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Solutions 5 for Oscillations and Waves

Module F12MS3 2007-08

With the numerical values for the parameters given in the question, the equations of
motion are
¥ = =9z — 8(z1 — x9)
Ty = —9x9 — 8(xy — 11). (1)
The normal modes are
Y1 = T1 + T2, Yo = X1 — Ta. (2)

By adding and subtracting the equations in (1) we deduce the normal mode equations

o= —Yyn
jo = —(9+16)y2 = —25ys, (3)
which are solved by
y1(t) = Ay cos(3t) + Bysin(3t), ya(t) = Ay cos(5t) + By sin(5t). (4)

The normal mode angular frequencies are 3 s~ for the first and 5 s~ for the second normal
mode.

The initial condition
x1(0) = 1, x9(0) = 0, #1(0) =0, t9(0) =0 (5)
imply the following initial conditions for the normal modes
n0) =1L %0 =1L  %0)=0,  %0)=0 (6)
Imposing these conditions on the general solution (4) we deduce
y1(t) = cos(3t), y2(t) = cos(bt), (7)

and, by inverting (2)
() = %(cos(&s) Feos(5t)  ma(t) = %(008(315) — cos(51)). (8)

The displacements are plotted in in Fig. 1.

The initial condition
imply the following initial conditions for the normal modes
y1(0)=0,  1(0)=0,  5(0)=5  $(0)=-5 (10)
Imposing these conditions on the general solution (4) we deduce
)
n(t) = gsin(3),  ya(t) = —sin(5¢), (11)
and, by inverting (2)
1,5 . . 1,5 . .
x(t) = 5(5 sin(3t) — sin(5t)) To(t) = 5(5 sin(3t) + sin(5t)). (12)

The displacements are plotted in Fig. 2.



Figure 1: The displacements x; and x5 for the solution of 1(c)

2 (a) The equations of motion are

maﬁl = —]C:L‘l — K(Il — 1'2)

mx"g = —kl’g - K(l‘g — .I‘1> (13)

dE

E = mx'laé'l + m.'L:Qa%‘Q + kxlx'l + kaI:Q
+K (21 — 22) (71 — 72)
= 2y(mz) + kxy + K(x — x9))
+2o(mdy + kxg — K(x1 — 23)) (14)
Substituting (13) into (14) we find ¥ = 0. Therefore energy is constant (conserved)
during the motion.

(c) Expressing the positions in terms of the normal modes coordinates

ry =

S

1
+ and z2 = —=(y1 —
2 (yl y2) 2 \/5 (yl y2)
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Figure 2: The displacements x; and x5 for the solution to 1(d)

and substituting into the expression for £ we find:

1 I 1 Ly, 1., ..
B = ;™M (5 %+§y§+y1y2)+§m (§yf+§y§—y1y2>
1 1 1 1 1 1
2k = 2 T2 2kl = 2 T2
+2 (2?/1+292+9192)+2 <291+292 Y1Y2
+Ky§
1 . 1 . 1 1
= oMt + 5mis + skyy + Shys + Ky,
1, 1., 1 , 1 ,
= oMy + ghyr + gmys + Sk + 2Ky

Thus, the energy is the sum of

1 1
Emg)% + §/€yf : energy of mass m on a spring with spring constant k,

and

1 1
§my§ + 5(/{; + 2K)y3 : energy of mass m on a spring with spring constant k + 2K

Thus each normal mode contributes to the energy as if it was a free oscillator. The total
energy is the sum of these contributions.

3 (a) Denote the tension by 7. Then the equations of motion for the transverse displacements



21, 29 and z3 are

Zl = —%(221—2’2)
H o= —i(-a+2m - x)
zZ3 = ——(—ZQ+22{3)
Inserting numerical values:
L ST
Im ~ 05x002
Z9 =-100 [ —1 2 -1 z9
Z3 0 -1 2 Z3
M

In the eigenvector method we start by finding eigenvalues and eigenvectors of the matrix
M:
A—2 1 0
1 A—2 1 =0
0 1 A—2
sA-27%-20-2) = 0
SO-2((A -2 -2) -
SA=2 or A=2—V2 or A=2+

S

1
Eigenvector for A = 2 — /2 is 44 = | v/2 |, corresponding angular frequency is w; =
1
100(2 — V2)s™ ! = 7.757L.
1
Eigenvector for A = 2is @, = [ 0 |, corresponding angular frequency is wy = /100 x 2571 ~
-1
14571,
1
Eigenvector for A\ = 2+ /2 is U3 = | —v/2 |, corresponding angular frequency is ws =
1
\/100(2 + v/2)s7! ~ 18.5571.
Hence the normal modes are
51 = (A1 cos(wlt) + Bl sin(wlt)) _)1
Zy = (Agcos(wat) + By sin(wat)) vy
Zy = (Aszcos(wst) + Bssin(wst)) Us

Qualitative description:

Mode 1: All free beads oscillate in tandem.

Mode 2: Central bead at rest, outer beads oscillate in opposition.
Mode 3: Outer beads oscillate in tandem, inner bead in opposition.
The modes are sketched in Fig. 3



).87

1.6

1.4+

).2

0.5+

0 1 2 3 4

Figure 3: Normal modes of three beads on a string

4 Differentiating f(x,t) = sin(kx) cos(wt) we find

2
% = —k*sin(kx) cos(wt)
x
2
% = —w?sin(kx) cos(wt) (15)
Hence
R
o~ o
if w? = ?(k?) or ¢ = £ (since k, w, and c are all positive).



