
5 Boundary value problems and Green’s functions

Many of the lectures so far have been concerned with the initial value problem

L[y] = f(x), y(x0) = α, y′(x0) = β, (5.1)

where L is the differential operator

L[y] =
d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y. (5.2)

From Picards’ theorem we know that, if a1 and a0 are smooth everywhere, then a unique

solution of (5.1) exists everywhere. We have also developed an arsenal of methods for finding

that solution.

In this last section of the course we look at boundary value problems, where we solve a

differential equation subject to conditions imposed at two different points x = a and x = b.

The most general boundary value problem we will consider is

L[y] = f(x), Ba(y) = 0, Bb[y] = 0, (5.3)

where we have used the abbreviation

Ba[y] = α1y(a) + β1y
′(a) and Bb[y] = α2y(b) + β2y

′(b). (5.4)

Choosing, for example, β1 = β2 = 0 and α1 = α2 = 1 we obtain the condition that y vanishes

at a and b. This boundary condition arises physically for example if we study the shape of a

rope which is fixed at two points a and b. Choosing α1 = α2 = 0 and β1 = β2 = 1 we obtain

y′(a) = y′(b) = 0. The general conditions we impose at a and b involve both y and y′.

Unlike initial value problems, boundary value problems do not always have solutions,

as the following example illustrates. Suppose we try to solve

y′′ + y = f(x), y(0) = y(π) = 0. (5.5)
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Multiplying the equation by sin x and integrating yields∫ π

0

f(x) sin x dx =

∫ π

0

y′′(x) sin x dx+

∫ π

0

y(x) sin x dx

= y′(x) sin x|π0 −
∫ π

0

y′(x) cos x dx+

∫ π

0

y(x) sin x dx

= −y(x) cos x|π0 −
∫ π

0

y(x) sin x dx+

∫ π

0

y(x) sin x dx (5.6)

= 0. (5.7)

Thus a necessary condition for (5.5) to have a solution is∫ π

0

f(x) sin x dx = 0 (5.8)

This is not satisfied, for example, if f(x) = x.

We shall now explain how to find solutions to boundary value problems in the cases where

they exist. Our main tool will be Green’s functions, named after the English mathematician

George Green (1793-1841).

A Green’s function is constructed out of two independent solutions y1 and y2 of the homo-

geneous equation

L[y] = 0. (5.9)

More precisely, let y1 be the unique solution of the initial value problem

L[y] = 0, y(a) = β1, y′(a) = −α1 (5.10)

and y2 be the unique solution of

L[y] = 0, y(b) = β2, y′(b) = −α2. (5.11)

These solutions thus satisfy

Ba[y1] = 0 and Bb[y2] = 0, (5.12)

where we use the notation (5.4). In fact y1 and y2 are essentially the only solutions satisfying

the boundary conditions at, respectively, a and b:

Lemma 5.1 A function u satisfies

L[u] = 0 and Ba[u] = 0 (5.13)

if and only if u = λy1 for some real number λ
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Proof: If u = λy1 then it is straightforward to check that u satisfies (5.13). Suppose that u

satisfies (5.13). Then

α1u(a) + β1u
′(a) = 0

⇔ −y′1(a)u(a) + y1(a)u′(a) = 0

⇔ W (y1, u)(a) = 0, (5.14)

where W (y1, u) is the Wronskian of y1 and u. Hence, by corollary (2.6), u is a multiple of

y1.

Clearly one can similarly prove that any solution u of L[u] = 0 and Bb[u] = 0 must be a

multiple of y2. It might of course happen that y1 and y2 are dependent. The following simple

check follows directly from the above lemma

Corollary 5.2 The solutions y1 and y2 are independent if and only if Ba(y2) 6= 0.

For our construction of the Green’s function we require y1 and y2 to be independent, which

we assume in following. The next ingredient we require is a particular solution of the homo-

geneous equation

L[y] = f. (5.15)

This is a problem we solved in section 2.5.2 using the method of variation of parameters.

The particular solution constructed there is of the form

yp(x) = c1(x)y1(x) + c2(x)y2(x) (5.16)

with c1 and c2 satisfying the first order differential equation (2.88). Writing that equation

out in components

c′1(x) = − y2(x)f(x)

W (y1, y2)(x)

c′2(x) =
y1(x)f(x)

W (y1, y2)(x)
(5.17)

we give solutions in the following form

c1(x) = −
∫ x

a

y2(s)f(s)

W (y1, y2)(s)
ds

c2(x) =

∫ x

a

y1(s)f(s)

W (y1, y2)(s)
ds. (5.18)

Hence we have the particular solution

yp(x) = −
∫ x

a

y2(s)f(s)

W (y1, y2)(s)
ds y1(x) +

∫ x

a

y1(s)f(s)

W (y1, y2)(s)
ds y2(x)

=

∫ x

a

(y1(s)y2(x)− y1(x)y2(s)) f(s)

W (y1, y2)(s)
ds (5.19)
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Differentiating we find

y′p(x) =
y1(x)f(x)

W (y1, y2)(x)
y2(x) +

∫ x

a

y1(s)f(s)

W (y1, y2)(s)
ds y′2(x)

− y2(x)f(x)

W (y1, y2)(x)
y1(x)−

∫ x

a

y2(s)f(s)

W (y1, y2)(s)
ds y′1(x)

=

∫ x

a

(y1(s)y′2(x)− y′1(x)y2(s))f(s)

W (y1, y2)(s)
ds (5.20)

It follows that yp(a) = y′p(a) = 0 and hence

Ba[yp] = 0. (5.21)

On the other hand

Bb[yp] =

∫ b

a

(y1(s)Bb[y2]−Bb[y1]y2(s))f(s)

W (y1, y2)(s)
ds

= −Bb[y1]

∫ b

a

y2(s)f(s)

W (y1, y2)(s)
ds

6= 0. (5.22)

Thus yp satisfies the boundary condition at a but not at b. In order to satisfy the boundary

condition at b we thus turn to the most general solution of L[y] = f(x). According to the

theory of inhomogeneous differential equations this is

y(x) = Ay1(x) +By2(x) + yp(x). (5.23)

It thus remains to determine the constants A and B so that the boundary conditions are

satisfied. Since Ba[y1] = Ba[yp] = 0 but Ba[y2] 6= 0 we have

Ba[y] = 0⇒ B = 0. (5.24)

Similarly using Bb[y2] = 0, Bb[y1] 6= 0 and equation (5.22) we deduce

Bb[y] = 0⇒ A =

∫ b

a

y2(s)f(s)

W (y1, y2)(s)
ds. (5.25)

Inserting the values for A and B into (5.23) and using the form (5.19) for yp we obtain the

solution

y(x) =

∫ b

a

y1(x)y2(s)f(s)

W (y1, y2)(s)
ds+

∫ x

a

(y1(s)y2(x)− y1(x)y2(s))f(s)

W (y1, y2)(s)
ds

=

∫ x

a

y1(s)y2(x)f(s)

W (y1, y2)(s)
ds+

∫ b

x

y1(x)y2(s)f(s)

W (y1, y2)(s)
ds. (5.26)

To write this solution in a convenient form, define the Green’s function

G(x, s) =


y1(s)y2(x)

W (y1, y2)(s)
if a ≤ s ≤ x ≤ b

y1(x)y2(s)

W (y1, y2)(s)
if a ≤ x ≤ s ≤ b

(5.27)
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so that (5.26) is

y(x) =

∫ b

a

G(x, s)f(s) ds. (5.28)

In our derivation, the Green’s function only appeared as a particularly convenient way of

writing a complicated formula. The importance of the Green’s function stems from the fact

that it is very easy to write down. All we need is fundamental system of the homogeneous

equation. Thus the quickest way of solving boundary problems like (5.3)is to proceed in the

following four steps:

1. Find a fundamental system {u1, u2} of L[y] = 0.

2. By taking suitable linear combinations of u1 and u2 find
solutions y1 and y2 of L[y] = 0 satisfying Ba[y1] = 0 and Bb[y2] = 0
(often possible by inspection).

3. Define the Green’s function G according to (5.27).

4. Compute the solution according to (5.28).

To illustrate the properties and use of the Green’s function consider the following examples.

Example 1. Find the Green’s function for the following boundary value problem

y′′(x) = f(x), y(0) = 0, y(1) = 0. (5.29)

Hence solve y′′(x) = x2 subject to the same boundary conditions.

The homogeneous equation y′′ = 0 has the fundamental solutions u1(x) = 1 and u2(x) = x.

Take y1(x) = x and y2(x) = 1− x to satisfy the boundary conditions B0[y] = y(0) = 0 and

B1[y] = y(1) = 0 respectively. Then W (y1, y2)(x) = −1 and therefore

G(x, s) =

{
s(x− 1) if 0 ≤ s ≤ x
x(s− 1) if x ≤ s ≤ 1

(5.30)

Thus solve (5.29) with

y(x) =

∫ x

0

sf(s) ds (x− 1) +

∫ 1

x

(s− 1)f(s) ds x. (5.31)

Inserting f(s) = s2 and carrying out the integration yields

y(x) =
1

12
(x4 − x). (5.32)

Example 2. Find the Green’s function for the boundary value problem

y′′(x) + y(x) = f(x), y(0) = 0, y′(1) = 0. (5.33)
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The equation y′′ + y = 0 has the fundamental system u1(x) = sinx and u2(x) = cosx.

To satisfy B0[y] = y(0) = 0 take y1(x) = sin x and to satisfy B1[y] = y′(1) = 0 take

y2(x) = cos(x− 1). Then check that W (y1, y2)(x) = − cos 1 and find

G(x, s) =


−sin s cos(x− 1)

cos 1
if 0 ≤ s ≤ x

−sin x cos(s− 1)

cos 1
if x ≤ s ≤ 1.

(5.34)

Example 3. Consider the Green’s function found in example 1.

(a) Show that G is symmetric in the sense that G(x, s) = G(s, x).

(b) Show that

∂2G

∂s2
(x, s) = δ(s− x). (5.35)

To show (a) we check

G(s, x) =

{
x(s− 1) if 0 ≤ x ≤ s
s(x− 1) if s ≤ x ≤ 1

= G(x, s) (5.36)

To prove (b) we differentiate (5.30) to obtain

∂G

∂s
(x, s) =

{
x− 1 if 0 ≤ s ≤ x
x if x ≤ s ≤ 1

(5.37)

which we can write in terms of the Heaviside function as

∂G

∂s
(x, s) = x− 1 + ux(s). (5.38)

Then using the definition of the Dirac delta function as the derivative of the Heaviside

function we obtain (5.35).

It follows from the symmetry of the Green’s function (and also by direct computation) that

∂2G

∂x2
(x, s) = δ(x− s) = δ(s− x). (5.39)

This result suggests a new way of understanding the fundamental formula (5.28). According

to that formula, the solution of (5.29) in terms of the Green’s function (5.30) is

y(x) =

∫ 1

0

G(x, s)f(s) ds (5.40)

Differentiating twice with respect to x and using (5.39) we find immediately

d2y

dx2
=

∫ 1

0

∂2G

∂x2
(x, s)f(s)ds =

∫ 1

0

δ(s− x)f(s)ds = f(x), (5.41)

where we used theorem 4.6 about integrals involving the Dirac delta function. The equation

(5.35) suggests that we can think of the Green’s function as the response function to a

unit impulse at s = x. As we have seen, it then follows immediately that (5.40) solves the

inhomogeneous equation (5.29). This point of view provides useful intuition when dealing

with Green’s functions and is important in the further development of the theory.
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