Problems for Quantum Computing: week 9

Module F14ZD1

2007-08

1. Reduced density operators

The following question concerns a two qubit system with Hilbert space $\mathbb{C}^2 \otimes \mathbb{C}^2$. Give the density operator corresponding to the pure, entangled state

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle).$$

Find the reduced density operator for first and second qubit and show that both reduced density operators describe mixed states.

2. Schmidt decomposition

Find the Schmidt decomposition of the following states of a two qubit system. In each case give the Schmidt coefficients and the Schmidt number of the state.

(a)
$$|\psi\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

(b)
$$|\varphi\rangle = \frac{1}{\sqrt{3}} (|00\rangle + |01\rangle + |10\rangle)$$

3. Tsirelson's inequality

(a) Deduce from the Cauchy-Schwarz inequality that

$$\langle \psi | A | \psi \rangle \le \sqrt{\langle \psi | A^2 | \psi \rangle}$$
 (1)

for an arbitrary observable A and an arbitrary normalised state $|\psi\rangle$. Show that the equality holds if and only if $|\psi\rangle$ is an eigenstate of A.

(b) Consider now the following observable in a two-qubit system:

$$A = QS + RS + RT - QT, (2)$$

where $Q = \mathbf{q} \cdot \boldsymbol{\sigma} \otimes I$, $R = \mathbf{r} \cdot \boldsymbol{\sigma} \otimes I$, $S = I \otimes \mathbf{s} \cdot \boldsymbol{\sigma}$ and $T = I \otimes \mathbf{t} \cdot \boldsymbol{\sigma}$ for unit vectors $\mathbf{q}, \mathbf{r}, \mathbf{s}$ and \mathbf{t} in \mathbb{R}^3 . Show that

$$A^{2} = 4I \otimes I + [\boldsymbol{q} \cdot \boldsymbol{\sigma}, \boldsymbol{r} \cdot \boldsymbol{\sigma}] \otimes [\boldsymbol{s} \cdot \boldsymbol{\sigma}, \boldsymbol{t} \cdot \boldsymbol{\sigma}]$$
(3)

(c) Use (a) and (b) to show **Tsirelson's inequality**:

$$\langle \psi | QS + RS + RT - QT | \psi \rangle \le 2\sqrt{2}$$

for any state $|\psi\rangle$ of the two qubit system. The violation of Bell's inequality found in the lectures is thus the maximal possible violation in a quantum mechanical system.