
Solutions 4 for Oscillations and Waves

Module F12MS3 2007-08

1 (a) The differential equation governing the motion of the object is

ẍ + ẋ + 4x = 2 cos(ωt). (1)

The associated homogeneous equation has the characteristic polynomial λ2 + λ + 4, with
roots λ± = −1

2
± i

√
15
2

. Hence the general solution of the homogeneous equation is

xCF (t) = e−
1
2
t

(
A cos

(√
15

2
t

)
+ B sin

(√
15

2
t

))
.

In order to find a particular solution of (1) we solve the complex equation

ẍ + ẋ + 4x = 2eiωt (2)

for a complex function x and take the real part of the solution. We try a solution of form

x(t) = Ceiωt. Differentiating and plugging into (2) gives C =
2

4− ω2 + iω
(see also lecture

notes) or, in modulus-argument form

C = R(ω)e−iφ, R(ω) =
2√

(4− ω2)2 + ω2
, tan φ =

ω

4− ω2
(3)

Thus we have the particular solutions

xp(t) = Re
(
Ceiωt

)
= R(ω) cos(ωt− φ). (4)

and the general solution

x(t) = e−
1
2
t

(
A cos

(√
15

2
t

)
+ B sin

(√
15

2
t

))
+ R(ω) cos(ωt− φ). (5)

(b) The steady state solution is the particular solution (4) found in (a). To find the angular
frequency at which the amplitude R(ω) attains its maximum value, we differentiate R(ω)
with respect to ω:

dR

dω
(ω) =

14ω − 4ω3

((4− ω2)2 + ω2)
3
2

. (6)

The condition for a stationary point is
dR

dω
= 0, which is solved by ω1 = −

√
7

2
, ω2 =√

7

2
, ω3 = 0. The only stationary point for positive ω is at

ω2 =

√
7

2
≈ 1.87.

Since R(ω2) = 4√
15
≈ 1.03 > R(0) = 0.5 we conclude that R has as maximum at ω2. For

plot see Fig. 1
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Figure 1: Amplitude R as a function of ω

(c) Resonance occurs when the driving frequency is equal to the characteristic frequency of the
spring. In this case the characteristic frequency is ω0 = 2 s−1, and the amplitude at the
resonance frequency is R(2) = 1.

2 (a) When r = r1 = 0.5 N sec m−1, the amplitude and the phase of the steady state solution
are

R(ω) =
2√

(4− ω2))2 + 1
4
ω2

, φ = tan−1

( 1
2
ω

4− ω2

)
(7)

When r = r2 = 0.1 N sec m−1, the amplitude and the phase of the steady state solution
are

R(ω) =
2√

(4− ω2))2 + 1
100

ω2
, φ = tan−1

( 1
10

ω

4− ω2

)
(8)

(b) The Plot of the amplitude and the phase for r = r1 is shown in figure 2. The Plot of the
amplitude and the phase for r = r2 is shown in figure 3.
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Figure 2: Amplitude and phase as a function of ω for damping r1

(c) The Plot of the steady solutions (at resonance) and the driving force are shown figure 4.
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Figure 3: Amplitude and phase as a function of ω for damping r2
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Figure 4: Particular solution and driving force for weak damping r1 (left) and very weak
damping r2 (right)

3 Let x(t) be the displacement from the equilibrium at time t; The equation of motion for x is

ẍ + 16x =
A

4
cos3(pt). (9)

To solve this equation, we need to expand cos3(pt) in terms of cos. We have

cos3(pt) = cos(pt) cos2(pt) (10)

= cos(pt)
1 + cos(2pt)

2
(11)

=
1

2
cos(pt) +

1

2
cos(pt) cos(2pt) (12)

Since cos(pt) cos(2pt) = 1
2
(cos(pt) + cos(3pt)) we finally obtain

cos3(pt) =
3

4
cos(pt) +

1

4
cos(3pt) (13)

Thus the equation of motion (9) becomes

ẍ + 16x =
3A

16
cos(pt) +

A

16
cos(3pt) (14)
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As shown on sheet 3, a particular solution of this equation is given by the sum of particular
solutions of

ẍ + 16x =
3A

16
cos(pt) (15)

and

ẍ + 16x =
A

16
cos(3pt). (16)

Resonance occurs in the system when the natural angular frequency ω0 = 4 s−1 is equal to the
driving frequency ω. There is resonance in (14) is there is resonance in either (15) or (16). This
means there is resonance in (14) if p = 4 or 3p = 4 or

p = 4 or p =
4

3

4 Find the eigenvalues from the equation

det

(
a− λ b

b a− λ

)
= 0⇔ (λ− a)2 = b2

i.e. the eigenvalues are λ+ = a + b and λ− = a − b. The defining equation for the eigenvector
v+ for the eigenvalue λ+ is (

−b b
b −b

)
v+ = 0,

which is solved by v+ =

(
1
1

)
. The defining equation for the eigenvector v− for the eigenvalue

λ− is (
b b
b b

)
v− = 0,

which is solved by v+ =

(
1
−1

)
.

5 (a) Use the trigonometrical identities from the formula sheet to find

cos(2t) + sin
(
5t +

π

3

)
= sin

(π

2
− 2t

)
+ sin

(
5t +

π

3

)
= 2 sin

(
1

2

(π

2
− 2t + 5t +

π

3

))
cos

(
1

2

(π

2
− 2t− 5t− π

3

))
= 2 sin

(
3

2
t +

5π

12

)
cos

(
7

2
t− π

12

)
(17)

The plot is shown in Fig. 5.

(b) Again using trigonometrical identities

2 cos
(
4t +

π

4

)
+ 2 cos(5t) = 4 cos

(
1

2

(
4t +

π

4
+ 5t

))
cos

(
1

2

(
4t +

π

4
− 5t

))
= 4 cos

(
9

2
t +

π

8

)
cos

(
−1

2
t +

π

8

)
. (18)

The plot is shown in Fig. 6.
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Figure 5: The function cos(2t) + sin
(
5t + π
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Figure 6: The function 2 cos
(
4t + π

4

)
+ 2 cos(5t)
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