Solutions 5 for Oscillations and Waves

Module F12MS3

2007-08

1 (a) With the numerical values for the parameters given in the question, the equations of motion are

$$\ddot{x}_1 = -9x_1 - 8(x_1 - x_2)
\ddot{x}_2 = -9x_2 - 8(x_2 - x_1).$$
(1)

(b) The normal modes are

$$y_1 = x_1 + x_2, y_2 = x_1 - x_2.$$
 (2)

By adding and subtracting the equations in (1) we deduce the normal mode equations

$$\ddot{y}_1 = -9y_1
 \ddot{y}_2 = -(9+16)y_2 = -25y_2,
 (3)$$

which are solved by

$$y_1(t) = A_1 \cos(3t) + B_1 \sin(3t), \quad y_2(t) = A_2 \cos(5t) + B_2 \sin(5t).$$
 (4)

The normal mode angular frequencies are $3~\rm s^{-1}$ for the first and $5~\rm s^{-1}$ for the second normal mode.

(c) The initial condition

$$x_1(0) = 1,$$
 $x_2(0) = 0,$ $\dot{x}_1(0) = 0,$ $\dot{x}_2(0) = 0$ (5)

imply the following initial conditions for the normal modes

$$y_1(0) = 1,$$
 $y_2(0) = 1,$ $\dot{y}_1(0) = 0,$ $\dot{y}_2(0) = 0.$ (6)

Imposing these conditions on the general solution (4) we deduce

$$y_1(t) = \cos(3t), \qquad y_2(t) = \cos(5t),$$
 (7)

and, by inverting (2)

$$x_1(t) = \frac{1}{2}(\cos(3t) + \cos(5t))$$
 $x_2(t) = \frac{1}{2}(\cos(3t) - \cos(5t)).$ (8)

The displacements are plotted in in Fig. 1.

(d) The initial condition

$$x_1(0) = 0,$$
 $x_2(0) = 0,$ $\dot{x}_1(0) = 0,$ $\dot{x}_2(0) = 5$ (9)

imply the following initial conditions for the normal modes

$$y_1(0) = 0,$$
 $y_2(0) = 0,$ $\dot{y}_1(0) = 5,$ $\dot{y}_2(0) = -5.$ (10)

Imposing these conditions on the general solution (4) we deduce

$$y_1(t) = \frac{5}{3}\sin(3t), \qquad y_2(t) = -\sin(5t),$$
 (11)

and, by inverting (2)

$$x_1(t) = \frac{1}{2} (\frac{5}{3} \sin(3t) - \sin(5t))$$
 $x_2(t) = \frac{1}{2} (\frac{5}{3} \sin(3t) + \sin(5t)).$ (12)

The displacements are plotted in Fig. 2.

Figure 1: The displacements x_1 and x_2 for the solution of 1(c)

2 (a) The equations of motion are

$$m\ddot{x_1} = -kx_1 - K(x_1 - x_2)$$

$$m\ddot{x_2} = -kx_2 - K(x_2 - x_1)$$
(13)

(b)

$$\frac{dE}{dt} = m\dot{x}_1\ddot{x}_1 + m\dot{x}_2\ddot{x}_2 + kx_1\dot{x}_1 + kx_2\dot{x}_2
+ K(x_1 - x_2)(\dot{x}_1 - \dot{x}_2)
= \dot{x}_1(m\ddot{x}_1 + kx_1 + K(x_1 - x_2))
+ \dot{x}_2(m\ddot{x}_2 + kx_2 - K(x_1 - x_2))$$
(14)

Substituting (13) into (14) we find $\frac{dE}{dt} = 0$. Therefore energy is constant (conserved) during the motion.

(c) Expressing the positions in terms of the normal modes coordinates

$$x_1 = \frac{1}{\sqrt{2}}(y_1 + y_2)$$
 and $x_2 = \frac{1}{\sqrt{2}}(y_1 - y_2)$

Figure 2: The displacements x_1 and x_2 for the solution to 1(d)

and substituting into the expression for E we find:

$$E = \frac{1}{2}m\left(\frac{1}{2}\dot{y}_{1}^{2} + \frac{1}{2}\dot{y}_{2}^{2} + \dot{y}_{1}\dot{y}_{2}\right) + \frac{1}{2}m\left(\frac{1}{2}\dot{y}_{1}^{2} + \frac{1}{2}\dot{y}_{2}^{2} - \dot{y}_{1}\dot{y}_{2}\right)$$

$$+ \frac{1}{2}k\left(\frac{1}{2}y_{1}^{2} + \frac{1}{2}y_{2}^{2} + y_{1}y_{2}\right) + \frac{1}{2}k\left(\frac{1}{2}y_{1}^{2} + \frac{1}{2}y_{2}^{2} - y_{1}y_{2}\right)$$

$$+ Ky_{2}^{2}$$

$$= \frac{1}{2}m\dot{y}_{1}^{2} + \frac{1}{2}m\dot{y}_{2}^{2} + \frac{1}{2}ky_{1}^{2} + \frac{1}{2}ky_{2}^{2} + Ky_{2}^{2}$$

$$= \frac{1}{2}m\dot{y}_{1}^{2} + \frac{1}{2}ky_{1}^{2} + \frac{1}{2}m\dot{y}_{2}^{2} + \frac{1}{2}(k + 2K)y_{2}^{2}$$

Thus, the energy is the sum of

 $\frac{1}{2}m\dot{y}_1^2+\frac{1}{2}ky_1^2$: energy of mass m on a spring with spring constant k,

and

$$\frac{1}{2}m\dot{y}_2^2 + \frac{1}{2}(k+2K)y_2^2$$
: energy of mass m on a spring with spring constant $k+2K$

Thus each normal mode contributes to the energy as if it was a free oscillator. The total energy is the sum of these contributions.

3 (a) Denote the tension by τ . Then the equations of motion for the transverse displacements

 z_1, z_2 and z_3 are

$$\ddot{z}_1 = -\frac{\tau}{lm}(2z_1 - z_2)
 \ddot{z}_2 = -\frac{\tau}{lm}(-z_1 + 2z_2 - z_3)
 \ddot{z}_3 = -\frac{\tau}{lm}(-z_2 + 2z_3)$$

Inserting numerical values:

$$\frac{\tau}{lm} = \frac{1}{0.5 \times 0.02} = 100s^{-2}$$

$$\begin{pmatrix} \ddot{z}_1 \\ \ddot{z}_2 \\ \ddot{z}_3 \end{pmatrix} = -100 \underbrace{\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}}_{M} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}$$

(b) In the eigenvector method we start by finding eigenvalues and eigenvectors of the matrix M:

$$\begin{vmatrix} \lambda - 2 & 1 & 0 \\ 1 & \lambda - 2 & 1 \\ 0 & 1 & \lambda - 2 \end{vmatrix} = 0$$

$$\Leftrightarrow (\lambda - 2)^3 - 2(\lambda - 2) = 0$$

$$\Leftrightarrow (\lambda - 2)((\lambda - 2)^2 - 2) = 0$$

$$\Leftrightarrow \lambda = 2 \quad \text{or} \quad \lambda = 2 - \sqrt{2} \quad \text{or} \quad \lambda = 2 + \sqrt{2}$$

Eigenvector for $\lambda = 2 - \sqrt{2}$ is $\vec{v}_1 = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$, corresponding angular frequency is $\omega_1 = \begin{pmatrix} 1 \\ \sqrt{2} \\ 1 \end{pmatrix}$

$$\sqrt{100(2-\sqrt{2})}s^{-1} \approx 7.7s^{-1}.$$

Eigenvector for $\lambda = 2$ is $\vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, corresponding angular frequency is $\omega_2 = \sqrt{100 \times 2} s^{-1} \approx 14 s^{-1}$.

Eigenvector for $\lambda = 2 + \sqrt{2}$ is $\vec{v}_3 = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$, corresponding angular frequency is $\omega_3 = \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1 \end{pmatrix}$

$$\sqrt{100(2+\sqrt{2})}s^{-1} \approx 18.5s^{-1}.$$

Hence the normal modes are

$$\vec{z}_1 = (A_1 \cos(\omega_1 t) + B_1 \sin(\omega_1 t)) \vec{v}_1$$

 $\vec{z}_2 = (A_2 \cos(\omega_2 t) + B_2 \sin(\omega_2 t)) \vec{v}_2$
 $\vec{z}_3 = (A_3 \cos(\omega_3 t) + B_3 \sin(\omega_3 t)) \vec{v}_3$

Qualitative description:

Mode 1: All free beads oscillate in tandem.

Mode 2: Central bead at rest, outer beads oscillate in opposition.

Mode 3: Outer beads oscillate in tandem, inner bead in opposition.

The modes are sketched in Fig. 3

Figure 3: Normal modes of three beads on a string

4 Differentiating $f(x,t) = \sin(kx)\cos(\omega t)$ we find

$$\frac{\partial^2 f}{\partial x^2} = -k^2 \sin(kx) \cos(\omega t)$$

$$\frac{\partial^2 f}{\partial t^2} = -\omega^2 \sin(kx) \cos(\omega t)$$
(15)

Hence

$$\frac{\partial^2 f}{\partial t^2} = c^2 \frac{\partial^2 f}{\partial x^2}$$

if $\omega^2=c^2(k^2)$ or $c=\frac{\omega}{k}$ (since $k,\,\omega,$ and c are all positive).