðxsÞ ¼ 0 is marginal.)

3. General theory for Lotka–Volterra systems with trade-offs

To construct a general theory of the role of trade-offs in determining the adaptive dynamics of
our generalised Lotka–Volterra systems requires representing such systems by a universal nota-
tion. This notation is similar to that outlined in [1,13] and is suitable for representing commonly
studied communities which include trade-offs.
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For our multi-species, multi-strain generalised Lotka–Volterra systems the dynamics of a single
strain, i, in a set A of all possible strains (or strategies), can be represented as

dNi

dt
¼ Ni

X
a2I

X
j2A

zaijp
a
ijP

aðNjÞ
 !

; ð14Þ

where, a runs over the set I of all possible interaction types for this set of strains, i 2 A, j runs over
A and this set can be partitioned to correspond to different species, Ni is the density of strain i, P a

is the functional form of the interaction of type a and pa
ij is a parameter, chosen positive, asso-

ciated with the interaction of type a between strains i and j. Interactions can only take place for
appropriate pairs of species, which we denote s1ðaÞ and s2ðaÞ for interaction a (in the case of
intrinsic interactions characterised below they must also be between appropriate pairs of strains)
and define the quantity zaij which represents this restriction as follows:

zaij ¼ ka
ijw

a
ij;

ka
ij ¼ dðs½i�; s1ðaÞÞdðs½j�; s2ðaÞÞ;

ð15Þ

where d is the Kronecker delta and ka
ij forces z

a
ij to be zero except when the species associated with

strains i and j (denoted s½i� and s½j�, respectively) are the particular species s1ðaÞ and s2ðaÞ involved
in the interaction a. We can now distinguish two different types of interaction (subsets of I). These
have corresponding ‘weights’ wa

ij and associated functional properties ascribed to P a.
For (intrinsic or self) ‘interactions’ between the same strain (and consequently the same species)

which contribute to the per capita rate at (14) even at the lowest densities, we take

a 2 I0; wa
ij ¼ dði; jÞ; P aðNÞ ! �1 as N ! 0: ð16Þ

An example of this would be a per capita birth or death rate.
For all other interactions, whether between strains belonging to two distinct species or to

distinct strains of the same species, there is no contribution to the above per capita rate at the
lowest densities and we take

a 2 I1; wa
ij ¼ 1; P aðNÞ ! 0 as N ! 0: ð17Þ

An example of this would be an interspecific or intraspecific competition rate.
The notation developed at (14)–(17) has the great advantage of generality and compactness and

we use it as a basis for results applicable to a broad class of Lotka–Volterra systems below.
However, for heuristic reasons, it is worth making it more tangible by means of an example.
Consider the predator–prey system outlined in (1) and (2) where we additionally label the prey
species s1 and the predator species s2.
The system can be represented as a single equation as follows

dNi

dt
¼ Ni

X
j2A

aiz1ij

 
�
X
j2A

bijz2ijNj �
X
j2A

cijz3ijNj �
X
j2A

diz4ij þ
X
j2A

eijz5ijNj

!
; i 2 A; ð18Þ

as the zaij in this equation ensure that only the appropriate terms are considered for a particular
strain of a particular species. Formally, the predator–prey system (1) and (2) can be represented
by the general Eq. (14) by making the following identifications.
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a ¼ 1 2 I0; k1ij ¼ dðs½i�; s1Þdðs½j�; s1Þ; w1ij ¼ dði; jÞ; p1ij ¼ ai; P 1ðNÞ ¼ 1;
a ¼ 2 2 I1; k2ij ¼ dðs½i�; s1Þdðs½j�; s1Þ; w2ij ¼ 1; p2ij ¼ bij; P 2ðNÞ ¼ �N ;

a ¼ 3 2 I1; k3ij ¼ dðs½i�; s1Þdðs½j�; s2Þ; w3ij ¼ 1; p3ij ¼ cij; P 3ðNÞ ¼ �N ;

a ¼ 4 2 I0; k4ij ¼ dðs½i�; s2Þdðs½j�; s2Þ; w4ij ¼ dði; jÞ; p4ij ¼ di; P 4ðNÞ ¼ �1;
a ¼ 5 2 I1; k5ij ¼ dðs½i�; s2Þdðs½j�; s1Þ; w5ij ¼ 1; p5ij ¼ eij; P 5ðNÞ ¼ N :

ð19Þ

For example, for a predator (species s2) strain i 2 A2 we have that s½i� ¼ s2 and so dðs½i�; s1Þ ¼ 0.
Thus, z1ij ¼ z2ij ¼ z3ij ¼ 0 and there will be no contribution from terms in which a ¼ 1, 2 or 3. For
a ¼ 4, z4ij ¼ 0 except when i ¼ j, producing the contribution from the intrinsic predator death
term. For a ¼ 5, z5ij ¼ 1 when j 2 A1 and z5ij ¼ 0 when j 2 A2 producing the contribution from
predation on all prey strains. By considering the prey species in a similar way we can check that
the general Eq. (14) with identity (19) represents the predator–prey system (1) and (2). We have
demonstrated how our notation represents a particular Lotka–Volterra system. What needs
stressing now is that it applies with great generality. For example it can represent communities of
many species (a three species example is presented later), interaction terms of higher order (i.e.,
P aðNÞ ¼ N 2) and systems with parameter dependencies. The general theory which follows there-
fore applies to a wide range of Lotka–Volterra systems.

3.1. The fitness function for generalised Lotka–Volterra systems with trade-offs

This paper is concerned with how explicit functional trade-offs between parameters will affect
the adaptive dynamics. Therefore our initial results – which parallel those from (1) to (9) in the
above example – use the universal notation introduced above to derive an expression for the
fitness of a mutant strain subject to a relation between two interaction parameters linked by a
defined trade-off function.
Following the method of [1–3] we assume that the system is constituted of a resident com-

munity X, a proper subset of A, made up of one strain of each species (of which there may be
arbitrarily many). The resident population (monomorphic in each species) is taken to be in
equilibrium, therefore the fitness of any strain x in the resident population X (denoted sX ðxÞ) is
zero. Mathematically this means that

sX ðxÞ ¼
X
a2I

X
j2X

zaxjp
a
xjP

aðN �
j Þ ¼ 0: ð20Þ

Now (20) really represents a set of equations, one for each resident strain x 2 X . Thus the *’s refer
to the fact that we assume this set can be solved to give a unique equilibrium density N �

j for each
strain j 2 X .
We next fix our attention on a particular species with resident strain x and consider the success

of invasion by a mutant strain y (of the same species). The fitness of this strain can be described by

sX ðyÞ ¼ lim
Ny!0

X
a2I

X
j2X[fyg

zayjp
a
yjP

aðN �
j Þ

( )
: ð21Þ

Here it is convenient to slightly abuse notation and take N �
y ¼ Ny in the summation. The limit in

Eq. (21) arises because the mutant is initially rare and therefore of low density. We can combine
(20) and (21) to get
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sX ðyÞ ¼ lim
Ny!0

X
a2I

X
j2X[fyg

ðzayjpa
yj

(
� zaxjp

a
xjÞP aðN �

j Þ
)
: ð22Þ

In preparation for imposing the trade-off we now restrict our attention to mutations which only
affect two interaction types and which involve species represented in X. One might imagine that
mutations would almost invariably only affect one parameter, but here we recognise that changes
in one parameter necessarily have an effect on another characteristic of a species life history (the
basis of trade-offs). Thus we assume that pa

yj ¼ pa
xj for all a except a; b 2 Iða 6¼ bÞ. We also note

that ka
xj ¼ ka

yj since x and y belong to the same species (see (15)). Thus, we find that

sX ðyÞ ¼ lim
Ny!0

X
j2X[y

ðwa
yjp

a
yj

(
� wa

xjp
a
xjÞkaxjP aðN �

j Þ þ
X
j2X[y

ðwb
yjp

b
yj � wb

xjp
b
xjÞkbxjP bðN �

j Þ
)
: ð23Þ

All other terms (a 6¼ a; b) cancel since ka
xj ¼ ka

yj and for a 2 I1 (see (17)) wa
yj ¼ wa

xj ¼ 1 or because for
a 2 I0 (see (16)) only two terms are non-zero and these cancel in summation over j (see the results
(27) below). This reduction in the number of terms to two – which parallels the disappearance of
the parameter b between (6) and (8) in the example – shows the great advantage of using the form
at (22) rather than that at (21).
Now a and b must be interaction types that involve the evolving species s½x� and so, using (15),

dðs½x�; s1ðaÞÞ ¼ dðs½x�; s1ðbÞÞ ¼ 1. Therefore, kaxj and kbxj will only be non-zero when s½j� is equal to
s2ðaÞ and s2ðbÞ, respectively (see (15)). As we are considering a resident population which is
monomorphic in each species this non-zero value occurs for unique strains in X which we denote
xa and xb for a ¼ a and b respectively. (Without loss of generality we note that it is possible for
xa ¼ xb.) Thus

sX ðyÞ ¼ lim
Ny!0

X
j2fxa;yg

ðwa
yjp

a
yj

(
� wa

xjp
a
xjÞkaxjP aðN �

j Þ þ
X

j2fxb;yg
ðwb

yjp
b
yj � wb

xjp
b
xjÞkbxjP bðN �

j Þ
)
; ð24Þ

where kaxxa ¼ 1 and kbxxb ¼ 1 (see (15)). Furthermore, if a; b 2 I1 then for interspecific interactions
kaxy ¼ kbxy ¼ 0 whilst for intraspecific interactions the limit in (17) is operative. Since additionally
thewa

ij ¼ 1 (see (17)) Eq. (24) now becomes
sX ðyÞ ¼ ðpayxa � paxxaÞP

aðN �
xa
Þ þ ðpbyxb � pbxxbÞP

bðN �
xb
Þ: ð25Þ

Furthermore, if, for example, the term labelled by a belongs to I0, then using (16) its contribution
to (24) is, since xa ¼ x,X

j2fx;yg
ðdðy; jÞpayj � dðx; jÞpaxjÞPaðN �

j Þ: ð26Þ

Thus in this case the sum on j contributes two terms which in combination replace the appropriate
term in (25) by

ðpayy � paxxÞPaðN �
x Þ: ð27Þ

(Note that the second factor is really a constant, namely �1.)
We can now introduce trade-offs by recognising that the two remaining parameter types are

related by a condition of the form
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pajxa ¼ f ðpbjxbÞ: ð28Þ

As promised, we can now express the fitness of the mutant strategy in terms the trade-off function

sX ðyÞ ¼ f ðpbyxbÞ
�

� f ðpbxxbÞ
�
PaðN �

xaÞ þ pbyxb

�
� pbxxb

�
PbðN �

xb
Þ: ð29Þ

By letting the trade-off be pajj ¼ f ðpbjxbÞ it is easy to encompass the case defined by (27). Clearly (29)
is a generalisation of (8). It not only encompasses the evolution of different pairs of trade-off
parameters but also allows the evolving species to belong to an ‘arbitrary’ multi-species com-
munity (in which the all other species have fixed resident strains). Eq. (29) represents the mutant
fitness function for any model that can be represented by (14) and that contains trade-offs between
two parameters.
We now invoke a 1:1 correspondence between strains x and y of our evolving species and

parameter values pbxxb and p
b
yxb
. In the predator–prey example we noted that this identification was

allowed because the fixed strain z belonged to a different species to the evolving species. It is also
allowed in the general theory if xa and xb are of a different species to that of the resident strain x.
Additionally, we can allow these strains to be identical with x provided that the parameter is
associated with a self-interaction term, so in practice the number of subscripts can be reduced to
one (see (27) and for motivation the predator–prey example above). These possibilities cover a
large class of interactions for which we will find general results below. (If xa or xb is identical with
x and the parameter is not associated with a self-interaction term the general theory will still apply
but only in the rather restricted situation in which the mutant parameter is independent of the
resident strain.)
By identifying pbxxb with x and pbyxb with y we can write (29) as

sX ðyÞ ¼ f ðyÞð � f ðxÞÞPaðN �
xa
Þ þ yð � xÞPbðN �

xb
Þ; ð30Þ

which is easy to use particularly if we remember that the densities are those of the resident strains
coupled to x and y by the interactions a and b. These densities satisfy (20) and hence can depend
on x but not y.
To distinguish trade-offs from other functions we require that the two terms in (30) have op-

posite signs. This means that signðPaðN �
xaÞ=P

bðN �
xb
ÞÞf is a decreasing function. Since, in applica-

tions, PaðN �
xa
Þ and PbðN �

xb
Þ are of fixed sign, we make this a condition and distinguish trade-offs by

the requirement that

signðPaðN �
xa
Þ=PbðN �

xb
ÞÞf 0 < 0: ð31Þ

3.2. The adaptive dynamics of general Lotka–Volterra systems

The theoretical approach of the previous section can be used to represent ‘any’ Lotka–Volterra
system. It will now be used to derive clear-cut and informative general results regarding the
evolution of one species in a multi-species resident environment. These results generalise those
given near (11)–(13) in the example. We start with the result [1–3] that a population will evolve in
the direction of its local fitness gradient which from (30) is

osX ðyÞ=oyjy¼x ¼ f 0ðxÞPaðN �
xa
Þ þ PbðN �

xb
Þ ¼ PbðN �

xb
Þ PaðN �

xa
Þ=PbðN �

xb
Þ

� �
f 0ðxÞ

�
þ 1
�
: ð32Þ
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This allows us to deduce, from (31), that if f is a not a trade-off, the fitness gradient has fixed sign
and evolution continues until the maximum (PbðN �

xb
Þ > 0) or minimum (PbðN �

xb
Þ < 0) value of x is

reached. If f is a trade-off then the fitness gradient may change sign and here evolution continues
either as above or until it reaches a neighbourhood of the evolutionarily singular strategy. For the
generalised Lotka–Volterra systems with trade-offs between two parameters, it is clear (from (32)),
that this occurs when

f 0ðxÞ ¼ �
PbðN �

xb
Þ

PaðN �
xa
Þ : ð33Þ

This clear-cut general result indicates that a singular strategy occurs when the slope of the trade-
off function and the above quotient involving at most two population densities at the resident
equilibrium are equal. To determine the properties of the singular strategy requires knowledge of
the second-order partial derivatives of sX ðyÞ with respect to mutant and resident strategies at the
singular strategy xs [1–3]. It is easy to show that

o2sX ðyÞ
oy2

����
x¼y¼xs

¼ f 00ðxsÞPaðN �
xa
Þ: ð34Þ

Given the sign of PaðN �
xa
Þ, whether or not a singular strategy is an EUS is entirely determined by

the sign of f 00ðxsÞ. From the definition in Table 1 it can be seen that if PaðN �
xaÞ is positive and we

consider, for example, a convex trade-off ðf 00ðxsÞ < 0Þ then xs is an EUS whereas for a concave
trade-off ðf 00ðxsÞ > 0Þ xs is not EUS. (If PaðN �

xaÞ is negative the converse is true.) We can combine
these two results in one biological principle which states that xs is an EUS if the trade-off is in-
creasingly marginally costly and is not an EUS if the trade-off is decreasingly marginally costly.
To see this it pays to be tangible and consider trade-offs between parameters for which the signs of
PaðN �

xa
Þ and PbðN �

xb
Þ differ and so, from (31), f 0 > 0. Suppose we regard the ‘benefit’ as the hor-

izontal axis variable pbxxb and the cost as the vertical axis variable p
a
xxa

¼ f ðpbxxbÞ. Then if P
aðN �

xa
Þ > 0

(and hence PbðN �
xb
Þ < 0), both costs and benefits will increase towards the origin and a convex

function will be increasingly marginally costly. Similarly if PaðN �
xaÞ < 0 (and hence P

bðN �
xb
Þ > 0),

both costs and benefits will increase away from the origin and a concave function will be in-
creasingly marginally costly. In cases wherePaðN �

xaÞ and PbðN �
xb
Þ have the same sign costs and ben-

efits increase in ‘opposite’ directions, conditions on f 0 and f 00 ‘flip’ but the principle still applies.
To further categorise the evolutionary behaviour around xs we differentiate (30) with respect to

x to give

osX ðyÞ
ox

¼ ðf ðyÞ � f ðxÞÞ
oPaðN �

xa
Þ

ox
� f 0ðxÞPaðN �

xa
Þ þ ðy � xÞ

oPbðN �
xb
Þ

ox
� PbðN �

xb
Þ: ð35Þ

This evaluates to zero at x ¼ y ¼ xs in agreement with general theory [1–3]. Differentiating a
second time with respect to strategy x we get

o2sX ðyÞ
ox2

¼ ðf ðyÞ � f ðxÞÞ2
oPaðN �

xaÞ
ox2

� 2f 0ðxÞ
oPaðN �

xaÞ
ox

� f 00ðxÞPaðN �
xaÞ þ ðy � xÞ2

o2PbðN �
xb
Þ

ox2
� 2

oPbðN �
xb
Þ

ox
: ð36Þ
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At the singular strategy this reduces to

o2sX ðyÞ
ox2

����
x¼y¼xs

¼ �2f 0ðxsÞ
oPaðN �

xaÞ
ox

� 2
oPbðN �

xb
Þ

ox
� f 00ðxsÞPaðN �

xaÞ; ð37Þ

where derivatives are evaluated at xs. Eq. (37) is again quite general but it is more difficult to
interpret because the derivatives of PaðN �

xa
Þ and PbðN �

xb
Þ are not of fixed sign and magnitude. In

some circumstances, however, (37) can be simplified and tractable, general, results for a sub-class
of Lotka–Volterra systems can be determined. We take this up immediately in the next paragraph.

3.3. A general result for Lotka–Volterra systems with independent parameters

We use the general theory to determine the evolutionary behaviour of a broad sub-class of
Lotka–Volterra systems subject to the additional condition that all parameters, except for those
linked by the trade-off, are independent. (We also assume that the functional form of the inter-
action terms is quadratic or less – the P aðNÞ in (14) are �1 or �N .) The predator–prey system (1)
and (2) is an example of this Lotka–Volterra sub-class. Under this set-up it is possible to show that,
for x ¼ xs; oPaðN �

xa
Þ=ox ¼ 0 and oPbðN �

xb
Þ=ox ¼ 0 (see Appendix A) and therefore (37) becomes

o2sX ðyÞ
ox2

����
x¼y¼xs

¼ �f 00ðxsÞPaðN �
xaÞ: ð38Þ

Combining (38) with the general result (34) we have that in terms of Table 1 A ¼ �B. Thus
ifPaðN �

xa
Þ is positive and we consider, for example, a convex trade-off ðf 00ðxsÞ < 0Þ then xs is an

EUS and CS and is therefore an evolutionary attractor (a CSS). For a concave trade-off
ðf 00ðxsÞ > 0Þ xs is not EUS, not CS and is therefore a (non-EUS) evolutionary repellor. (If PaðN �

xa
Þ

is negative the converse is true.) Thus, for a trade-off between parameter pairs in this sub-class of
Lotka–Volterra systems the evolving species can only tend towards an evolutionary attracting
singular strategy or be repelled from it. Furthermore, it is easy to use the general theory to de-
termine the evolution of any single species under any (relevant) trade-off. Thus, if we had con-
sidered predator evolution in the predator–prey example (1) and (2) we would have found that the
same evolutionary outcomes (attractor or repellor) were the only possibilities. We further high-
light the applicability of the general theory by examining evolution in a tri-trophic system.

3.4. Evolution in a tri-trophic system

We consider the following system where Ni represent the density of the basal prey if i 2 A1, the
intermediate predator if i 2 A2 and the top predator if i 2 A3.

dNi

dt
¼ Ni ai

 
�
X
j2A1

bijNj �
X
j2A2

cijNj �
X
j2A3

dijNj

!
for i 2 A1; ð39Þ

dNi

dt
¼ Ni

 
� ei þ

X
j2A1

gijNj �
X
j2A3

hijNj

!
for i 2 A2; ð40Þ
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dNi

dt
¼ Ni

 
� ki þ

X
j2A1

lijNj þ
X
j2A2

mijNj

!
for i 2 A3: ð41Þ

Here the parameter ai is the growth rate of basal prey strain i, bij is the rate of competition of basal
prey strain j on basal prey strain i, cij and dij are the rate of predation of intermediate and top
predator strain j (respectively) on basal prey strain i, ei is the death rate of intermediate predator
strain i, gij is the rate of conversion of predator attacks on basal prey strain j into births of in-
termediate predator strain i, hij is the rate of predation of top predator strain j on intermediate
predator strain i, ki is the death rate of top predator strain i, lij and mij are the rate of conversion
of top predator attacks on basal prey and intermediate predator strain j (respectively) into births
of top predator strain i.
Let us assume that there is a monomorphic resident environment containing strains

X ¼ fz1; x; z2g for the basal prey, intermediate predator and top predator respectively. We wish to
examine the evolution of the intermediate predator species under a trade-off between the con-
version rate from predation of the intermediate predator on the basal prey (g) and predation rate
of the top predator on the intermediate predator (h). To do this we take gjz1 ¼ f ðhjz2Þ or pajz1 ¼
f ðpbjz2Þ to link with the general theory (28) and note that P

aðN �
z1
Þ ¼ N �

z1
and PbðN �

z2
Þ ¼ �N �

z2
(see

(20)). From (33), the singular strategy, xs, occurs when

f 0ðxÞ ¼
N �

z2

N �
z1

: ð42Þ

From (34)

o2sX ðyÞ
oy2

����
x¼y¼xs

¼ f 00ðxsÞN �
z1
; ð43Þ

and from (37) and using the general result for Lotka–Volterra systems with independent pa-
rameters (see (38) and the Appendix A) we know that

o2sX ðyÞ
ox2

����
x¼y¼xs

¼ �f 00ðxsÞN �
z1
: ð44Þ

We have used the general theory to show that in terms of Table 1 A ¼ �B and therefore the only
possible evolutionary outcomes are that the singular strategy is an evolutionary attractor or a
(non-EUS) repellor. This three species example highlights the usefulness of the general theory. We
could equally have examined evolution of the basal prey or top predator (with trade-offs) with the
general theory implying that the same evolutionary outcomes are the only possibility.

4. Discussion

We have outlined a general approach for a class of Lotka–Volterra systems which under the
assumption of a trade-off between parameters allows the fitness function of an evolving species in
a multi-species resident environment to be reduced to a linear combination of the difference in
mutant and resident parameter values. The coefficients of this combination are interaction terms
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dependent on the resident population parameters (see (30)). In our study of the adaptive dynamics
of such systems we have shown that the position of the singular strategy is determined by the
condition that the slope of the trade-off function must be equal to a simple quotient involving at
most two population densities evaluated at the resident equilibrium (see (33)). Furthermore, we
have determined a general expression that indicates that a singular strategy’s EUS status is de-
termined by the curvature of the trade-off function at the singular strategy (see (34)). This can be
interpreted biologically by considering trade-offs which are increasingly or decreasingly (mar-
ginally) costly. We have also determined an expression for the second-order partial derivative of
the mutant fitness with respect to the resident strain of the evolving species (i.e., o2sX ðyÞ=ox2, see
(37)). These general results can be used to determine the evolution of a single species against a
fixed multi-species environment for Lotka–Volterra systems which include trade-offs.
The general results for o2sX ðyÞ=ox2 obtained in (37) can be simplified to an expression which is

directly proportional to the curvature of the trade-off function by considering a sub-class of
Lotka–Volterra systems in which all the parameters – except those linked by the trade-off – are
independent (and in which there are at most quadratic interactions, see (38)). This sub-class still
represents a broad range of biological systems and examples have been given of the evolution of a
prey species in a predator–prey system and of an intermediate predator in a tri-trophic model. In
general, this sub-class of Lotka–Volterra systems can only exhibit evolutionary attractor (CSS) or
(non-EUS) evolutionary repellor dynamics (see Appendix A) regardless of the number of species
which make up the resident environment of the evolving species or the (relevant) trade-off pa-
rameter pair. Since the Lotka–Volterra framework we have considered represents the underlying
structure in many models in ecology and biology [14] the result here has wide ranging conse-
quences. The repellor behaviour occurs when the system is not EUS and not CS. In this scenario
the strategy will evolve to either its maximum or minimum value, implying that the parameters are
at extremes. The attractor behaviour occurs when the singular strategy is both an EUS and CS.
This can be interpreted biologically as requiring an increasingly marginally costly trade-off. Such a
mechanism has been invoked as a method by which disease virulence is maintained at interme-
diate levels [15] and the results here suggests that parallel behaviour may be important in many
more situations.
A notable result to emerge from the theory of adaptive dynamics is the possibility of a singular

strategy being a branching point. At such points population strategies separate and diverge to
form a distinct dimorphic population. This process has been suggested as a possible mechanism
for speciation (see [7]). We have shown that for large and commonly used descriptions of Lotka–
Volterra systems with trade-offs branching is not possible. This is not to say that branching cannot
occur in Lotka–Volterra systems but it opens a debate on precisely what mechanisms are required
for branching to be present. Certainly a more complicated set-up than that considered in the sub-
class of Lotka–Volterra models defined in Appendix A of this study is needed.
In previous studies [7,11] branching has been shown to be a feature of Lotka–Volterra systems.

So how do these set-ups differ from the examples considered in this study? In [7,11] a multi-strain
single-species competition model is examined in which explicit functional trade-offs are not con-
sidered and instead parameters are linked to an underlying trait value. Furthermore, the param-
eters can depend jointly on mutant and resident trait values and therefore the 1:1 identification
used in our general theory in (30) would not be appropriate (since y is not independent of x). This
‘new’ model set-up which differs in two respects from ours – it is not described in terms of trade-offs

R.G. Bowers, A. White / Mathematical Biosciences 175 (2002) 67–81 79



and does admit ‘evolving-resident dependency’ of parameters – can display branching points.
Moreover, one can prove directly (pers. comm. from a referee) that, whether or not one uses trade-
offs, single species models of the type studied in [7,11], but in which the parameters are independent
of the resident, can display only evolutionary attractor (CSS) or (non-EUS) evolutionary repellor
dynamics (branching is not possible). Thus it is the dependence on the resident strain of the
evolving species that underlies the branching seen in Refs. [7,11]. However, we should not look to
this dependence as a necessary mechanism in our study of the effects of trade-offs. First the general
proof mentioned above fails for multi-species systems and, second, the 1:1 identification used in
(30) is appropriate when parameters link to a non-evolving species. For evolution of one species
against a fixed multi-species resident environment, as detailed in the examples and represented by
our general theory, the result that branching does not occur explicitly arises through the simpli-
fication and assumptions associated with the sub-class of Lotka–Volterra systems and the trade-off
(see Appendix A). The mutant parameters in these systems are independent of the resident strain of
the evolving species and the inclusion of trade-offs is vital. So what feature of the sub-class is re-
sponsible for our negative finding – do we have any clues to the mechanisms within the broader
class of models allowed until (37) which may lead to branching? One clue is provided by the study
[10], which examines the evolution of resistance to disease in a Lotka–Volterra system in which the
mutant parameters are independent of the resident strain and in which parameter pairs are linked
by a trade-offs. In this model branching can occur. Moreover, the simplification between (37) and
(38) does not occur – there is parameter interdependence additional to that described by the trade-
off. So branching can occur in systems represented by (14) in which the mutant parameters are
independent of the resident strain (i.e., the resident effects the mutants fitness through its popu-
lation density only) if the restriction that the parameters are independent of each other is lifted. A
general investigation of this point will form the subject of future research.
To summarise, we have produced general results that provide insight into the evolutionary

behaviour of Lotka–Volterra systems with trade-offs. We have shown that in a sub-class of
Lotka–Volterra systems in which all the parameters (except those linked by the trade-off) are
independent (and in which the interactions are at most quadratic) evolutionary branching is not
possible. Branching may be a feature of Lotka–Volterra systems if the parameters depend jointly
on resident and mutant strain (trait) values and/or the parameters are not independent of each
other.

Appendix A

Consider a model represented by Eq. (14) which consists of n species with independent pa-
rameters (aside from the trade-off) and at most quadratic interaction terms (a 2 I0; I1). Since we
know the resident population is in equilibrium we can write (20) as

AN � ¼ �C; ðA:1Þ

where Aðn� nÞ and Cðn� 1Þ are defined by

Aij ¼
X
a2I1

zaijp
a
ij sign ðP aðN �

j ÞÞ; Ci ¼
X
a2I0

zaijp
a
ij sign ðP aðN �

j ÞÞ; ðA:2Þ
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and N � is a column vector with n entries representing the equilibrium densities for the n-species.
Furthermore, we invoke a trade-off between two of the parameters associated with (say) the
quadratic terms involving the species with resident strain x, so that say paxxa ¼ f ðpbxxbÞ and hence of
necessity zaxxa ¼ zbxxb ¼ 1. Differentiating with respect to pbxxb (or x in general theory) we get

AdN � þ dAN � ¼ 0; ðA:3Þ
and we can multiply through by A�1 (the matrix inverse of A which exists if the equilibrium exists)
to get

dN � þ A�1dAN � ¼ 0: ðA:4Þ
Since all the parameters are independent dA is a matrix of zeros except for a signðPbðN �

xb
ÞÞ in the

‘position’ of pbxxb and a signðP
aðN �

xa
ÞÞf 0ðpbxxbÞ in the ‘position’ of f ðp

b
xxb
Þ. Hence dAN � is a column

vector of zeros except for one element

signðPaðN �
xa
ÞÞf 0ðpbxxbÞN

�
xa
þ signðPbðN �

xb
ÞÞN �

xb
; ðA:5Þ

which is exactly equivalent to f 0ðxÞPaðN �
xa
Þ þ PbðN �

xb
Þ which is zero at a singular point by (33).

Therefore dN � ¼ 0 which implies that the derivatives of PaðN �
xa
Þ and PbðN �

xb
Þ in Eq. (37) are zero

and the result in the main text is verified. It is straightforward to show that this method also
applies to trade-offs between other parameter types.
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