Problems for Quantum Computing: week 6

Module F14ZD1

2007-08

1. Ensembles versus density matrices

Consider the Hilbert space \mathbb{C}^2 , the observable

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix},$$

and the ensemble

$$\mathcal{E} = \{(\frac{1}{3}, |0\rangle), (\frac{2}{3}, |1\rangle)\}.$$

This is a special case of the ensemble considered in the lectures, with $|\alpha|^2 = \frac{1}{3}$ and $|\beta|^2 = \frac{2}{3}$.

Write down the associated density operator $\rho_{\mathcal{E}}$ and use the density matrix formalism to compute

- (a) the probability of measuring the eigenvalue 2 of the observable A,
- (b) the expectation value of A,
- (c) the density matrix after the eigenvalue 2 of A has been measured.

In each case compare with the calculations in the lecture.

2. Bloch sphere

Given a vector $r \in \mathbb{R}^3$ with $|r| \leq 1$ define the density operator

$$\rho(\mathbf{r}) = \frac{1}{2}(I + \mathbf{r} \cdot \boldsymbol{\sigma}). \tag{1}$$

- (a) Show that $\rho(\mathbf{r})$ is a density operator of a pure state iff $\mathbf{r} \cdot \mathbf{r} = 1$.
- (b) Parametrising a unit vector $\mathbf{k} \in \mathbb{R}^3$ in terms of angles $\theta \in [0, \pi]$ and $\phi \in [0, 2\pi)$ via

$$\mathbf{k} = \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix}$$

and using the notation $|(\theta,\phi)^+\rangle$ for the eigenstate of $k\cdot\sigma$ with eigenvalue 1, show that

$$\rho(\mathbf{k}) = |(\theta, \phi)^+\rangle\langle (\theta, \phi)^+|.$$

(c) Consider now the general density operator $\rho(\mathbf{r})$ given in (1) for some vector $\mathbf{r} \in \mathbb{R}^3$ of length ≤ 1 . If $\mathbf{m} \in \mathbb{R}^3$ show that

$$\operatorname{tr}(\rho(\boldsymbol{r})\boldsymbol{m}\cdot\boldsymbol{\sigma}) = \boldsymbol{m}\cdot\boldsymbol{r}.$$

What is the quantum-mechanical interpertation of this quantity?