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Abstract

In the aftermath of the 2007-2008 financial crisis, there has been criticism of mathematics
and the mathematical models used by the finance industry. We answer these criticisms
through a discussion of some of the actuarial models used in the pricing of credit derivatives.
As an example, we focus in particular on the Gaussian copula model and its drawbacks. To
put this discussion into its proper context, we give a synopsis of the financial crisis and a
brief introduction to some of the common credit derivatives and highlight the difficulties in
valuing some of them.

We also take a closer look at the risk management issues in part of insurance industry
that came to light during the financial crisis. As a backdrop to this, we recount the events
that took place at American International Group during the financial crisis. Finally, through
our paper we hope to bring to the attention of a broad actuarial readership some “lessons
(to be) learned” or “events not to be forgotten”.

1 Introduction

“Recipe for disaster: the formula that killed Wall Street”. That was the title of a web-article
Salmon (2009) that appeared in Wired Magazine on February 2009. It was shortly followed by
a Financial Times article Jones (2009) called “Of couples and copulas: the formula that felled
Wall St”. Both articles were written about an actuarial model called the Li model which is used
in credit risk management. The impression gained is that an actuary developed a mathematical
model which subsequently caused the downfall of Wall Street banks.

Both articles attempt to explain the limitations of the model, and its role in the 2007-2008
financial crisis (“the Crisis”). While the earlier article Salmon (2009) acknowledges that the
deficiencies of the model have been known for sometime, the later Financial Times article Jones
(2009) asks why no-one noticed the model’s Achilles’ heel.

For some of us, the implication that a mathematical model shoulders much of the blame for
the difficulties on Wall Street and that few people were aware of its limitations are untenable.
Indeed, we aim to demonstrate that such criticism is entirely unjustified.

Yet these criticisms of one particular model, with their unwarranted focus on the man who
introduced the model to the credit derivative world, fly within a barrage of accusations directed
at financial mathematics and mathematicians. A typical example is to be found in the New
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York Times of September 12, 2009: “Wall Street’s Math Wizards Forgot a Few Variables”; see
Lohr (2009). Many more have been published. These accusations come not only from newspaper
articles such as those cited above, but even from government-instigated reports into the Crisis.
Turner (2009) has a section entitled “Misplaced reliance on sophisticated maths”. An interesting
reply to the Turner Review came from Professor Sir David Wallace, Chair of the Council for
the Mathematical Sciences, who on behalf of several professors of mathematics in the UK states
that: “Another aspect on which we would welcome dialogue concerns the reference to a misplaced
reliance on sophisticated maths and the possible interpretation that mathematics per se has a
negative effect in the city. You can imagine that we strongly disagree with this interpretation!
But of course the purpose of mathematical and statistical models must be better understood. In
particular we believe that the FSA [Financial Services Authority] and the research community
share an objective to enhance public appreciation of uncertainties in modelling future behaviour”;
see Wallace (2009).

We believe that there should be a reliance on sophisticated mathematics. There has been
too often a problem of misplaced reliance on unsophisticated mathematics or, in the words of
L.C.G. Rogers, “The problem is not that mathematics was used by the banking industry, the
problem was that it was abused by the banking industry. Quants were instructed to build models
which fitted the market prices. Now if the market prices were way out of line, the calibrated
models would just faithfully reproduce those wacky values, and the bad prices get reinforced by
an overlay of scientific respectability!”; see Rogers (2009). For an excellent article (written in
German) taking a more in-depth look at the importance of mathematics for finance and its role
in the current crisis, see Föllmer (2009). The main contributions from mathematics to economics
and finance are summarized in Föllmer (2009) as follows:

• understanding and clarifying models used in economics;

• making heuristic methods mathematically precise;

• highlighting model conditions and restrictions on applicability;

• working out numerous explicit examples;

• leading the way for stress-testing and robustness properties, and

• offering a relevant and challenging field of research on its own.

We cannot answer every accusation directed at financial mathematics. Instead, we look at the
Li model, also called the Gaussian copula model, and use it as a proxy for mathematics applied
badly in finance. It should be abundantly clear that it is not mathematics that caused the Crisis.
At worst, a misuse of mathematics, and we mean mathematics in a broad sense and not just one
formula, partly contributed to the Crisis.

The Gaussian copula model has been embraced enthusiastically by industry for its simplicity.
While a simple model is to be preferred to a complex one, especially in a financial world which
can only be partially and imperfectly described by mathematics, we believe that the model is
too simple. It does not capture the main features of what it is attempting to model. Yet it
was, and still is, applied to the credit derivatives which played a major part in the Crisis. We
devote a large part of this article to explaining the Gaussian copula model and examining its
shortcomings.

We also rebutt the claim that few people saw the flaws underlying several of the quantitative
techniques used in the pricing and risk management of credit derivatives. On the contrary, many
academics and practitioners were aware of them and on numerous occasions exposed these flaws.
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As the fields of insurance and finance increasingly overlap, it is maybe not surprising that
one casualty of the Crisis was an insurance company, American Insurance Group (“AIG”). With
insurance companies selling credit default swaps, which have insurance-like features, and catas-
trophe bonds and mortality bonds, which are a way of selling insurance risk in the financial
market, it is an opportune time to examine what caused the near-collapse of AIG. We ask what
lessons other insurance companies and those involved in running them, such as actuaries and
other risk professionals, can learn from the AIG story.

It is also a good time to pause and think about our roles and responsibilities in the finance
industry. Are the practitioners truly aware of the assumptions, whether implicit or explicit, in
the mathematics they use? If not, then they have a duty to inform themselves. It is also the
duty of the academics who are publishing articles not only to make their assumptions explicit
but also, upon use, to communicate their assumptions more forcefully to the end-user.

Before we delve into the above, we begin by outlining the Crisis.

2 The roots of the subprime mortgage crisis

The Crisis was complex and of global proportions. There will undoubtedly be a multitude of
articles and books penned about it for years to come. Among currently available, more academic,
excellent analyses are Brunnermeier (2009), Crouhy et al. (2008) and Hellwig (2009). We also
highly recommend The Economist (2008). As our focus is on some of the mathematical and
actuarial issues which arose from the Crisis, we relate only the story of the Crisis which is
relevant for this article.

The root of the Crisis was the transfer of the risk of mortgage default from mortgage lenders to
the financial market at large: banks, hedge funds, insurance companies. The transfer was effected
by a process called securitization. The practical mechanics of this process can be complicated,
as institutions seek to reduce costs and tax-implications. However, the essence of what is done
is as follows.

A bank pools together mortgages which have been taken out by residential home-owners
and commerical property organizations. The pool of mortgages is transferred to an off-balance-
sheet trust called a special-purpose vehicle (“SPV”). While sponsored by the bank, the SPV is
bankruptcy-remote from it. This means that a default by the bank does not result in a default by
the SPV. The SPV issues coupon-bearing financial securities called mortgage-backed securities.
The mortgage repayments made by the home-owners and commerical property organizations are
directed towards the SPV, rather than being received by the bank which granted the mortgages.
After deducting expenses, the SPV uses the mortgage repayments to pay the coupons on the
mortgage-backed securities. Typically, the buyers of the mortgage-backed securities are orga-
nizations such as banks, insurance companies and hedge funds. This process allowed banks to
move from an “originate to hold” model, where they held the mortgages they made on their
books, to an “originate to distribute” model, where they essentially sold on the mortgages.

Not only mortgages can be securitized, but also other assets such as auto loans, student loans
and credit card receivables. A security issued on fixed-income assets is called a collateralized debt
obligation (“CDO”), and if the underlying assets of the CDO consist of loans then it is called
a collateralized loan obligation. However, the underlying assets do not have to be fixed-income
assets and the general term for a security issued on any asset is an asset-backed security.

There is nothing inherently wrong with the securitization process. It is a transfer of risk from
one party to another, in this case the risk of mortgage default. It should increase the efficiency of
financial markets as it allows those who are happy to take on the risk of mortgage default to buy
it. Moreover, as banks must hold capital against the loans on their books, selling most of the pool
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of mortgages allows them to free up capital. The view on the benefits of securtization to overall
financial stability in 2006 is summarized in the following quote from one of the IMF’s Global
Financial Stability Reports in that year: “There is a growing recognition that the dispersion of
credit risk by banks to a broader and more diverse group of investors, rather than warehousing
such risk on their balance sheets, has helped make the banking and overall financial system more
resilient. ... The improved resilience may be seen in fewer bank failures and more consistent
credit provision. Consequently, the commercial banks, ..., may be less vulnerable today to credit
or economic shocks”; see IMF (2006, Chapter II). Indeed, this was the prevailing view until late
2006. Yet the process of transferring one type of risk creates other types of risks.

As it turned out, the main additional risk in securitization was moral hazard. A lengthy
discussion of the role of moral hazard in the Crisis can be found in Hellwig (2009). For securitized
products, sources of moral hazard included:

• the failure of some originators of securitized products to retain any of the riskiest part of
the CDO. We examine this point in the next paragraph;

• the credit rating agencies had a conflict of interest in that they were advising customers on
how to best securitize products and then credit rating those same products. SEC (2008)
gives a flavor of the practices in the three main credit rating agencies leading up to the
Crisis;

• the chain of financial intermediation from the originators to the buyers of some securitized
products may have been too long, resulting in opaqueness, a loss of information and an
increased scope for moral hazard (see also Subsection 6.2), and

• some financial institutions may have deemed themselves “too big too fail”, with a corre-
sponding disregard for the level of risk they were exposed to and a belief on their part that
the government would not allow them to fail since they were systematically too important.
Wolf (2008) has a delightful phrase for this: “privatising gains and socialising losses”. See
also anecdotal evidence from Haldane (2009b, page 12).

If a bank is not exposed to the risk of mortgage default, then it has no incentive to control
and maintain the quality of the loans it makes. To protect against this, the theory was that
the banks should retain the riskiest part of the mortgage pool. In practice, this did not always
happen, which led to a reduction in lending standards; see Keys et al. (2008). This possibility was
foreseen some fifteen years before the Crisis with remarkable prescience by Stiglitz, as he points
out in Stiglitz (2008). Because of its prime importance in the current discussion of the Crisis,
but also as it reflects indirectly on the possibility of bank-assurance products, we repeat some
of its key statements, written in 1992: “...has the growth in securitization been a result of more
efficient transactions technologies, or an unfounded reduction in concern about the importance
of screening loan applicants? ... we should at least entertain the possibility that it is the latter
rather than the former... At the very least, the banks have demonstrated an ignorance of two very
basic aspects of risk: (a) the importance of correlation,... (b) the possibility of price declines.”

As the quality of the mortgages granted declined, the risk characteristics of the underlying
pool of mortgages changed. In particular, the risk of mortgage default increased. It appears
that many market participants either did not realize this was happening or did not think that it
was significant. In February 2007, an increase in subprime mortgage defaults was noted, and the
Crisis started unfolding. There were many factors which contributed strongly to the Crisis, such
as fair-value accounting, systemic interdependence, a move by banks to financing their assets
with shorter maturity instruments, which left them vulnerable to liquidity drying-up, and other
factors, such as ratings agencies and an excessive emphasis on revenue and growth by financial
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institutions. However, the reader should look elsewhere for an explanation of their impact, such
as in the references mentioned at the start of this section.

3 Securitization

Securitization is the process of pooling together financial assets, such as mortgages and auto
loans, and redirecting their cashflows to support coupon payments on CDOs. Here we describe
CDOs in more detail.

We have described the creation of a CDO in the previous section. However, what we did not
mention is that commonly CDOs are split into tranches. The tranches have different risk and
return characteristics which make them attractive to different investors. Suppose that a CDO is
split into three tranches. Typically, these are called the senior, mezzanine and equity tranches.
Payments from the underlying assets are directed through the CDO tranches, in order of priority.
There is a legal document associated with the CDO which sets out the priority of payments. After
expenses, the first priority is to pay the coupons for the senior tranche, followed by the mezzanine
tranche and finally the equity tranche. The contractual terms governing the priority of payments
is called the payment waterfall. A schematic of a tranched CDO is shown in Figure 1. If defaults

Pool of assets -
Coupons

SPV -
Coupons

-

-

Senior

Mezzanine

Equity

CDO

Figure 1: Diagram showing the tranching of a Collateralized Debt Obligation into three tranches:
senior (highest priority), mezzanine and equity (lowest priority).

occur in the underlying assets, for example some bonds in the underlying portfolio default, then
that loss is borne first by the equity tranche holders. The coupons received by the equity tranche
holders are reduced. If enough defaults occur, then the equity tranche holders no longer receive
any coupons and any further losses are borne by the mezzanine tranche holders. Once the
mezzanine tranche holders are no longer receiving coupons, the senior tranche holders bear any
further losses.

The tranching of the CDO allows the senior tranche to receive a higher credit rating than
the mezzanine tranche. This allows investors who may not normally invest in the underlying
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assets to invest indirectly in them, through the CDO. For example, suppose the underlying pool
of assets has an aggregate credit rating of BBB. Before tranching, the credit rating of the CDO
would also be BBB. However, with judicious tranching, the senior tranche can achieve a AAA
credit rating. This is because it is exposed to a much reduced risk of default from the underlying
assets, since any losses arising from default in the underlying portfolio are borne first by the
equity tranche holders and then the mezzanine tranche holders. Usually, the mezzanine tranche
is BBB-rated and the equity tranche is not credit rated.

The SPV aims to maximize the size of the senior tranche, subject to it attaining a AAA
credit-rating. The maximization of the size of the senior tranche may mean that it is just within
the boundary of what constitutes a AAA-rated investment. Typically, the senior tranche is worth
around 80% of the nominal value of the underlying portfolio of assets. This means that 20%
of the underlying portfolio must default before the holders of the senior tranche of the CDO
have their coupon payments reduced. Similarly, the SPV maximizes the size of the mezzanine
tranche, subject to it attaining a BBB credit-rating. Typically, the mezzanine tranche is worth
in the region of 15% of the nominal value of the underlying portfolio of assets. This means that
5% of the underlying portfolio must default before the holders of the mezzanine tranche of the
CDO have their coupon payments reduced. The remaining part of the CDO is allocated to the
equity tranche, which is unrated and is worth the remaining 5% nominal value of the underlying
portfolio of assets. As the equity tranche has the lowest priority in payments, any defaults in
the underlying portfolio of assets reduce the coupon payments of the equity tranche holders.

The key to valuing CDOs is modeling the defaults in the underlying portfolios. It is clear from
the description above that the coupon payments received by the holders of the CDO tranches
depend directly on the defaults occurring in the underlying portfolio of assets. As Duffie (2008)
points out, the modeling of default correlation is currently the weakest link in the risk measure-
ment and pricing of CDOs. There are several methods of approaching the valuation of a CDO, a
few of which we mention briefly in Section 7, but first we clear the stage and allow the Gaussian
copula to enter.

4 The Gaussian copula model

On March 27 1999, the second author gave a talk at the Columbia-JAFEE Conference on the
Mathematics of Finance at Columbia University, New York. Its title was “Insurance Analytics:
Actuarial Tools in Financial Risk-Management” and it was based on a 1998 RiskLab report that
he co-authored with Alexander McNeil and Daniel Straumann; see Embrechts et al. (2002). The
main emphasis of the report was on explaining to the world of risk management the various
risk management pitfalls surrounding the notion of linear correlation. The concept of copula,
by now omnipresent, was only mentioned in passing in Embrechts et al. (2002). However, its
appearance in Embrechts et al. (2002) started an avalanche of copula-driven research; see Genest
et al. (2009). During the coffee break, David Li walked up to the second author, saying that
he had started using copula-type ideas and techniques, but now wanted to apply them to newly
invented credit derivatives like CDOs. The well-known paper Li (2000) was published one year
later. In it is outlined a copula-based approach to modeling the defaults in the underlying pool.
Suppose we wish to value a CDO which has d bonds in the underlying portfolio. As we mentioned
in the previous section, we can do this if we can find the joint default distribution of the d bonds.
Denote by Ti the time until default of the ith bond, for i = 1, . . . , d. How can we determine the
distribution of the joint default time, P[T1 ≤ t1, . . . , Td ≤ td]? If we can do this, then we have a
way to value the CDO.
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4.1 A brief introduction to copulas

Using copulas allows us to separate the individual behaviour of the marginal distributions from
their joint dependency on each other. We focus only on the copula theory that is necessary for
this article. An introduction to copulas can be found in Nelsen (2006) and a source of some of
the more important references on the theory of copulas can be found in Embrechts (2009).

Consider two random variables X and Y defined on some common probability space. For
example, the random variables X and Y could represent the times until default of two companies.
What if we wish to specify the joint distribution of X and Y , that is to specify the distribution
function (“df”) H(x, y) := P[X ≤ x, Y ≤ y]? If we know the individual dfs of X and Y then we
can do this using a copula. A copula specifies a dependency structure between X and Y , that is
how X and Y behave jointly.

More formally, a copula is defined as follows.

Definition 4.1. A d-dimensional copula C : [0, 1]d → [0, 1] is a df with standard uniform
marginal distributions.

An example of a copula is the independence copula C⊥, defined in two-dimensions as

C⊥(u, v) := uv, ∀u, v ∈ [0, 1].

It can be easily checked that C⊥ satisfies Definition 4.1. We can choose from a variety of
copulas to determine the joint distribution. Which copula we choose depends on what type of
dependency structure we want. The next theorem tells us how the joint distribution is formed
from the copula and the marginal dfs. It is the easy part of Sklar’s Theorem and the proof can
be found in Schweizer and Sklar (1983, Theorem 6.2.4).

Theorem 4.2. Let C be a copula and F1, . . . , Fd be univariate dfs. Defining

H(x1, . . . , xd) := C (F1(x1), . . . , Fd(xd)) , ∀(x1, . . . , xd) ∈ Rd,

the function H is a joint df with margins F1, . . . , Fd.

4.2 Two illustrative copulas

We look more closely at two particular copulas: the Gaussian copula and the Gumbel copula.
For notational reasons, we restrict ourselves to the bivariate d = 2 case. The Gaussian copula
is often used to model the dependency structures in credit defaults. We aim to compare it with
the Gumbel copula for illustrative purposes. As before, let X and Y be random variables with
dfs F and G, respectively.

First consider the bivariate Gaussian copula Cgau
ρ . This copula does not have a simple closed

form but can be expressed as an integral. Denoting by Φ the univariate standard normal df, the
bivariate Gaussian copula Cgau

ρ is

Cgau
ρ (u, v) :=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π (1− ρ2)
1/2

exp

{
−s

2 − 2ρst+ t2

2 (1− ρ2)

}
dsdt, (4.1)

for all u, v ∈ [0, 1], |ρ| < 1. The parameter ρ determines the degree of dependency in the
Gaussian copula. For example, setting ρ = 0 makes the marginal distributions independent so
that Cgau

0 = C⊥. As the Gaussian copula is a df, we can plot its distribution. Figure 2(a) shows
a random sample of the df of Cgau

ρ with ρ := 0.7.
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(a) Gaussian copula Cgau
ρ with ρ := 0.7.
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(b) Gumbel copula Cgum
θ with θ := 2.

Figure 2: Figures showing 2000 sample points from the copulas named under each figure.

Applying Theorem 4.2 with the bivariate Gaussian copula Cgau
ρ , the joint df H of the random

variables X and Y is

H(x, y) := Cgau
ρ (F (x), G(y)), ∀(x, y) ∈ R2.

The Gaussian copula arises quite naturally. In fact, it can be recovered from the multivariate
normal distribution. This is a consequence of the converse of Theorem 4.2, which is given next.
This is the second, less trivial part of Sklar’s Theorem and the proof can be found in Schweizer
and Sklar (1983, Theorem 6.2.4).

Theorem 4.3. Let H be a joint df with margins F1, . . . , Fd. Then there exists a copula C :
[0, 1]d → [0, 1] such that, for all (x1, . . . , xd) ∈ Rd,

H(x1, . . . , xd) := C (F1(x1), . . . , Fd(xd)) , ∀(x1, . . . , xd) ∈ Rd.

If the margins are continuous then C is unique. Otherwise C is uniquely determined on Ran(F1)×
· · · × Ran(Fd), where Ran(Fi) denotes the range of the df Fi.

To show how the Gaussian copula arises, suppose that ZZZ = (Z1, Z2) is a two-dimensional
random vector which is multivariate normally distributed with mean 000 and covariance matrix
ΣΣΣ =

( 1 ρ
ρ 1

)
. We write ZZZ ∼ N2(000,ΣΣΣ) and denote the df of ZZZ by ΦΦΦ2. We know that margins of

any multivariate normally distributed random vector are univariate normally distributed. Thus
Z1, Z2 ∼ N(0, 1) and the df of both Z1 and Z2 is Φ. The Gaussian copula Cgau

ρ appears by
applying Theorem 4.3 to the joint normal df ΦΦΦ2 and the marginal normal dfs Φ to obtain

ΦΦΦ2(x, y) = Cgau
ρ (Φ(x),Φ(y)), ∀x, y ∈ R.

From this we see that a multivariate normally distributed distribution can be obtained by com-
bining univariate normal distributions with a Gaussian copula. Figure 3(a) shows a simulation of
the joint df of X and Y when both are normally distributed with mean 0 and standard deviation
1 and with dependency structure given by the Gaussian copula Cgau

ρ with ρ := 0.7. This is
exactly the bivariate normal distribution with a linear correlation between X and Y of 0.7.

8



Of course, we do not have to assume that the marginals are univariate normal distributions.
For instance, Figure 2(a) shows a df which has standard uniform marginals with the Gaussian
copula Cgau

ρ with ρ := 0.7.
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(a) Gaussian copula Cgau
ρ with ρ := 0.7.
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(b) Gumbel copula Cgum
θ with θ := 2.

Figure 3: Figures showing 5000 sample points from the random vector (X,Y ) which has standard
normally distributed margins and dependency structure as given by the copula named under each
figure. To the right of the vertical line x = 2 and above the horizontal line y = 2, in the Gaussian
copula figure there are 43 sample points. The corresponding number for the Gumbel copula figure
is 70. To the right of the vertical line x = 3 and above the horizontal line y = 3, in the Gaussian
copula figure there is 1 sample point. The corresponding number for the Gumbel copula figure
is 5.

The second copula we consider is the bivariate Gumbel copula Cgum
θ which has the general

form

Cgum
θ (u, v) = exp

{
−
(

(− lnu)
θ

+ (− ln v)
θ
) 1

θ

}
, 1 ≤ θ <∞, ∀u, v ∈ [0, 1].

The parameter θ has an interpretation in terms of a dependence measure called Kendall’s rank
correlation. Like linear correlation, Kendall’s rank correlation is a measure of dependency be-
tween X and Y . While linear correlation measures how far Y is from being of the form aX + b,
for some constants a ∈ R \ {0}, b ∈ R, Kendall’s rank correlation measures the tendency of X to
increase with Y . To calculate it, we take another pair of random variables (X̃, Ỹ ) which have
the same df as (X,Y ) but are independent of (X,Y ). Kendall’s rank correlation is defined as

ρτ (X,Y ) := P[(X − X̃)(Y − Ỹ ) > 0]− P[(X − X̃)(Y − Ỹ ) < 0].

A positive value of Kendall’s rank correlation indicates thatX and Y are more likely to increase or
decrease in unison, while a negative value indicates that it is more likely that one decreases while
the other increases. For the Gumbel copula, Kendall’s rank correlation is ρgum

τ (X,Y ) = 1− 1
θ .

Figure 2(b) shows a sample of 2000 points from the Gumbel copula Cgum
θ with θ := 2. Using

the Gumbel copula and fixing θ ∈ [1,∞), the joint df of X and Y is

H(x, y) = Cgum
θ (F (x), G(y)) = exp

{
−
(

(− ln(F (x)))
θ

+ (− ln(G(y)))
θ
) 1

θ

}
, ∀x, y ∈ R.
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Figure 3(b) shows a simulation of the joint df of X and Y when both are normally distributed
with mean 0 and standard deviation 1 and with dependency structure given by the Gumbel
copula Cgum

θ with θ := 2. The linear correlation between X and Y is approximately 0.7. Thus
while we see that the two plots in Figure 3 have quite different structures - Figure 3(a) has
an elliptical shape while Figure 3(b) has a teardrop shape - they have approximately the same
linear correlation. This illustrates the fact that the knowledge of linear correlation and the
marginal dfs does not uniquely determine the joint df of two random variables. This is also
true for Kendall’s rank correlation: as a random vector (X,Y ) with continuous margins and
dependency structure given by the bivariate Gaussian copula Cgau

ρ has Kendall’s rank correlation

ρτ (X,Y ) = 2
π arcsin(ρ) (see McNeil et al. (2005, Theorem 5.36)), we find that the two plots in

Figure 3 have approximately the same Kendall’s rank correlation of 0.5. In summary, a scalar
measure of dependency together with the marginal dfs does not uniquely determine the joint df.

This is especially important to keep in mind in risk management when we are interested in
the risk of extreme events. By their very nature, extreme events are infrequent and so data on
them is scarce. However, from a risk management perspective, we must make an attempt to
model their occurrence, especially their joint occurence.

As we see from the two plots in Figure 3, which have identical marginal dfs and almost
identical linear correlation and Kendall’s rank correlation, these measures of dependency do not
tell us anything about the likelihood of extreme events. In Figure 3, it is the choice we make for
the copula which is critically important for determining the likelihood of extreme events. For
example, consider the extreme event that both X > 2 and Y > 2. In Figure 3(a), which assumes
the Gaussian copula, there are 43 sample points which satisfy this, whereas in Figure 3(b), which
assumes the Gumbel copula, there are 70 such sample points. Next consider the extreme event
that both X > 3 and Y > 3. In Figure 3(a) there is 1 sample point which satisfies this, whereas in
Figure 3(b) there are 5 such sample points. Under the assumption that the dependency structure
of the random variables is given by the Gaussian copula, extreme events are much less likely to
occur than under the Gumbel copula.

4.3 The Gaussian copula approach to CDO pricing

At the start of this section, we introduced the default times (Ti) of the d bonds in the underlying
portfolio of some CDO. Using Fi to denote the df of default time Ti, for i = 1, . . . , d, the Li
copula approach is to define the joint default time as

P[T1 ≤ t1, . . . , Td ≤ td] := C(F1(t1), . . . , Fd(td)), ∀(t1, . . . , td) ∈ [0,∞)d, (4.2)

where C is a copula function. The term “Li model” or “Li formula” has become synonymous
with the use of the Gaussian copula in (4.2). While Li (2000) did use the Gaussian copula
as an example, it would be more accurate if these terms referred to (4.2) in its full generality,
rather than just one particular instance of it. However, we use these terms as they are widely
understood, that is to mean the use of the Gaussian copula in (4.2).

In practice, the Li model is generally used within a one-factor or multi-factor framework.
We describe the one-factor Gaussian copula approach. Suppose the d bonds in the underlying
portfolio of the CDO have been issued by d companies. Denote the asset value of company i by
Zi. Under the one-factor framework, it is assumed that

Zi =
√
ρZ +

√
1− ρ εi, for i = 1, . . . , d,

where ρ ∈ (0, 1) and Z, ε1, . . . , εd are independent, standard normally distributed random vari-
ables. The random variable Z represents a market factor which is common to all the companies,
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while the random variable εi is the factor specific to company i, for each i = 1, . . . , d. Under this
assumption, the transpose of the vector (Z1, . . . , Zd) is multivariate normally distributed with
mean zero and with a covariance matrix whose off-diagonal elements are each equal to ρ. In this
framework, we interpret ρ as the correlation between the asset values of each pair of companies.

The idea is that default by company i occurs if the asset value Zi falls below some thresh-
old value. The default time Ti is related to the one-factor structure by the relationship Zi =
Φ−1(Fi(Ti)). With this relationship, the joint df of the default times is given by (4.2), with
C := Cgau

ρ , where ρ is the correlation between the asset values (Zi). Once we have chosen the
marginal dfs (Fi), we have fully specified the one-factor Li model.

Often, the marginal dfs are assumed to be exponentially distributed. In that case, the mean
of each default time Ti can be estimated from the market, for instance from historical default
information or the market prices of defaultable bonds. Using these exponential marginal dfs
and the market prices of CDO tranches, investors can calculate the implied asset correlation
ρ for each tranche. The implied asset correlation ρ is the asset correlation value which makes
the market price of the tranche agree with the one-factor Gaussian copula model. However,
as we also mention in Subsection 5.2, this results in asset correlation values which differ across
tranches.

4.4 Credit default swaps and synthetic CDOs

The Li model can be used not only to value the CDOs we described in Section 3, but also another
type of credit derivative called a credit defaut swap (“CDS”). A CDS is a contract which transfers
the credit risk of a reference entity, such as a bond or loan, from the buyer of the CDS to the
seller. The buyer of the CDS pays the seller a regular premium. If a credit event occurs, for
example the reference entity becomes bankrupt or undergoes debt restructuring, then the seller
of the CDS makes an agreed payoff to the buyer. What constitutes a credit event, the payoff
amount and how the payoff is made is set out in the legal documentation accompanying the
CDS.

There are two categories of CDSs: a single-name CDS, which protects against credit events
of a single reference entity, and a multi-name CDS, which protects against credit events in a pool
of reference entities. In the market, a CDS is quoted in terms of a spread. The spread is the
premium payable by the buyer to the seller which makes the present value of the contract equal
to zero. Roughly, a higher spread indicates a higher credit risk.

The market for CDSs is large. The Bank of International Settlements Quarterly Review of
June 2009 gives the value of the notional amount of outstanding CDSs as US$42,000 billion as at
December 31 2008, of which roughly two-thirds were single-name CDSs. Even after calculating
the net exposure, this still corresponds to an amount above US$3,000 billion.

As CDSs grew in popularity, the banks which sold them ended up with many single-name
CDSs on their books. The banks grouped together many single-name CDSs and used them as
the underlying portfolio of a type of CDO called a synthetic CDO. In contrast, the cash CDOs we
described in Section 3 have more traditional assets like loans or bonds in the underlying portfolio.
As an indication of the market size for these instruments just prior to the Crisis, the Securities
Industry and Financial Markets Association gives the value of cash CDOs issued globally in 2007
as US$340 billion and the corresponding value for synthetic CDOs as US$48 billion. It is also
important to point out that products like CDOs and CDSs are currently not traded in officially
regulated markets, but are traded over-the-counter (“OTC”). The global OTC derivative market
is of a staggering size, with a nominal, outstanding value at the end of 2008 of US$592,000 billion;
see BIS (2009). To put this amount into perspective, the total GDP for the world in 2008 was
about US$61,000 billion.
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Just like any CDO, a synthetic CDO can be tranched and the tranches sold to investors.
The buyers of the tranches receive a regular premium and, additionally, the buyers of the equity
tranche receives an upfront fee. This upfront fee can be of the order 20%-50% of the nominal
value of the underlying portfolio.

There also exists synthetic CDO market indices, such as the Dow Jones’ CDX family and the
International Index Company’s iTraxx family, which are actively traded as contracts paying a
specified premium. These standardized market indices mean that there is a market-determined
price for the tranches, which is expressed in terms of a spread for each tranche, in addition to
an upfront fee for the equity tranche.

5 The drawbacks of the copula-based model in credit risk

The main use of the Gaussian copula model was originally for pricing credit derivatives. However,
as credit derivative markets have grown in size, the need for a model for pricing has diminished.
Instead, the market determines the price. However, the model is still used to determine a
benchmark price and also has a significant role in hedging tranches of CDOs; see Finger (2009).
Moreover, it is still widely used for pricing synthetic CDOs.

The model has some major advantages, which have for many people in industry outweighed
its rather significant disadvantages, a story that we have most unfortunately been hearing far
too often in risk management. Think of examples like the Black-Scholes-Merton model, or the
widespread use of Value-at-Risk (“VaR”) as a measure for calculating risk capital. All of these
concepts have properties which need to be well understood by industry, especially when markets
of the size encountered in credit risk are built upon them.

But first to the perceived advantages of the Gaussian copula model. These are that it is
simple to understand, it enables fast computations and it is very easy to calibrate since only the
pairwise correlation ρ needs to be estimated. Clearly, the easy calibration by only one parameter
relies on the tenuous assumption that all the assets in the underlying portfolio have pairwise the
same correlation. The advantages of the model meant that it was quickly adopted by industry.
For instance, by the end of 2004, the three main rating agencies - Fitch Ratings, Moody’s and
Standard & Poor’s - had incorporated the model into their rating toolkit. Moreover, it is still
considered an industry standard.

Simplicity and ease of use typically comes at a price. For the Gaussian copula model, there
are three main drawbacks:

• insufficient modeling of default clustering in the underlying portfolio;

• if we calculate a correlation figure for each tranche of a CDO, we would expect these figures
to be the same. This is because we expect the correlation to be a function of the underlying
portfolio and not of the tranches. However, under the Gaussian copula model, the tranche
correlation figures are not identical, and

• no modeling of the economic factors causing defaults weakens the ability to do stress-testing,
especially on a company-wide basis.

We examine each of these issues in turn.

5.1 Inadequate modeling of default clustering

One of the main disadvantages of the model is that it does not adequately model the occurrence
of defaults in the underlying portfolio of corporate bonds. In times of crisis, corporate defaults
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occur in clusters, so that if one company defaults then it is likely that other companies also
default within a short time period. Under the Gaussian copula model, company defaults become
independent as their size of default increases. Mathematically, we can illustrate this using the
idea of tail dependence. A tail dependence measure gives the strength of dependence in the tails of
a bivariate distribution. We borrow heavily from McNeil et al. (2005) in the following exposition.
Since dfs have lower tails (the left part of the df) and upper tails (the right part), we can define a
tail dependence measure for each one. Here, we consider only the upper tail dependence measure.
Recall that the generalized inverse of a df F is defined by F←(y) := inf{x ∈ R : F (x) ≥ y}. In
particular, if F is continuous and strictly increasing, then F← equals the ordinary inverse F−1

of F .

Definition 5.1. LetX and Y be random variables with dfs F andG, respectively. The coefficient
of upper tail dependence of X and Y is

λu := λu(X,Y ) := lim
q→1−

P (Y > G←(q) |X > F←(q)) ,

provided a limit λu ∈ [0, 1] exists. If λu ∈ (0, 1] then X and Y are said to show upper tail
dependence. If λu = 0 then X and Y are said to be asymptotically independent in the upper
tail.

It is important to realize that λu depends only on the copula C and not on the marginal dfs
F and G; see McNeil et al. (2005, page 209).

Suppose X and Y have a joint df with Gaussian copula Cgau
ρ . As long as ρ < 1, it turns out

that the coefficient of upper tail dependence of X and Y equals zero; see McNeil et al. (2005,
Example 5.32). This means that if we go far enough into the upper tail of the joint distribution
of X and Y , extreme events appear to occur independently.

Recall that the dependence structure in the Li model is given by the Gaussian copula. The
asymptotic independence of extreme events for the Gaussian copula carries over to asymptotic in-
dependence for default times in the Li model. If we seek to model defaults which cluster together,
so that they exhibit dependence, the property of asymptotic independence is not desirable. This
undesirable property of the Gaussian copula is pointed out in Embrechts et al. (2002) and was
explicitly mentioned in the talk referred to at the beginning of Section 4. A first mathematical
proof is to be found in Sibuya (1960).

Compare the coefficient of upper tail dependence of the Gaussian copula with that of the
Gumbel copula. For X and Y with joint df given by Cgum

θ , the coefficient of upper tail dependence

is given by λgum
u := 2−2

1
θ . As long as θ > 1, then the Gumbel copula shows upper tail dependence

and may hence be more suited to modeling defaults in corporate bonds.
In practice, as we do not take asymptotic limits, we wonder if the independence of the

Gaussian copula in the extremes only occurs in theory and is insignificant in practice. The
answer is categorically no. As we pointed out in Subsection 4.2 in relation to Figure 3, the
effects of the tail independence of the Gaussian copula are seen not only in the limit. Of course,
this is not a proof and we direct the reader to a more detailed discussion on this point in McNeil
et al. (2005, page 212).

The Gumbel copula is not the only copula that shows upper tail dependence and we have
chosen it simply for illustrative purposes. However, it demonstrates that alternatives to the
Gaussian copula do exist, as was pointed out in the academic literature on numerous occasions.
For example, see Frey et al. (2001) and Rogge and Schönbucher (2003).

The failure of the Gaussian copula to capture dependence in the tail is similar to the failure of
the Black-Scholes-Merton model to capture the heavy-tailed aspect of the distribution of equity
returns. Both the Gaussian copula and the Black-Scholes-Merton model are based on the normal
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distribution. Both are easy to understand and result in models with fast computation times. Yet
both fail to adequately model the occurrence of extreme events.

We believe that it is imperative that the financial world considers what the model they use
implies about frequency and severity of extreme events. For managing risk, it is imprudent to
ignore the very real possibility of extreme events. It is unwise to rely without thought on a model
based on the normal distribution to tell you how often these extreme events occur. We are not
suggesting that models based on the normal distribution should be discarded. Instead, they
should be used in conjunction with several different models, some of which should adequately
capture extreme events, and all of whose advantages and limitations are understood by those
using them and interpreting the results. Extreme Value Theory offers tools and techniques which
can help in better understanding the problems and difficulties faced when trying to understand,
for instance, joint extremes, market spillovers and systemic risk; see Coles (2001), Embrechts
et al. (2008) and Resnick (2007) for a start.

5.2 Inconsistent implied correlation in tranches and an early warning

The one-factor Gaussian copula model is frequently used in practice for delta-hedging of the
equity tranche of the synthetic CDO indices. Attracted by the high upfront fee, investors like
hedge funds sell the equity tranche of a synthetic CDO. To reduce the impact of changes in
the spreads of the underlying portfolio, they can delta-hedge the equity tranche by buying a
certain amount of the mezzanine tranche of the same index. The idea is that small losses in the
equity tranche are offset by small gains in the mezzanine tranche and vice versa. They buy the
mezzanine tranche rather than the entire index because it is cheaper. Assuming the delta-hedge
works as envisaged, the investor gains the high upfront fee and the regular premium payable on
the equity tranche they sold, less the regular premium payable on the mezzanine tranche they
bought.

First, an implied correlation is calculated for each tranche. This is the correlation which
makes the market price of the tranche agree with the one-factor Gaussian copula model. Using
the implied correlations, the delta for each tranche can be calculated. The delta measures
the sensitivity of the tranche to uniform changes in the spreads in the underlying portfolio.
Intuitively, we would expect that the implied correlation should be the same for each tranche,
since it is a property of the underlying portfolio. However, the one-factor Gaussian copula model
gives a different implied correlation for each tranche. Moreover, the implied correlations do not
move uniformly together since the implied correlation for the equity tranche can increase more
than the mezzanine tranche.

Even worse, sometimes it is not possible to calculate an implied correlation for a tranche
using the one-factor Gaussian copula model. Kherraz (2006) gives a theoretical example of this
and Finger (2009) gives the number of times that there has failed to be an implied correlation in
the marketplace. These are all serious drawbacks of the one-factor Gaussian copula model, which
were brought to the attention of market participants in a dramatic fashion in 2005. Discussions
of these drawbacks can be found in Duffie (2008) and, particularly in relation to the events of
May 2005 which we outline next, in Finger (2005) and Kherraz (2006).

In 2005, both Ford and General Motors were in financial troubles which threatened their
credit ratings. On May 4 2005, an American billionaire Kirk Kerkorian invested US$870 million in
General Motors. In spite of this, on May 5 2005, both Ford and General Motors were downgraded.
Coming one day after Kerkorian’s massive investment, the downgrade was not expected by the
market. In the ensuing market turmoil, the mezzanine tranches moved in the opposite direction to
what the delta-hedgers expected. Rather than the delta-hedge reducing their losses, it increased
them.
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The losses were substantial enough to warrant a front-page article Whitehouse (2005) on
the Wall Street Journal which, like its successors Jones (2009) and Salmon (2009) more than
three years later, went into some detail about the limitations of the model’s uses. For us, this is
sufficient evidence that people, both in industry and in academia, were well aware of the model’s
inadequacy facing complicated credit derivatives.

The broader lesson to take away is that of model uncertainty. This is the uncertainty about
the choice of model. Naturally, as models are not perfect reflections of reality, we expect them
to be wrong in varying degrees. However, we can attempt to measure our uncertainty about the
choice of model. Cont (2006) proposes a framework to quantitatively measure model uncertainty
which, while written in the context of derivative pricing, is of wider interest. In the context of
hedging strategies, an empirical study of these using different models can be found in Cont and
Kan (2008). Their study shows that hedging strategies are subject to substantial model risk.

5.3 Ability to do stress-testing

The use of a copula reduces the ability to test for systemic economic factors. A copula does
not model economic reality but is a mathematical structure which fits historical data. This is a
clear flaw from a risk-management point of view. At this point, we find it imperative to stress
some points once more (they were mentioned on numerous occasions by the second author to
the risk management community). First, copula technology is inherently static since there is
no natural definition for stochastic processes. Hence any model based on this tool will typically
fail to capture the dynamic events in fast-changing markets, of which the subprime crisis is
a key example. Of course, model parameters can be made time dependent, but this will not
do the trick when you really need the full power of the model, that is when extreme market
conditions reign. Copula technology is useful for stress-testing: many companies would have
shied away from buying the magical AAA-rated senior tranches of a CDO if they had stress-
tested the pricing beyond the Gaussian copula model, for instance by using a Gumbel, Clayton
or t-copula model. And finally, a comment on the term “calibration”: too often we have seen
that word appear as a substitute for bad or insufficient statistical modeling. A major contributor
to the financial crisis was the totally insufficient macroeconomic modeling and stress-testing of
the North American housing market. Many people believed that house prices could only go up
and those risk managers who questioned that “wisdom” were pushed out with a desultory “you
do not understand”.

Copula technology is highly useful for stress-testing fairly static portfolios where marginal
loss information is readily available, as is often the case in multi-line non-life insurance. The
technology typically fails in highly dynamic and complex markets, of which the credit risk market
is an example. More importantly, from a risk management viewpoint, it fails miserably exactly
when one needs it.

6 The difficulties in valuing CDOs

6.1 Sensitivity of the mezzanine tranche to default correlation

Leaving aside the issue of modeling the joint default times, the problem of valuing the separate
tranches in a CDO is a delicate one. In particular, the mezzanine tranche of a CDO is very
sensitive to the correlation between defaults. We illustrate this with the following simple example.

Suppose that we wish to find the expected losses of a CDO of maturity 1 year which has 125
bonds in the underlying portfolio. Each bond pays a coupon of one unit which is re-distributed to
the tranche-holders. For simplicity, we assume that if a bond defaults, then nothing is recovered.
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We value the first three (most risky) CDO tranches, which we call the equity, mezzanine and
senior tranches. The equity tranche is exposed to the first 3 defaults in the underlying portfolio
of bonds. The mezzanine tranche is exposed to the next 3 defaults and the senior tranche is
exposed to the subsequent 3 defaults in the underlying portfolio of bonds. Therefore, 6 defaults
must occur in the underlying portfolio before further defaults affect the coupon payments to the
senior tranche.

Instead of modeling the default times (Ti), we make the simple assumption that each of
the underlying bonds has a fixed probability of defaulting within a year. We assume that the
correlation between each pair of default events is identical. We calculate the expected loss on
each tranche at the end of the year as follows

Expected loss on equity tranche =

3∑
k=1

kP [k bonds default by the end of the year] ,

Expected loss on mezzanine tranche =

3∑
k=1

kP [k + 3 bonds default by the end of the year] ,

Expected loss on senior tranche =

3∑
k=1

kP [k + 6 bonds default by the end of the year] .

In Figures 4(a)-4(d), we show for various probabilities of default how the expected losses on each
tranche vary as we change the pairwise correlation between the default events.

For each plot, we see that the expected loss on the equity tranche decreases as the pairwise
correlation increases. The reason is that as correlation increases, it is more likely that either
many bonds default or many bonds do not default. Since any defaults cause losses on the
equity tranche, the increase in probability that many defaults do not occur tends to decrease
the expected loss on the equity tranche. Conversely, the expected loss on the senior tranche
increases as the pairwise correlation increases. More than 6 bonds must default before the senior
tranche suffers a loss. An increase in correlation makes it more likely that many bonds will
default and this causes the expected loss on the senior tranche to increase. However, for the
mezzanine tranche there is no clear relationship emerging. In Figure 4(a), the expected loss on
the mezzanine tranche increases as the pairwise correlation increases. But in Figure 4(d) the
opposite happens. This simple example illustrates the sensitivity of the mezzanine tranche. This
point is also highlighted by McNeil et al. (2005, Figure 9.3).

We restate the remark in Duffie (2008) that the modeling of default correlation is currently
the weakest link in the risk measurement and pricing of CDOs. Given this weakness and the
sensitivity of the mezzanine tranche to the default correlation, it is clear that there is a lot of
uncertainty in the valuation of CDOs. Linking this uncertainty to the astronomical volumes of
CDOs in the marketplace, it is not surprising that the credit crisis had to erupt eventually.

6.2 Squaring the difficulty: CDO-squared

Now suppose we wish to value a credit derivative called a CDO-squared. This is a CDO where
the underlying portfolio itself consists of CDO tranches. Moreover, these tranches are typically
the mezzanine tranches. This is because the mezzanine tranches are difficult to sell: they are
too risky for many investors, since they are often BBB-rated, yet they are not risky enough for
other investors, like hedge funds.

Like any CDO, the CDO-squared can be tranched. However, the valuation of the CDO-
squared and its tranches are fraught with complexity. As we saw in our simple example above,
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(d) individual default probability of 4%.

Figure 4: Expected loss on a CDO with 125 underlying names, each with identical pairwise
correlation, as a function of the pairwise correlation value. The line shows the expected loss on
the equity tranche (0−3 units of exposure). The circles show the expected loss on the mezzanine
tranche (3 − 6 units of exposure) and the crosses show the expected loss on the senior tranche
(6− 9 units of exposure).
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valuing each mezzanine tranche in the underlying portfolio is difficult. Valuing the tranches of the
CDO-squared, which has between 100 and 200 mezzanine tranches in the underlying portfolio,
is much more difficult. If we assume that there are 150 mezzanine tranches in the underlying
portfolio of the CDO-squared, and each mezzanine tranche is based on a portfolio of 150 bonds,
then this means modeling 22,500 bonds. It is also quite likely that some of these bonds are the
same, since it is likely given the large numbers involved that some of the mezzanine tranches have
the same bonds in their underlying portfolio. Given these problems, it is questionable whether
a CDO-squared can be valued with any reasonable degree of accuracy.

Moreover, doing due diligence on such on a CDO-squared is not feasible, as Haldane (2009a)
points out. The contracts governing each of the mezzanine tranches in the underlying portfolio
are around 150 pages long. Assuming that there are 150 mezzanine tranches in the underlying
portfolio, this means that there are 22,500 pages to read, not including the contract governing
the CDO-squared itself. On top of that, a typical computer program mapping the cashflow of
just one CDO-like structure can be thousands of lines of computer code long (often in an Excel
environment), which has the attendant possibility of programming errors creeping in.

For the purposes of risk management, determining the systemic factors which the CDO-
squared is exposed to would be impossible, given the number of financial instruments on which
a CDO-squared is based. This means that the validity of scenario testing on such instruments is
doubtful.

Even ignoring the valuation difficulties, the economic value of instruments such as CDOs-
squared are questionable. As Hellwig (2009, page 153) argues in relation to mortgage-backed
securities, which we recall are a type of CDO, if the securitization of mortgage-backed securities
had been properly handled then there should be no significant benefits from additional diversifi-
cation through a mortgage-backed security-squared. Such benefits could be gained by investors
putting multiple mortgage-backed securities into their own portfolio. Furthermore, he points out
that the scope for moral hazard was increased as the chain of financial intermediation increased,
from the mortgage originators to the buyers of the mortgage-backed security-squared. This was
also mentioned by Stiglitz (2008).

If the problems with valuing and managing the risk involved in CDOs-squared seem insur-
mountable, it should give the reader pause for thought that instruments called CDO-cubed exist.
These are again CDOs which are based on the mezzanine tranches of CDO-squareds.

It is clear that at this level, credit risk management did reach a level of perversity which ques-
tions seriously any socio-economic benefit of such products and puts to shame the whole quant
profession. In the end, from a product development point-of-view, total opaqueness reigned. The
real question is not about a particular model used or misused in the pricing of such products but
much more about the market structures which allowed such nonsensical products to be launched
in such volumes. Already around 2005, it was noticed that overall risk capital as measured by
VaR was down. They key question some risk managers asked was “But where is all the credit
risk hiding?” By now, unfortunately we know!

7 Alternative approaches to valuing CDOs

Reading the articles in the Financial Times and Wired Magazine, one would think that the
Gaussian copula model was the only method used to value credit derivatives. This is far from
the truth. While this model is widely used, there are many alternatives to it which are also
used in industry. In fact, there are entire books written on models for credit derivatives, such as
Bielecki and Rutkowski (2004), Bluhm and Overbeck (2007), O’Kane (2008) and Schönbucher
(2003).
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Broadly, there are two main classes of models used in credit risk modeling: structural models
and hazard rate models. The structural approach, sometimes called the firm-value approach,
models default via the dynamics of the value of the firm. This is based on the Merton (1974)
approach, which models default via the relationship of the value of the firm’s assets to its liabilities
at the end of a given time period. The general idea is that default occurs if the asset value is less
than the firm’s liabilities. The one-factor Gaussian copula model is an example of a structural
model. Other examples of structural models used in industry are the CreditMetrics model,
publicized by JP Morgan in 1997, and the KMV model, first developed by the company KMV
and now owned by Moody’s.

Hazard rate models, also commonly called reduced-form models, attempt to model the in-
finitesimal chance of default. In these models, the default is some exogenous process which does
not depend on the firm. An industry example of a reduced-form model is CreditRisk+, which
was proposed by Credit Suisse Financial Products in 1997.

We do not go into details about these or, indeed, alternative models. Instead, as a starting
point we direct the interested reader to the books cited at the start of this section.

It is fair to say that in the wake of the Crisis, the approaches used by the various market
participants to value CDOs can be broadly summarized as follows:

• for synthetic (corporate credit) CDOs, the notion of the base correlation curve of the
Gaussian copula is used. Since the Crisis, there has been an evolution to simpler models
and simpler structures;

• for cash CDOs and asset-backed securities, a more detailed modeling of the cashflow wa-
terfall together with Monte Carlo modeling of the underlying asset pools is used;

• rating agencies models for structured assets have become much simpler, that is concentrat-
ing on fewer scenarios with extreme stress shocks, and

• the regulators put a lot of importance on stress-testing and the Holy Grail still remains
liquidity risk.

Whereas we applaud the consensus on simple, economically relevant products, we are less con-
vinced that simple models will be part of the answer to this Crisis. Even for fairly straightforward
credit products, rather advanced quantitative techniques are needed. We need better models and
for people to understand the assumptions and limitations of the models they use. The call is
not for “less mathematics” but rather for “a better understanding of the necessary mathematics
involved”.

8 A failure of risk management: AIG

CDSs have also attracted a lot of attention with respect to the financial crisis, particularly
in association with the insurance company AIG. In September 2008, AIG was on the verge of
bankruptcy due to cashflow problems stemming from its CDS portfolio, before being saved by the
US government. We explain below how AIG came close to bankruptcy and draw some relevant
lessons from their risk management failures.

8.1 The AIG story

The sad story of AIG, a company of around 100,000 employees brought to its knees by a small
subsidiary of 400 employees, is an example of a failure of risk management, both at the division
and the group level. AIG almost went bankrupt because it ran out of cash. We do not concern
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ourselves here with regulation, but focus on the risk management side of the AIG story. A
summary of the AIG bailout by Sjostrom (2009) is well-worth reading, and this is the basis of
what we write below about AIG. We have supplemented this with other sources, mainly from
AIG regulatory filings and statements submitted to a US Senate Committee hearing on AIG.

AIG is a holding company which, through its subsidiaries, is engaged in a broad range of
insurance and insurance-related activities in more than 130 countries. Half of its revenues come
from its US operations. As at December 31 2007, AIG had assets of US$1,000 billion dollars.
This is just under half the Gross Domestic Product of France.

Despite the insurance business being a heavily regulated business, in September 2008 AIG
was on the verge of bankruptcy due to cashflow problems. These cashflow problems came not
from its insurance business, but from its CDS portfolio. AIG operated its CDS business through
subsidiaries called AIG Financial Products Corp and AIG Trading Group, Inc and their respective
subsidiaries. Collectively, these subsidiaries are referred to as AIGFP. As the parent company,
AIG fully guaranteed any liabilities arising from AIGFP doing its regular business. For the most
part, AIGFP sold protection on super-senior tranches of CDOs, where the underlying portfolio
consisted of loans, debt securities, asset-backed securities and mortgage-backed securities. Super-
senior tranches rank above AAA-rated tranches in the CDO tranche hierarchy, so that the super-
senior tranche of a CDO is less risky than the AAA-rated tranche.

AIGFP believed that the money it earned from the CDSs were a free lunch because their risk
models indicated that the underlying securities would never go into default. AIG (2006) states
that “the likelihood of any payment obligation by AIGFP under each transaction is remote, even
in severe recessionary market scenarios”. The New York Times quotes the head of AIGFP as
saying in August 2007 that “it is hard for us, without being flippant, to even see a scenario within
any kind of realm of reason that would see us losing one dollar in any of those transactions.”; see
Morgenson (2008). Indeed, as at March 5 2009, according to AIG’s primary regulator, there had
been no credit losses on the CDSs sold on super-senior tranches of CDOs; see Polakoff (2009).
By credit losses, we mean the losses caused by defaults on the super-senior tranches that the
CDSs were written on. Despite this, by writing the CDSs, AIGFP and hence also AIG, exposed
themselves to other risks which entailed potentially large financial obligations.

The buyer of a CDS is exposed to the credit risk of the seller. If the reference asset defaults
then there is no guarantee that the seller can make the agreed payoff. Similarly, the seller
is exposed to the credit risk of the buyer: the buyer may fail to make the regular premium
payments. To reduce this risk, the counterparties to the CDS contract may be required to
post collateral. The industry standard documentation which governs CDSs is produced by the
International Swaps and Derivatives Association (“ISDA”). There are four parts to each ISDA
contract, the main part being the ISDA Master Agreement. Another of these parts is the Credit
Support Annex, which regulates the collateral payments. Collateral payments may be required
due to changes in the market value of the reference asset or changes in the credit rating of the
counterparties. Further, the Credit Support Annex is an optional part of the ISDA contract.

As at December 31 2007, the net notional amount of CDSs sold by AIGFP was US$527 billion.
The majority of these CDSs were sold before 2006. Some US$379 billion of these CDSs were sold
to provide mostly European banks with regulatory capital relief, rather than for risk transfer.
We call these “regulatory capital CDSs”. These CDSs were written on assets like corporate
loans and prime residential mortgages, which were held by European banks. By buying a CDS
from AIGFP, the banks transferred the credit risk of the loans to AIGFP. Up to 2005, as AIG
was AAA-rated and fully guaranteed its subsidiary AIGFP, the European banks were permitted
under their banking regulations to reduce the amount of regulatory capital to be set aside for
their loans. Meanwhile AIG, being subject to different regulations and despite being exposed to
the losses on the loans, did not have to hold the full value of the European regulatory capital.
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Notional
amount

Type of CDS at Collateral posting at
Dec 31 2007 Dec 31 2007 Mar 31 2008 Jun 30 2008 Sep 30 2008
US$ million US$ million

Regulatory capital 379,000 0 212 319 443
Corporate loans 70,000 161 368 259 902
Multi-sector CDO 78,000 2,718 7,590 13,241 31,469
Total 527,000 2,879 8,170 13,819 32,814

Table 1: Collateral postings by AIG to its counterparties in respect of the three types of CDSs
it wrote.

The remaining notional amount of CDSs sold by AIGFP was split almost evenly between those
written on portfolios of corporate debt and collaterized loan obligations (US$70 billion), which we
call “corporate loan CDSs”, and those written on portfolios of multi-sector CDOs (US$78 billion),
which we call “multi-sector CDO CDSs”. A multi-sector CDO is a CDO with an underlying
portfolio consisting of loans, asset-backed securities and mortgage-backed securities. This means
that a multi-sector CDO is exposed to portfolios of assets from multiple sectors, such as residential
mortgage loans, commercial mortgages, loans, auto loans and credit card receivables. AIG wrote
protection on mostly the super-senior tranches of these multi-sector CDOs. Unfortunately for
AIG, many of the multi-sector CDOs on which it sold CDSs were based on residential mortgage-
backed securities, whose assets included subprime mortgage loans. Typically about 50% of
the multi-sector CDOs on which AIG wrote CDSs was exposed to subprime mortgages; see
AIG (2007b, page 28). By 2005, according to another presentation by AIG, they made the
decision to stop committing to any new multi-sector CDOs which had subprime mortgages in
their underlying portfolios; see AIG (2007a, Slide 16). They also saw evidence that underwriting
standards in subprime mortgages were beginning to decline in a material way.

For several of its counterparties, AIGFP had collateral arrangements nearly all of which were
written under a Credit Support Annex to an ISDA Master Agreement. The intent of these
arrangements was to hedge against counterparty credit risk exposures. The amount of collateral
was primarily based either on the replacement value of the derivative or the market value of the
reference asset. It was also affected by AIG’s credit rating and that of the reference assets.

In mid-2007, the defaults by borrowers of subprime mortgages started to ripple down the
chain of financial contracts based on them. This led to massive write-downs in AIGFP’s portfolio,
totalling US$11.2 billion in 2007 and US$19.9 billion for the first nine months of 2008. More
importantly, the effects of the defaults were collateral posting requirements. As the values of the
CDOs on which AIGPF had sold CDSs declined, AIGFP was required to post more and more
collateral. Between July 1 2008 and August 31 2008, AIGFP either posted or agreed to post
US$6 billion in collateral. This represented 34% of the US$17.6 billion that AIG had in cash and
cash equivalents available on July 1 2008. In Table 1, we show the collateral postings on AIGFP’s
super-senior tranche CDS porfolio; see AIG (2009, page 144) and AIG (2008, page 122). The first
column of figures in Table 1 relates to the nominal amounts of the CDS at December 31 2007,
which we discussed above. These are shown to provide the reader with a sense of the magnitude
of the multi-sector CDO CDS portfolio relative to the other two CDS portfolios. Moving from
left to right across the table, we see that the amount of collateral postings on the multi-sector
CDO CDSs increases dramatically and comprises 96% of the total amount of collateral postings
of US$32.8 billion as at September 30 2008.

Adding to AIG’s cash woes was its Securities Lending Program, which was a centrally man-
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aged program facilitated by AIG Investments. Through this program, certain of AIG’s insurance
companies lent securities to other financial institutions, primarily banks and brokerage firms. In
exchange, AIG received partially cash collateral equal to 102% of the fair value of the loaned
securities from the borrowers. In 2008, as the borrowers learned of AIG’s cashflow problems,
they asked for their collateral back in exchange for the return of the securities. From September
12 2008 to September 30 2008, borrowers demanded the return of around US$24 billion in cash;
see Dinallo (2009).

A typical securities lending program reinvests the collateral in short duration instruments
such as treasuries and commercial paper. AIG’s Securities Lending Program did not do this.
Instead, they invested most of the collateral in longer duration, AAA-rated residential mortgage-
backed securities; see AIG (2008, page 108) and Dinallo (2009). As the effects of the defaults of
subprime mortgage holders continued to ripple through the financial markets, these mortgage-
backed securities declined substantially in value and became illiquid. As a result, the Securities
Lending Program had insufficient funds to pay back the collateral it had taken in exchange for
lending AIG’s securities. AIG was forced to transfer billions in cash to the Securities Lending
Program to pay back the collateral.

By early September 2008, AIG’s cash situation was dire. It was unable to raise additional
capital due to the seizing up of liquidity in the markets. As a result of all these events, AIG was
downgraded. The downgrade triggered additional collateral postings in excess of US$20 billion
on the CDSs sold by AIGFP.

On September 16 2008, the Federal Reserve Board, with the support of the U.S. Department
of the Treasury, announced that it had authorized the Federal Reserve Bank of New York to
lend up to US$85 billion to AIG. This was to allow AIG to sell certain of its businesses in an
orderly manner, with the least possible disruption to the overall economy. According to a Federal
Reserve Board press release, it had determined that, in the current circumstances, a disorderly
failure of AIG could add to already significant levels of financial market fragility and lead to
substantially higher borrowing costs, reduced household wealth, and materially weaker economic
performance; see Federal Reserve Board (2008a). By October 1 2008, AIG had drawn down
approximately US$61 billion from the credit facility; see Kohn (2009).

In November 2008, it appeared that another downgrade of AIG’s credit rating was looming.
This would have triggered additional collateral calls, and would probably have led to the collapse
of AIG. Wishing to avoid this, the Federal Reserve Board and the U.S. Department of the
Treasury announced a series of mitigating actions on November 10 2008; see Kohn (2009). In
the press release, the Federal Reserve Board stated that these new measures were to establish
a more durable capital structure, resolve liquidity issues, facilitate AIG’s execution of its plan
to sell certain of its businesses in an orderly manner, promote market stability, and protect the
interests of the US government and taxpayers; see Federal Reserve Board (2008b).

AIG’s net losses for 2008 were about US$99 billion, of which approximately US$62 billion
was in the last quarter of 2008. By August 2009, according to the magazine The Economist,
the total value of US government help that was distributed to AIG was around US$145 billion,
which is equivalent to about 1% of the GDP of the US.

8.2 Risk management issues

The risk management failings at AIG were seen at other global firms. For many firms, the
shortcomings of the risk management practices were translated into huge financial losses. In
AIG’s case, they almost bankrupted the firm.

The biggest failure of risk management at AIG was in not appreciating the risk inherent in
the super-senior tranches of the multi-sector CDOs. Indeed, Rutledge (2008) points to exposure
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to the US subprime market as driving the losses at some major global financial organizations,
with the key driver being exposure to the super-senior tranches of CDOs. Firms thought that
the super-senior tranches were practically risk-free. According to Rutledge (2008), prior to the
third quarter of 2007, few firms used valuation models to model their exposure to super-senior
tranches related to subprime mortgages. It seems that AIG was also guilty of this to some degree.
Until 2007, it did not model the liquidity risk that it was exposed to from writing CDSs with
collateral posting provisions; see Mollenkamp et al. (2008) and St Denis (2008).

Inadequate mathematical modeling meant that AIG were not able to quantify properly the
risks in their CDS portfolio. Moreover, by ignoring the liquidity risk they were exposed to until
after the Crisis had begun, AIG could not take early action to reduce their exposure to potential
collateral postings. By the end of 2007, when substantial declines in the subprime mortgage
market were already occurring, it would have been very expensive to do this.

Some firms survived the Crisis better than others. Based on a sample of eleven global banking
organizations and securities firms, Rutledge (2008) identified the key risk management practices
which differentiated the performance of firms during the Crisis. From them, we take some relevant
lessons.

One is the need for firms to embrace quantitative risk management. This provides them with
a means of quantifying and aggregating risks on a firm-wide basis. Relying on human judgment,
while still essential, is not enough, especially in huge firms like AIG.

The mathematics to measure many of the risks that firms face are well-developed. For exam-
ple, while the Crisis is considered an extreme event, there does exist a mathematical framework
to assess the risk of such events. As mentioned before, Extreme Value Theory has been an active
area of mathematical research since the 1950s, with early publications going back to the 1920s,
and has been applied to the field of finance for over 50 years. There has been much research on
the quantification of the interdependence and concentration of risks, and the aggregation of risks.
A starting place for learning about the concepts and techniques of quantitative risk management
is McNeil et al. (2005).

9 Summary

The prime aim of this paper is not to give a detailed overview of all that went wrong leading up
to and during the Crisis, but instead a rather personal account of the important issues of which
an actuarial audience should be aware. The pessimist may say “The only thing we learn from
history is that we learn nothing from history”, a quote attributed to Friedrich Hegel, among
others. However, we hope that future generations of actuarial students will read this paper
even after the Crisis has become part of economic history and avoid the errors of the current
generation. As a consequence, we have left out numerous important aspects of the Crisis, but
hopefully we have compensated that oversight with some general references which we found
useful. By now, new publications appear every day which makes choosing “what to read” very
difficult indeed.

We have concentrated on two aspects of the Crisis which are relevant from an actuarial
viewpoint: the use of an actuarial formula (that is, the Gaussian copula model) far beyond the
level it was originally created for and the near-bankruptcy of an insurance giant, AIG, in part
because of the failure of internal risk management practices.

If we consider the concepts behind the numerous acroynms like RM, IRM, ERM, QRM,...,
the message is screaming out to us: we need to learn from these recent events. As stated on
several occasions in our paper, it is totally preposterous to blame one man or one model for all or
part of the Crisis. In reaction to the Financial Times article Jones (2009) we wrote the following
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letter:

Dear Sir

The article “Of couples and copulas”, published on 24 April 2009, suggests that
David Li’s formula is to blame for the current financial crisis. For me, this is akin
to blaming Einstein’s E = mc2 formula for the destruction wreaked by the atomic
bomb. Feeling like a risk manager whose protestations of imminent danger were
ignored, I wish to make clear that many well-respected academics have pointed out
the limitations of the mathematical tools used in the finance industry, including Li’s
formula. However, these warnings were either ignored or dismissed with a desultory
response: “It’s academic”.

We hope that we are listened to in the future, rather than being made a convenient
scapegoat.

Yours, etc

It was unfortunately not published!
As actuaries, both in practice and in academia, we must think more carefully on how to

communicate the use and potential misuse of the concepts, techniques and tools in use in the
risk management world. Two things are clear from the Crisis: “we were not listened to”, but also
“we did not know”. First on the latter: as academics, we have to become much more involved
with macroeconomic reality. The prime example is the astronomical nominal value invested in
credit derivatives and why our risk management technology did not have all the red warning
lights flashing much earlier. Second, as a final remark, we want to say something on the former
“we were not listened to”. This leads us to the problem of communication, a stage on which
actuaries are not considered the best actors. Too many papers are currently written, post-event,
on “why we got into this mess”. We need to learn why certain warnings were not heeded. Below
we give some personal recollections on this matter.

In 2001, the second author contributed to the 17 page document Dańıelsson et al. (2001) which
was mailed in the same year as an official reply to the Basel Committee in the wake of the new
Basel II guidelines. The academic authors were a mixture of microeconomists, macroeconomists,
econometricians and actuaries. Due to its relevance to the Crisis, we quote from the Executive
Summary:

It is our view that the Basel Committee for Banking Supervision, in its Basel II
proposals, has failed to address many of the key deficiencies of the global financial
regulatory system and even created the potential for new sources of instability. . . .

• The proposed regulations fail to consider the fact that risk is endogenous. Value-
at-Risk can destabilise an economy and induce crashes when they would not
otherwise occur.

• Statistical models used for forecasting risk have been proven to give inconsis-
tent and biased forecasts, notably under-estimating the joint downside risk of
different assets. . . .

• Heavy reliance on credit rating agencies for the standard approach to credit risk
is misguided as they have been shown to provide conflicting and inconsistent
forecasts of individual clients’ creditworthiness. . . .

• Financial regulation is inherently procyclical. Our view is that this set of propos-
als will, overall, exacerbate this tendency significantly. In so far as the purpose of
financial regulation is to reduce the likelihood of systemic crisis, these proposals
will actually tend to negate, not promote this useful purpose.
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The introduction of Dańıelsson et al. (2001) concludes with

Perhaps our most serious concern is that these proposals, taken altogether, will en-
hance both the procyclicality of regulation and the susceptibility of the financial
system to systemic crises, thus negating the central purpose of the whole exercise.
Reconsider before it is too late.

The authors of Dańıelsson et al. (2001) could not have been more forceful and explicit, and yet the
reaction from the Basel Committee was basically nil. Along these lines, every beginning actuary
should read Markopolos (2005). In this 2005 document addressed to the SEC, one of several by
Markopolos over the period 2000-2008, Markopolos proves that Madoff Investment Securities is a
Ponzi scheme, and yet the SEC did nothing. We do not enter into the reasons why this happened,
but simply note that every quantitatively trained finance expert would have immediately reacted
upon reading the very detailed and point-by-point accusation made in Markopolos (2005).

Though the above example is somewhat discouraging, we have to keep vigilant and commu-
nicate in a forceful way those actuarial, technical findings which are of societal importance. We
can do this through our publications, societies and conferences. A key research theme that we
have to address more explicitly going forward is that of model uncertainty. From a technical
perspective, this means explaining the precise conditions under which a particular model can be
used. But at the same time, we have to be aware, or become aware, where and how these models
are used in a non-trivial way.

It always pays to be be humble in the face of real application. Shakespeare’s Hamlet for-
mulated this as follows: “There are more things in heaven and earth, Horatio, than are dreamt
of in your philosophy.” New generations of actuarial students will have to use the tools and
techniques of quantitative risk management wisely in a world where the rules of the game will
constantly change. A message we would like to give them on this path is to be always scientif-
ically critical, socially honest and to adhere to the highest ethical principles, especially in the
face of temptation...which will come!
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