Problem Sheet 2 for Oscillations and Waves

Module F12MS3

2007-08

- 1 It is found experimentally that a 1 kg mass stretches a spring $\frac{49}{320}$ m.
 - (a) If the mass is pulled down an additional $\frac{1}{4}$ m and then released with an upward speed of 0.5m s⁻¹, find the subsequent motion. Neglect air resistance and take g = 9.8 m/sec².
 - (b) Find the period and amplitude of the motion.
- 2 The bob of a pendulum performs small oscillations with a period of 4 seconds. Given that the pendulum is situated near the earth's surface, how long is it?
- 3 Complex number revision.
 - (a) If z = -3 + 4i, express z, its complex conjugate \bar{z} and its reciprocal 1/z in modulus-argument form.
 - (b) Find the moduli and (principal) arguments of z=-2-2i and $w=1+\sqrt{3}i$. Hence calculate the moduli and arguments of i) zw, ii) z/w. Draw z, w, zw and z/w in the Argand diagram.
 - (c) A quadratic equation with real coefficients has $(1 \frac{1}{2}i)$ as one of its roots. Find the other root and find the simplest such equation with all integer coefficients.
 - (d) Display the relationships $\cos \theta = (e^{i\theta} + e^{-i\theta})/2$ and $i \sin \theta = (e^{i\theta} e^{-i\theta})/2$ geometrically by drawing each of the terms in an Argand diagram (Pick a convenient value of θ).
 - (e) If C = 5 5i and the complex-valued function z is given by $z(t) = e^{3it}$ find the real and imaginary parts of Cz(t) and $C\dot{z}(t)$. (Hint: express C in modulus-argument form).
- 4 Differential equations revision. Find the general solutions of the following differential equations:

(a)
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = 0$$
,

(b)
$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + 2x = 0,$$

(c)
$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = t^2$$
,

(d)
$$\frac{d^2x}{dt^2} - 4\frac{dx}{dt} + 3x = 2e^t$$
,

(e)
$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + 5x = \cos(2t)$$
.