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Solutions 2 for Oscillations and Waves

Module F12MS3 2007-08

From Hooke’s law applied to a mass m attached to a spring of spring constant &k, we have
mg = kl. With [ = % m and m = 1 kg we deduce k = % = 64 N m~!. Hence the
equation of motion for the position x of the mass is

T = —64x.

The general solution of the equation of motion is x(t) = Acos(8t) + Bsin(8t), where A
and B are two real constants. For the general solution #(t) = —8Asin(8t) + 8B cos(8t),
hence 2(0) = A and #(0) = 8B. The initial conditions are z(0) =  and #(0) = —0.5. To
satisfy these we have to choose A = % and B = —%. Thus the displacement at time ¢ is
given by x(t) = 1 cos(8t) — 1= sin(8¢)

The period of the motion is T' = %’rs: 7s, and the amplitude of the motion is given by

R= A2+ B?m= YT,

2 The period is related to the characteristic frequency w and hence the length of the pendulum

via

2
T:—W:27T\/z
w g

Thus, if T' = 4s, we deduce w = 7 and we calculate the length of the pendulum from the period

via

T?g

3 (a) The modulus is |z| = v/32 + 42 = 5, the argument is ¢ = m — tan~'(4/3) &~ 2.214. Thus
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hence principal argument is 7 (1)

These numbers are displayed in the Argand diagram 1
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Figure 1: Argand diagram for (b)

(c) If (1 —i/2) is one root of a quadratic equation with real coefficients then the other root
must be (1 +i/2). Hence equation is

(z—(1—-14/2)(z—(1+14/2)) = 0
0

& 22 —2245/4
=422 —824+5 = 0.

(d) See Fig. 2.

Im

Figure 2: Argand diagrams for (d)

(e) C = 5y2e ™" = Cz(t) = 5v/2'G=7/4 Differentiating (t) = 3ie’* = 3¢G+7/2) and
hence C%(t) = 15v/2e!3+7/% Thus we find real and imaginary parts:

Re[Cz(t)] = 5v2cos(3t —w/4)  Im[Cz(t)] = 5v/2sin(3t — 7/4)

and
Re[C:(t)] = 15v/2cos(3t + m/4)  Im[C(t)] = 15v2sin(3t + 7/4)



4 (a) The characteristic equation is
NAdd+4=0= A\ =-2, X =—2.
A1 = Ag, roots are real and equal. Hence general solution is
z(t) = (A+ Bt)e ™,
where A and B are constants.
(b) The characteristic equation is
MN_2242=0=> M\ =140 A=1—14.
Roots are complex, hence the general solution is
z(t) = e (Acos(t) + Bsin(t)),
where A and B are constants.
(c) Characteristic equation for the homogeneous equation is
N4 22 +4=0= N\ =—2, Ny = —2.
Therefore the complementary function (solution of the homogeneous equation) is
z(t)°F = (A + Bt)e ™,

where A and B are constants.
Particular solution: f(t) = t* so try

x(t) = agt® + art + ay.
On substitution this gives
2@2 -+ 4(2a2t + al) -+ 4(G2t2 -+ Cllt + Clo) = tQ.
By matching coefficients
) ot N 3
xp(t) = — — =+ —.
P 4 2 8
The general solution is therefore
ot 3
t)=(A+Bt)e ™ + — — =~ + .
x(t) = (A+ Bt)e = + 7 5t 3
(d) Characteristic equation for the homogeneous equation is
MN—dA+3=0=M\=1, =3
Therefore the complementary function is
z(t)°F = Ae' + Be*

where A and B are constants.
Particular solution: f(t) = 2¢f, €' is in the CF so try

z(t) = ate'.
Substituting and matching coefficients gives a = —1 and so
z,(t) = —te'.

The general solution is therefore

z(t) = Ae' + Be® — te'.



(e) Characteristic equation for the homogeneous equation is
NH2X4+5=0= A\ =—1+2i, Ay =—1-2i.
Therefore, the complementary function is
z(t)°" = e (Acos(2t) + Bsin(2t)),

where A and B are constants.
Particular solution: f(t) = cos(2t), so try z(t) = Ce**. Substituting into the complex
equation

+ 2% 4 5r = e

and matching coefficients gives —4C + 4:C +5C' =1, or C' = 1;;”, so that

() = 1i7 (1 — 43) (cos(2t) + i sin(2t)) |

the real part of which is the particular solution:
1 :
xp(t) = 7 (cos(2t) 4+ 4sin(2t)) .
The general solution is therefore

z(t) = e " (Acos(2t) + Bsin(2t)) + %7 (cos(2t) 4+ 4sin(2t)) .



