Problem Sheet 3 for Oscillations and Waves

Module F12MS3

2007-08

- 1 An object of mass 1 kg is attached to a spring with spring constant 1 N/m, is immersed in a viscous fluid with damping constant 2 Nsec/m and allowed to oscillate freely.
 - (a) Give the equation governing the object's motion.
 - (b) At time t = 0 the object is lowered $\frac{1}{4}$ m and given an initial velocity of 1 m/sec in the upward direction. Find its subsequent motion.
 - (c) Show that the object will overshoot its equilibrium position once and then return to equilibrium.
 - (d) Sketch the position of the object as a function of time.
- **2** A spring is stretched 2 m by a mass of 2 kg. The mass is immersed in a viscous fluid with damping constant 4 Nsec/m and is acted on by an external force of $4\cos(2t)$ N in the downwards direction. If the object is initially at rest at the equilibrium position find its position at time t > 0. (You may assume $g = 10 \text{ m s}^{-2}$).
- **3** A particle of mass 1 kg is attached to a spring with spring constant 9 N/m and is acted on by an external force $\cos(3t)$ N in the downward direction at time t.
 - (a) Ignoring air resistance, write down the differential equation describing the motion of the particle and find its general solution.
 - (b) If the particle is initially in the equilibrium position and at rest show that its displacement at time $t = \frac{3\pi}{2}$ sec is $\frac{\pi}{4}$ m.
- 4 An object of mass 1 kg is attached to a spring with spring constant 16 $\rm Nm^{-1}$ and allowed to oscillate freely.
 - (a) Neglecting air resistance, find the angular frequency and the period of the oscillations.
 - (b) The object is acted upon by the external force $f_1(t) = \cos 2t$. Give the equation of motion and find its general solution.
 - (c) The external force is changed to $f_2(t) = \cos 4t$. Find a particular solution of the new equation of motion.
 - (d) Now both forces f_1 and f_2 act on the object. Using your results from (b) and (c) or otherwise, find a particular solution of the resulting equation of motion.