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1 Introduction

We study a problem of stochastic control in mathematical finance with the general goal of
minimizing a quadratic loss function of the terminal wealth at close of trade. Appropriate choice
of the loss function enables one to address more specific problems, such as minimizing the mean-
square discrepancy between the terminal wealth and a specified square-integrable contingent
claim (L2-hedging), or minimizing the variance of the wealth at close of trade when its expected
value is specified as a constraint (mean-variance portfolio selection). Problems of this general
kind arise quite naturally in financial applications. For example, L2-hedging is a useful tool in the
management of a defined-benefit pension plan, in which one tries to minimize the mean-square
discrepancy between the asset value and the liability at some future time T , so as to avoid either
over-funding or under-funding the liability, both of which are undesirable from the viewpoint of
managing the fund.

Two aspects of the problem of quadratic minimization addressed here deserve comment: the
portfolio, which is specified by the vector of dollar amounts invested in each risky asset, must
take values in a given closed and convex set (this amounts to a constraint on the portfolio), and
the market model includes “regime-switching” among a finite number of “regimes” or “market
states”. To be more precise, we postulate a fairly classical continuous-time market model with
finitely many risky assets and one risk-free asset; the asset prices are driven by a Brownian
motion, and the model includes the additional element that the market parameters (risk-free
interest rate, mean return rate on stocks, and volatility) undergo random “regime-switching”
among a finite number of specified “market states”. For example, a market model could include
two market states, one of which corresponds to a “bull market” (with generally increasing prices)
while the other regime corresponds to a “bear market” (with generally falling prices). Switching
between states is modelled by means of a finite-state continuous-time Markov chain, the states
of which effectively correspond to the market states we wish to include in the model. The
market model is therefore “driven” by both a Brownian motion and a finite-state Markov chain,
and the dependence of the market parameters on these driving processes is modelled by the
stipulation that the market parameters be adapted to the joint filtration of the Brownian motion
and the Markov chain. It is assumed that the Markov chain and the Brownian motion are
independent, a condition which simplifies the analysis, and also has an economic justification:
the Brownian motion models micro-economic effects on prices over short time-scales, while the
Markov chain models macro-economic effects over long time-scales. The independence condition
really amounts to the reasonable assumption that micro-economic and macro-economic effects
on prices are independent.

A precursor to the present work is that of Zhou and Yin (2003), in which the problem of inter-
est is similar to that summarized above, and which incorporates in particular a regime-switching
market model. The portfolios in Zhou and Yin (2003) are unconstrained, and the market pa-
rameters are “Markov-modulated”, in the sense that at any given instant the parameters are
determined completely by the state of the Markov chain at that instant (in this regard we also
draw attention to the recent results of Sotomayor and Cadenillas (2009) on the related problem
of unconstrained utility maximization with Markov-modulated market parameters). Zhou and
Yin (2003) adopt the approach of stochastic LQ control and completion of squares, to which their
problem is ideally suited, and express the optimal portfolio in terms of affine feedback on the
current wealth. When the portfolio is constrained and the market parameters are not specifically
Markov-modulated, but depend at any instant on the joint history of the Brownian motion and
the Markov chain up to that instant, as is the case in the present work, then it becomes rather
difficult to follow the approach of stochastic LQ control used in Zhou and Yin (2003). Indeed,
portfolio constraints just by themselves, even without regime switching, constitute a definite
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challenge. A particularly effective approach for dealing with portfolio constraints is the method
of “auxiliary markets”, introduced by Cvitanić and Karatzas (1992) for problems of constrained
utility maximization. The essential idea is to formulate a complete “auxiliary” market model
which has the property that unconstrained optimization in the auxiliary market amounts to con-
strained optimization in the given market. Despite the evident power of this method it is not
apparent how to come up with an auxiliary market when the problem involves regime-switching
in conjunction with portfolio constraints. For this reason, in the present work we shall follow an
approach established by Labbé and Heunis (2007) for constrained portfolio optimization (either
quadratic minimization or utility maximization), which allows for random market parameters
(but in Labbé and Heunis (2007) did not allow for regime-switching in the market model) and
which in particular does not require the formulation of an auxiliary market. The essence of the
approach is to suppress the portfolio as the basic “free variable”, and write the given portfo-
lio optimization problem as a type of Bolza problem involving the optimization of an objective
functional over a vector space of Itô processes which includes all wealth processes arising from
admissible portfolios. This re-formulated “primal” problem is ideally suited to direct application
of the conjugate duality theory of Bismut (1973), which yields an appropriate dual functional,
a weak duality relation between the primal and dual functionals, and optimality relations giv-
ing necessary and sufficient conditions for the primal problem and the dual problem (that is,
minimization of the dual functional) to each have a solution with zero duality gap. Existence
of a solution to the dual problem is established by the direct (Nagumo-Tonelli) method, and
the optimality relations are then used to synthesize an optimal portfolio in terms of the solution
of the dual problem. The goal of the present work is to generalize the approach of Labbé and
Heunis (2007), briefly outlined above, to market models which include regime-switching as well
as portfolio constraints.

In Sections 2 - 3 we set out the regime-switching market model, formulate the problem of
interest, namely constrained quadratic loss minimization with random market parameters, and
summarize some useful background. In Section 4 we construct the optimal portfolio. In Section
5 we specialize to the case where the market parameters are adapted only to the regime-state
Markov chain, and use the optimality relations of Section 4 to construct explicit optimal portfolios
in feedback form (on the current wealth) for problems which include portfolio constraints.

2 Market model and quadratic minimization

We assume investment in a continuous-time market model over a finite time horizon [0, T ] for a
constant T ∈ (0,∞), with the following conditions in force:

Condition 2.1. The market is subject to regime-switching, as modelled by a continuous-time
Markov chain {α(t), t ∈ [0, T ]} which takes values in a finite state space I = {1, . . . , D}, with
non-random initial state α(0) := i0 ∈ I. Associated with the Markov chain is a generator
G, which is a D × D matrix G = [gij ]Di,j=1 with the properties gij ≥ 0, for all i 6= j and
gii = −

∑
j 6=i gij . The prices of the risky assets are driven by an N -dimensional, standard

Brownian motion W = {W(t); t ∈ [0, T ]} with scalar entries Wn(t), n = 1, . . . , N . The Markov
chain and the Brownian motion are defined on a common complete probability space (Ω,F ,P)
and are assumed to be independent. With N (P) := {A ∈ F : P(A) = 0}, the information
available to investors is represented by the filtration

Ft := σ{(α(s),W(s)), s ∈ [0, t]} ∨ N (P), ∀t ∈ [0, T ]. (2.1)

From Condition 2.1 the Markov processes α and W are independent Feller processes with
values in I and RN respectively. It then follows from Kallenberg (2002, Chapter 19, Exercise
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10, page 389) that (α,W) is a Feller process with values in I × RN , and therefore {Ft} is a
right-continuous filtration (see Revuz and Yor (1994, Proposition III(2.10))).

Remark 2.2. We use P? to denote the {Ft}-predictable (or previsible) σ–algebra on Ω × [0, T ].
For any mapping X on the set Ω× [0, T ] with values in some Euclidean space (the dimensionality
of which is clear from the context), we write X ∈ P? to indicate that X is P?-measurable. The
measure space (Ω× [0, T ],P?,P⊗Leb), where Leb stands for the Lebesgue measure on the Borel
σ-algebra on [0, T ], is used throughout.

Condition 2.3. The market comprises a single risk-free asset with price {S0(t); t ∈ [0, T ]} and
several risky assets with prices {Sn(t); t ∈ [0, T ]}, n = 1, 2, . . . , N , modeled by the relations

dS0(t) = r(t)S0(t) dt, dSn(t) = Sn(t)

(
bn(t) dt+

N∑
m=1

σnm(t) dWm(t)

)
, (2.2)

with S0(0) = 1 and Sn(0) being a fixed, strictly positive constant, for each n = 1, . . . , N .

Condition 2.4. In (2.2), the risk-free rate of return {r(t)} is a uniformly bounded, nonnegative,
{Ft}-predictable scalar stochastic process, and the entries {bn(t)} of the RN -valued mean rates of
return {b(t)} and the entries {σnm(t)} of the N×N matrix-valued volatility process {σσσ(t)} of the
risky assets are uniformly bounded, {Ft}-predictable scalar stochastic processes. Furthermore,
using ‖z‖ for the Euclidean norm and z> for the transpose of a vector z ∈ RN , there exists some
constant κ ∈ (0,∞) such that z>σσσ(ω, t)σσσ>(ω, t)z ≥ κ‖z‖2 for all (z, ω, t) ∈ RN × Ω× [0, T ].

From (2.1) and the {Ft}-predictability postulated at Condition 2.4 it follows that, at every
instant t ∈ [0, T ], the market parameters are effectively determined by the paths {α(s), s ∈ [0, t]}
and {W(s), s ∈ [0, t]}. It is in this sense that“regime-switching” by the Markov chain α is
included in the market model.

Remark 2.5. From Condition 2.4 and elementary linear algebra we have the useful upper bound
max{‖σσσ−1(ω, t)z‖, ‖(σσσ>)−1(ω, t)z‖} ≤ (κ)−1/2‖z‖ for all (z, ω, t) ∈ RN × Ω× [0, T ].

Remark 2.6. Define the usual RN -valued market price of risk θθθ(t) := σσσ−1(t) (b(t)− r(t)1),
t ∈ [0, T ] (where 1 ∈ RN has all unit entries). From Condition 2.4 it follows that the process θθθ
is {Ft}-predictable and uniformly bounded, namely κθθθ := sup(ω,t)‖θθθ(ω, t)‖ < +∞.

We shall always suppose that an investor starts with a fixed non-random initial wealth x0 > 0
and follows a self-financed strategy, investing at each instant t ∈ [0, T ] a monetary amount
πn(t) in the n-th stock such that the RN -valued process πππ = {πππ(t); t ∈ [0, T ]} (for πππ(t) :=
(π1(t), . . . , πN (t))) is a square-integrable portfolio process in the sense that πππ ∈ L2(W) for

L2(W) :=
{

ΛΛΛ : Ω× [0, T ]→ RN
∣∣ ΛΛΛ ∈ P? and E

∫ T

0

‖ΛΛΛ(t)‖2 dt <∞
}
. (2.3)

The wealth process Xπππ = {Xπππ(t); t ∈ [0, T ]} corresponding to a portfolio process πππ ∈ L2(W) is
the continuous, {Ft}-adapted, scalar-valued process given by the wealth equation

dXπππ(t) =
(
r(t)Xπππ(t) + πππ>(t)σσσ(t)θθθ(t)

)
dt+ πππ>(t)σσσ(t) dW(t), Xπππ(0) = x0. (2.4)

In order to define the problem of quadratic minimization addressed in this work we postulate:

Condition 2.7. We are given (i) the closed convex portfolio constraint set K ⊂ RN with 0 ∈ K;
(ii) FT -measurable random variables A and B on (Ω,F ,P) such that B is square-integrable and
0 < inf

ω∈Ω
{A(ω)} ≤ sup

ω∈Ω
{A(ω)} <∞.
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From now on it will always be supposed without specific mention that Conditions 2.1, 2.3, 2.4
and 2.7 are in force. No further conditions besides these will be introduced until the examples
of Section 5, when these conditions will be appropriately strengthened (see Conditions 5.3 and
5.12, which pertain to Examples 5.2 and 5.11 respectively). Now define the risk measure J(ω, x),
set of admissible portfolios A, and primal value V by

J(ω, x) :=
1
2

[A(ω)x2 + 2B(ω)x], for all (ω, x) ∈ Ω× R, (2.5)

A := {πππ ∈ L2(W)
∣∣πππ(ω, t) ∈ K for (P⊗ Leb)-almost all (ω, t) ∈ Ω× [0, T ]}, (2.6)

V := inf
πππ∈A
{E (J(Xπππ(T )))}. (2.7)

Remark 2.8. It is clear from Condition 2.7 and Condition 2.4 that −∞ < V <∞. The problem
of quadratic minimization is then to

determine and characterize some π̄ππ ∈ A such that V = E
(
J(Xπ̄ππ(T ))

)
. (2.8)

Our goal is therefore to establish existence of an “optimal portfolio” π̄ππ and characterize its
dependence on the market coefficients {r(t)}, {b(t)} and {σσσ(t)}, and the filtration {Ft}.

The problems of mean-square hedging and mean-variance portfolio selection fit within the
framework of problem (2.8). This is discussed further at Remark 4.14.

3 Canonical martingales and martingale representation

In this section we define the canonical martingales {Mij(t)}i 6=j for the Markov chain α (re-
call Condition 2.1), and introduce some spaces of integrand processes which are needed for a
martingale representation theorem for the filtration (2.1).

3.1 The canonical martingales of the Markov chain

Denoting by χ the zero-one indicator function, for each i, j = 1, . . . , D, i 6= j, define

[Mij ](t) :=
∑

0<s≤t

χ[α(s−) = i]χ[α(s) = j], 〈Mij〉(t) :=
∫ t

0

gijχ[α(s−) = i] ds, (3.1)

Mij(t) := [Mij ](t)− 〈Mij〉(t), ∀t ∈ [0, T ]. (3.2)

From Condition 2.1 and Rogers and Williams (2006, Lemma IV.21.12) it follows that Mij is a
square-integrable purely-discontinuous {Ft}-martingale with optional and predictable quadratic
variations given by [Mij ] and 〈Mij〉 respectively. Notice that [Mij ](t) counts the number of jumps
of α from states i to j over the interval [0, t], from which it follows that (∆Mij)(∆Mpq) = 0 when
(i, j) 6= (p, q). We then get the following orthogonality relations from the definition of optional
quadratic covariation (see Liptser and Shiryayev (1989, Section 1.8)):

(i)[Wn,Wk] = 0 when k 6= n; (ii)[Mij ,Wn] = 0; (iii)[Mij ,Mpq] = 0 when (i, j) 6= (p, q).
(3.3)

Remark 3.1. For notational convenience put Mii := 0, for each i = 1, . . . , D. Then for any appro-
priately integrable process f = (fij)Di,j=1 we can (and always shall) write

∑D
i,j=1

∫ t
0
fij(s) dMij(s)

instead of the more cumbersome
∑D
i,j=1
i 6=j

∫ t
0
fij(s) dMij(s).
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For later use define the Doléans measure ν[Mij ] on the measurable space (Ω× [0, T ],P?) by

ν[Mij ][A] := E
∫ T

0

χA(ω, t) d[Mij ](t), ∀A ∈ P?, ∀i 6= j.

Notation 3.2. For RD×D-valued processes f := (fij)Di,j=1, h := (hij)Di,j=1 on the set Ω× [0, T ],
we mean by f = h, ν[M ]-a.e., that fij = hij , ν[Mij ]-a.e. for each i, j = 1, 2, . . . D with i 6= j.

3.2 Spaces of integrands and a martingale representation theorem

Recalling Remark 2.2 and L2(W) (see (2.3)) let

L21 :=
{

Υ : Ω× [0, T ]→ R
∣∣ Υ ∈ P? and E

(∫ T

0

|Υ(t)|dt

)2

<∞
}
, (3.4)

L2(M) :=
{

ΓΓΓ = {Γij}Di,j=1 : Ω× [0, T ]→ RD×D
∣∣Γii = 0, (P⊗ Leb)-a.e., Γij ∈ P?,

and E
∫ T

0

|Γij(t)|2 d[Mij ](t) <∞, ∀ i, j ∈ I, i 6= j

}
,

(3.5)

A := R× L21 × L2(W), B := R× L21 × L2(W)× L2(M). (3.6)

Remark 3.3. We write Y = (Y0,ΥY ,ΛΛΛY ,ΓΓΓY ) ∈ B (or Y ∈ B for short) to indicate that Y =
{(Y (t),Ft); t ∈ [0, T ]} is an R-valued cadlag semimartingale of the form

Y (t) := Y0 +
∫ t

0

ΥY (s) ds+
N∑
n=1

∫ t

0

ΛYn (s) dWn(s) +
D∑

i,j=1

∫ t

0

ΓYij(s) dMij(s), (3.7)

for some quadruple (Y0,ΥY ,ΛΛΛY ,ΓΓΓY ) ∈ R× L21 × L2(W)× L2(M). It follows from the orthog-
onality relations (3.3) that the integrands ΥY ∈ L21 and ΛΛΛY ∈ L2(W) are uniquely determined
(P ⊗ Leb)-a.e. on Ω × [0, T ] and the integrand ΓΓΓY ∈ L2(M) is uniquely determined ν[M ]-a.e.
on Ω × [0, T ] (see Notation 3.2). Furthermore, an easy application of Doob’s L2-inequality
shows that E

(
supt∈[0,T ]|Y (t)|2

)
< ∞, for all Y ∈ B. In exactly the same way the notation

X = (X0,ΥX ,ΛΛΛX) ∈ A (or X ∈ A for short) indicates that X = {(X(t),Ft); t ∈ [0, T ]} is an
R-valued Itô process of the form

X(t) := X0 +
∫ t

0

ΥX(s) ds+
N∑
n=1

∫ t

0

ΛXn (s) dWn(s), (3.8)

for some (P ⊗ Leb)-a.e. unique integrands ΥX ∈ L21 and ΛΛΛX ∈ L2(W). Effectively, A is the
vector subspace of continuous processes in B.

The next proposition is immediate from Remark 3.3, (2.4) and (2.3):

Proposition 3.4. One has Xπππ ≡ (x0, rX
πππ + πππ>σσσθθθ,σσσ>πππ) ∈ A for each πππ ∈ L2(W).

Notation 3.5. For a process H and {Ft}-stopping time S, put H[0, S](ω, t) := H(ω, t) when
t ∈ [0, S(ω)], and H[0, S](ω, t) := 0 when t > S(ω).

Notation 3.6. S(m) ⇑ T indicates that (S(m))m∈N is a sequence 0 ≤ S(m) ≤ S(m+1) ≤ T of
{Ft}-stopping times and for each ω there is an integer M(ω) such that S(m)(ω) = T for all
m ≥M(ω).
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Remark 3.7. The preceding notion of increasing stopping times ensures that the end-point T of
the interval of trade [0, T ] is included in the localization, and rules out the possibility that the
Sm are all strictly less than T (i.e. Sm < T ) for all m = 1, 2, . . . Increasing sequences of stopping
times in the sense of Notation 3.6 occur quite naturally in later arguments.

Recalling (3.5) and (2.3), define the spaces of integrands

L2
loc(W) :=

{
λλλ : Ω× [0, T ]→ RN

∣∣there exists a sequence of {Ft}-stopping times

(S(m))m∈N such that S(m) ⇑ T and λλλ[0, S(m)] ∈ L2(W) for all m ∈ N
}
,

L2
loc(M) :=

{
γγγ = {γij}Di,j=1 : Ω× [0, T ]→ RD×D

∣∣there exists a sequence

of {Ft}-stopping times (S(m))m∈N such that S(m) ⇑ T and

γγγ[0, S(m)] ∈ L2(M) for all m ∈ N
}
.

Definition 3.8. The R-valued process {Z(t); t ∈ [0, T ]} is a locally-square integrable {Ft}-
martingale when there exists a sequence of {Ft}-stopping times (S(m))m∈N such that S(m) ⇑ T
and {Z(t ∧ S(m)); t ∈ [0, T ]} is a square integrable {Ft}-martingale for each m ∈ N.

To see that the stopping time convergence at Notation 3.6 and Definition 3.8 is reasonable
suppose that {Z(t); t ∈ [0,∞)} is a locally-square integrable martingale; then there is a localizing
sequence (σ(m))m∈N of {Ft}-stopping times, and in particular σ(m)(ω) ↑ ∞ for each ω. Now put
S(m) := σ(m) ∧ T ; then S(m) ⇑ T (in the sense of Notation 3.6) and the sequence (S(m))m∈N
localizes {Z(t); t ∈ [0, T ]} in the sense of Definition 3.8.

We shall need the following martingale representation theorem:

Proposition 3.9. Suppose that {Z(t); t ∈ [0, T ]} is a locally-square integrable {Ft}-martingale
(see Definition 3.8) and null at the origin. Then there exist processes ΛΛΛ = (Λ1, . . . ,ΛN )> ∈
L2

loc(W) and ΓΓΓ = (Γij)
D
i,j=1 ∈ L

2
loc(M) such that Z has the stochastic integral representation

Z(t) =
N∑
n=1

∫ t

0

Λn(s) dWn(s) +
D∑

i,j=1

∫ t

0

Γij(s) dMij(s), for all t ∈ [0, T ], a.s. (3.9)

In view of the orthogonality relations (3.3) the integrands ΛΛΛ and ΓΓΓ at (3.9) are (P⊗Leb)-a.e.
unique and ν[M ]-a.e. unique respectively.

Proposition 3.9 follows from Elliott (1976, Theorem 5.1), but can also be easily obtained
from Jacod and Shiryaev (1987, III(4.36)). Indeed, put E := {(i, j) ∈ I × I : i 6= j} and let E
denote the collection of all subsets of the finite set E. Define the integer-valued random measure
µ(ω,A × B) :=

∑
(i,j)∈B

∫
A

[Mij ](ω, ds) for all ω ∈ Ω, A ∈ B[0, T ], and B ∈ E . Then it is
easily checked that µ is an E-valued multivariate point process (see Jacod and Shiryaev (1987,
III(1.23))) and the filtration Fαt := σ{α(s), s ∈ [0, t]}∨N (P) satisfies Jacod and Shiryaev (1987,
III(1.25)) (with H := σ{α(0)} = {∅,Ω}, where the equality follows from Condition 2.1). It then
follows from Jacod and Shiryaev (1987, III(4.36)), together with (3.2), that each {Fαt }-local
martingale Z with Z(0) = 0, is given by

Z(t) =
∑

(i,j)∈E

∫ t

0

Γij(s) dMij(s), for all t ∈ [0, T ], a.s. (3.10)
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for some {Fαt }-predictable integrand processes Γij . In the case where Z is a {Ft}-local martingale
(see (2.1)), we can use the main result of Xue (1993, Theorem on pages 226-227) to combine
the martingale representation at (3.10) (for the filtration {Fαt }) with the classical Itô martingale
representation (for the filtration of the Brownian motion WWW ) to get the representation at (3.9)
for {Ft}-predictable integrands Λn and Γij (recall Remark 3.1). Finally, when Z is also locally
square-integrable, the localization of the integrands Wn and Γij at (3.9) to the spaces L2

loc(W)
and L2

loc(M) is immediate from the Itô isometry and the orthogonality at (3.3).

4 Application of convex duality

In this section we use convex duality on problem (2.8). The main steps are (a) re-write (2.8)
as a “Bolza problem”; (b) synthesize a dual problem and optimality relations; and (c) use the
optimality relations to construct an optimal portfolio. Each step is now dealt with in detail.

4.1 Re-write (2.8) in calculus-of-variations form (a “Bolza problem”)

Motivated by Labbé and Heunis (2007) we re-formulate (2.8) as a “Bolza problem” which amounts
to the minimization of a functional over the vector space A of Itô processes (see Remark 3.3).
The advantage of this re-formulation is that it lends itself to the synthesis of a dual problem and
optimality relations by elementary convex analysis. To this end, and recalling (2.6) and Remark
3.3, for each X ≡ (X0,ΥX ,ΛΛΛX) ∈ A define

U(X) :=
{
πππ ∈ A |ΥX(t) = r(t)X(t) + πππ>(t)σσσ(t)θθθ(t), (P⊗ Leb)-a.e.

and ΛΛΛX(t) = σσσ>(t)πππ(t), (P⊗ Leb)-a.e.
}
.

(4.1)

It follows from (2.4) that, for each X ≡ (X0,ΥX ,ΛΛΛX) ∈ A, one has X = Xπππ, (P⊗ Leb)-a.e. for
some πππ ∈ A if and only if X0 = x0 and U(X) 6= ∅. Then, from (2.7), we get

V = inf
X∈A,
X0=x0,
U(X)6=∅

{E (J(X(T )))}. (4.2)

We next define “infinite” penalty functions to remove the constraints under the infimum above,
so that the minimization is over all of A. For the initial wealth constraint X0 = x0 define

l0(x) :=
{

0 if x = x0

∞ otherwise, ∀x ∈ R. (4.3)

For the path constraint U(X) 6= ∅ at (4.2), observe from Remark 2.5 and (4.1) that

U(X) 6= ∅ ⇐⇒ ΥX = rX +
(
ΛΛΛX
)>
θθθ and (σσσ>)−1ΛΛΛX ∈ K, (P⊗ Leb)-a.e. (4.4)

for each X ≡ (X0,ΥX ,ΛΛΛX) ∈ A (to get ⇐= at (4.4) observe that (σσσ>)−1ΛΛΛX is necessarily a
member of L2(W), as follows Motivated by (4.4) define

L(ω, t, x, ν,λλλ) :=
{

0 if ν = r(ω, t)x+ λλλ>θθθ(ω, t) and (σσσ>(ω, t))−1λλλ ∈ K
∞ otherwise, (4.5)

for all (ω, t, x, ν,λλλ) ∈ Ω × [0, T ] × R × R × RN . For X ≡ (X0,ΥX ,ΛΛΛX) ∈ A it is clear that
L(t,X(t),ΥX(t),ΛΛΛX(t)) is P?-measurable in (ω, t), and hence from (4.5) and (4.4) we get

E
∫ T

0

L(t,X(t),ΥX(t),ΛΛΛX(t)) dt =
{

0 if U(X) 6= ∅
∞ otherwise, (4.6)
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for each X ≡ (X0,ΥX ,ΛΛΛX) ∈ A. Now define the functional Φ : A→ (−∞,+∞] as

Φ(X) := l0(X0) + E
∫ T

0

L(t,X(t),ΥX(t),ΛΛΛX(t)) dt+ E (J(X(T ))) , (4.7)

for all X ≡ (X0,ΥX ,ΛΛΛX) ∈ A. Upon combining (4.2), (4.3), (4.6) and (4.7), we get that
V = inf

X∈A
{Φ(X)} (recall (2.7)), and can introduce the following “Bolza problem”:

determine some X̄ ≡ (X̄0,ΥX̄ ,ΛΛΛX̄) ∈ A such that Φ(X̄) = inf
X∈A
{Φ(X)} = V. (4.8)

Remark 4.1. Suppose that X̄ ≡ (X̄0,ΥX̄ ,ΛΛΛX̄) ∈ A is a solution of (4.8), i.e. (i) Φ(X̄) = V < +∞
(see Remark 2.8). Then the first and second terms on the right side of (4.7) must be zero (since
these take values in the two-point set {0,∞}), that is (ii) E(J(X̄(T ))) = Φ(X̄) and (iii) X̄0 = x0

(see (4.3)). Later (in Section 4.3) we shall construct an RN -valued process π̄̄π̄π ∈ A such that
X̄ = Xπ̄̄π̄π (see (2.4)). Then, from (i) and (ii), we obtain (iv) E(J(Xπ̄ππ(T ))) = V, that is π̄ππ is
an optimal portfolio for (2.8). Our immediate goal is to characterize a solution X̄ ∈ A of (4.8)
through conjugate duality. We address this in the following section.

4.2 Synthesis of a dual problem and optimality relations

We synthesize the cost functional of a problem which is dual to (4.8). Motivated by Bismut
(1973, see especially eqns. (2.1) and (2.2)) we first calculate “pointwise” convex conjugates of
the risk measure (see (2.5)) and the penalty functions (see (4.3) and (4.5)), namely

mT (ω, y) := J?(ω,−y) := sup
x∈R
{x(−y)− J(ω, x)} =

1
2A(ω)

(y +B(ω))2
, (4.9)

m0(y) := l?0(y) := sup
x∈R
{xy − l0(x)} = x0y, (4.10)

M(ω, t, y, s, ξξξ) := L?(ω, t, s, y, ξξξ) := sup
x,ν∈R
λλλ∈RN

{
xs+ νy + λλλ>ξξξ − L(ω, t, x, ν,λλλ)

}
, (4.11)

for all ω ∈ Ω, y, s ∈ R and ξξξ ∈ RN (here we used (2.5) and (4.3) to calculate the explicit
expressions on the right of (4.9) and (4.10) respectively). The conjugate at (4.11) is also easily
calculated using (4.5) to yield

M(ω, t, y, s, ξξξ) =
{
δ (−σσσ(ω, t)[θθθ(ω, t)y + ξξξ]) if s+ r(ω, t)y = 0
∞ otherwise, (4.12)

for all ω ∈ Ω, y, s ∈ R and ξξξ ∈ RN , in which (recalling Condition 2.7(i))

δ(z) := sup
πππ∈K

{
−πππ>z

}
, ∀z ∈ RN . (4.13)

For each semimartingale Y ≡ (Y0,ΥY ,ΛΛΛY ,ΓΓΓY ) ∈ B (recall Remark 3.3) define

Ψ(Y ) := m0(Y0) + E
∫ T

0

M(t, Y (t),ΥY (t),ΛΛΛY (t)) dt+ E (mT (Y (T ))) , (4.14)

ΘΘΘY (t) := −σσσ(t)
(
θθθ(t)Y (t) + ΛΛΛY (t)

)
, ∀t ∈ [0, T ]. (4.15)
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The functional δ(·) is nonnegative (since 000 ∈ K from Condition 2.7(i)) and lower semi-continuous
on RN ; it then follows from (4.12) that M(t, Y (t),ΥY (t),ΛΛΛY (t),ΓΓΓY (t)) is P?-measurable for each
Y ≡ (Y0,ΥY ,ΛΛΛY ,ΓΓΓY ) ∈ B and the second term on the right of (4.14) is defined. Notice that
Ψ(Y ) exists in (−∞,∞] for each Y ∈ B. We can now introduce the following dual problem:

determine some Ȳ ∈ B such that Ψ(Ȳ ) = inf
Y ∈B
{Ψ(Y )}, (4.16)

in which Ψ(·) is called the dual functional and Ȳ is dubbed a dual solution.
Observe that, contrary to what one might expect from calculus-of-variations, the second

term on the right side of (4.14) (i.e. the “Lagrange term”) does not depend explicitly on the
dMij(s)-integrands ΓYij in the integral representation at (3.7). This is because the primal variable
X ≡ (X0,ΥX ,ΛΛΛX) ∈ A does not include dMij(s)-integrands which can be paired with the ΓYij .

We next show that the functionals Φ(·) and Ψ(·) are related by a weak duality principle and
establish optimality relations which give necessary and sufficient conditions for a pair (X̄, Ȳ ) ∈
A×B to be solutions of the problems (4.8) and (4.16) with zero “duality gap”. See Appendix A
for the proof.

Proposition 4.2. Recall (3.6), Remark 3.3, (4.1), (4.7), and (4.13) - (4.15). Then

Φ(X) + Ψ(Y ) ≥ 0, for all (X,Y ) ∈ A× B. (4.17)

Moreover, for each X̄ ≡ (X̄0,ΥX̄ ,ΛΛΛX̄) ∈ A and Ȳ ≡ (Ȳ0,ΥȲ ,ΛΛΛȲ ,ΓΓΓȲ ) ∈ B, we have

Φ(X̄) + Ψ(Ȳ ) = 0 (4.18)

if and only if
Φ(X̄) = inf

X∈A
{Φ(X)} = sup

Y ∈B
{−Ψ(Y )} = −Ψ(Ȳ ) (4.19)

if and only if the following optimality relations (4.20) - (4.22) are satisfied:

(i) X̄0 = x0 and (ii) X̄(T ) = − 1
A

(
Ȳ (T ) +B

)
, a.s. (4.20)

ΥȲ (t) + r(t)Ȳ (t) = 0, (P⊗ Leb)-a.e. (4.21)

(i) δ(ΘΘΘȲ (t)) + π̄ππ>(t)ΘΘΘȲ (t) = 0, (P⊗ Leb)-a.e. and (ii) π̄ππ ∈ U(X̄),
in which (iii) π̄ππ(t) := (σσσ>(t))−1ΛΛΛX̄(t). (4.22)

Remark 4.3. Proposition 4.2 states a logical equivalence between the assertions (4.18), (4.19),
and (4.20) - (4.22), for each and every (X̄, Ȳ ) ∈ A × B; the equivalence therefore holds even
when Ȳ is postulated a priori to be a member of A ⊂ B, that is we put ΓΓΓȲ = 000 (recall Remark
3.3). In this case the equivalence resembles that given by Labbé and Heunis (2007, Proposition
5.3). One may reasonably question why the proposition is stated with the hypothesis Ȳ ∈ B
instead of just Ȳ ∈ A. The information filtration {Ft} at (2.1) is determined jointly by the
Brownian motion {WWW (t)} and the Markov process {α(t)} (not just by {WWW (t)} alone, as in Labbé
and Heunis (2007)) and consequently there is no guarantee that there exist pairs (X̄, Ȳ ) in the
smaller space A× A which even satisfy (4.20) - (4.22). In fact, in the course of establishing the
main result of the present section (see Theorem 4.13 to follow) we shall construct a pair (X̄, Ȳ )
in the larger space A× B which satisfies (4.20) - (4.22), for which the integrand ΓΓΓȲ ∈ L2(M) in
the expansion Ȳ ≡ (Ȳ0,ΥȲ ,ΛΛΛȲ ,ΓΓΓȲ ) ∈ B (recall Remark 3.3) is necessarily non-trivial. Similarly,
in the concrete examples of Section 5, non-trivial integrands ΓΓΓȲ ∈ L2(M) necessarily arise in the
construction of pairs (X̄, Ȳ ) satisfying relations (4.20) - (4.22) (see Remark 5.17 which follows).
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Remark 4.4. Problem (2.8) involves formally the same portfolio constraint and wealth-dynamics
as are found in the problem addressed in Labbé and Heunis (2007), but incorporates the further
element of regime-switching (see Condition 2.1). The basic dual variables in Labbé and Heunis
(2007) are triplets Y ≡ (Y0,ΥY ,ΛΛΛY ) ∈ A (see (3.6)) of Lagrange multipliers, which collectively
“enforce” the portfolio and wealth-dynamics constraints, whereas the basic dual variables in the
present work are quadruples Y ≡ (Y0,ΥY ,ΛΛΛY ,ΓΓΓY ) ∈ B (recall Remark 3.3). If one regards the
regime-state Markov process α as an “asset”, then it follows from the wealth equation (2.4) that
direct trade in this “asset” is prohibited (that is α is a “non-tradeable asset”), which constitutes
a further portfolio constraint introduced by the regime-switching. The Lagrange multiplier for
this additional constraint is precisely the fourth element ΓΓΓY ∈ L2(M) (recall (3.5)) in the dual
variables quadruple Y ≡ (Y0,ΥY ,ΛΛΛY ,ΓΓΓY ) ∈ B, the remaining three elements (Y0,ΥY ,ΛΛΛY ) serv-
ing as the Lagrange multipliers for the portfolio and wealth-dynamics constraints exactly as in
Labbé and Heunis (2007). See Remark 5.17 for further discussion on this.
Remark 4.5. The formulation of problem (2.8) in the calculus-of-variations form of (4.8) (i.e. to
minimize the functional at (4.7) over the space of Itô-processes A at (3.6)), and the synthesis of
the dual functional at (4.14) in terms of the convex conjugates (4.9) - (4.11), is motivated by
Bismut (1973). It remains an interesting and challenging problem to introduce convex portfolio
constraints into the (unconstrained) quadratic minimization problems in incomplete semimartin-
gale market models studied by Hou and Karatzas (2004) and Xia and Yan (2006), and extend
the conjugate duality results in these works to include such constraints.

We next establish existence of a solution of the dual problem (4.16). From (4.21) of Propo-
sition 4.2, one sees that a solution Ȳ ∈ B must satisfy ΥȲ (t) = −r(t)Ȳ (t), (P⊗ Leb)-a.e. In the
search for dual solutions we therefore restrict attention to the space B1 ⊂ B given by

B1 :=
{
Y ≡ (Y0,ΥY ,ΛΛΛY ,ΓΓΓY ) ∈ B |ΥY (t) = −r(t)Y (t), (P⊗ Leb)-a.e.

}
. (4.23)

Define the R-valued processes {β(t); t ∈ [0, T ]} and {Ξ(y,λλλ,γγγ)(t); t ∈ [0, T ]} (for (y,λλλ,γγγ) ∈
R× L2(W)× L2(M)) as follows:

β(t) := exp
{
−
∫ t

0

r(s) ds
}
, (4.24)

Ξ(y,λλλ,γγγ)(t) := β(t)

y +
∫ t

0

β−1(s)λλλ>(s) dW(s) +
D∑

i,j=1

∫ t

0

β−1(s)γij(s) dMij(s)

 . (4.25)

Elementary properties of the set B1 and the mapping Ξ are summarized in the next proposition.
The proof is a routine application of Itô’s formula and is omitted.

Proposition 4.6. Put SSS := R×L2(W)×L2(M), and recall (2.3), (3.5) and Remark 3.3. Then
(a) B1 is a real linear space;
(b) Ξ(y,λλλ,γγγ) ∈ B1 for all (y,λλλ,γγγ) ∈ SSS, and Ξ : SSS → B1 is a linear bijection;
(c) if Y := Ξ(y,λλλ,γγγ) for some (y,λλλ,γγγ) ∈ SSS then Y0 = y, ΥY = −rY , ΛΛΛY = λλλ, ΓΓΓY = γγγ.

Remark 4.7. When Y ∈ B \ B1 then (P⊗ Leb){(ω, t) : ΥY (ω, t) 6= −r(ω, t)Y (ω, t)} > 0, so that
Ψ(Y ) = +∞ (recall (4.12) and (4.14)). From this observation, together with Proposition 4.6(b),
we obtain infY ∈B {Ψ(Y )} = infY ∈B1 {Ψ(Y )} = inf(y,λλλ,γγγ)∈SSS Ψ̃(y,λλλ,γγγ), in which we have defined
(i) Ψ̃(y,λλλ,γγγ) := Ψ(Ξ(y,λλλ,γγγ)) for each (y,λλλ,γγγ) ∈ SSS. For Y := Ξ(y,λλλ,γγγ) one sees from (4.12) and
(4.15) that M(t, Y (t),ΥY (t),ΛΛΛY (t)) = δ(ΘΘΘY (t)), thus, from (4.9), (4.10) and (4.14) we get

Ψ̃(y,λλλ,γγγ) = x0y + E
∫ T

0

δ(ΘΘΘΞ(y,λλλ,γγγ)(t)) dt+ E
(

1
2A

[Ξ(y,λλλ,γγγ)(T ) +B]2
)
, (4.26)



CONVEX DUALITY 11

for each (y,λλλ,γγγ) ∈ SSS, in which (see (4.15) and Proposition 4.6(c))

ΘΘΘΞ(y,λλλ,γγγ)(t) = −σσσ(t)[θθθ(t)Ξ(y,λλλ,γγγ)(t) + λλλ(t)], for all (y,λλλ,γγγ) ∈ SSS. (4.27)

The next result, the proof of which is given in Appendix A, establishes existence of a solution
of the dual problem at (4.16):

Proposition 4.8. There exists some (ȳ, λ̄λλ, γ̄γγ) ∈ SSS such that Ψ̃(ȳ, λ̄λλ, γ̄γγ) = inf(y,λλλ,γγγ)∈SSS{Ψ̃(y,λλλ,γγγ)}
(recall Remark 4.7(i)), and Ȳ := Ξ(ȳ, λ̄λλ, γ̄γγ) ∈ B1 (see Proposition 4.6(b)) solves problem (4.16).

4.3 Construction of an optimal portfolio

Remark 4.9. The goal of this section is to construct some X̄ = (X̄0,ΥX̄ ,ΛΛΛX̄) ∈ A (recall Remark
3.3) in terms of the solution Ȳ = (Ȳ0,ΥȲ ,ΛΛΛȲ ,ΓΓΓȲ ) ∈ B1 of the dual problem (4.16) given by
Proposition 4.8 such that the pair (X̄, Ȳ ) ∈ A× B satisfies the relations (4.20) - (4.22). It then
follows from Proposition 4.2 that (4.19) holds, in particular X̄ ∈ A is a solution of (4.8). Since
Ȳ ∈ B1 (recall (4.23)) the condition (4.21) is already satisfied, so it really remains to construct
X̄ ∈ A such that (4.20) and (4.22) hold. We shall also construct some π̄̄π̄π ∈ A such that X̄ = Xπ̄̄π̄π;
in view of Remark 4.1 this gives an optimal portfolio for the problem (2.8).

Recalling (4.24) and Remark 2.6, define the state price density process

H(t) := β(t)E (−θθθ •W) (t), ∀t ∈ [0, T ], (4.28)

in which the notation E (Z) (t) := exp{Z(t)−1/2〈Z〉(t)} indicates the exponential of a continuous
local martingale Z and ‘•’ denotes stochastic integration.
Remark 4.10. Since r and θθθ are uniformly bounded (see Condition 2.4 and Remark 2.6) it easily
follows from (4.28) that E[supt∈[0,T ]|H(t)|p] < ∞ for each p ∈ R. Moreover, expanding (4.28)
by Itô’s formula gives dH(t) = −r(t)H(t) dt−H(t)θθθ>(t) dW(t), so that (recalling Remark 3.3)
one has ΥH := −rH ∈ L21 and ΛH := −Hθθθ ∈ L2(W); in particular H = (1,−rH,−Hθθθ) ∈ A.

To get some idea of how to define a candidate X̄ which attains the goals set forth in Remark
4.9 suppose that X̄ ∈ A actually satisfies (4.22)(ii). Then, from (4.1), it follows that X̄ =
(X̄0, rX̄ + π̄̄π̄π>σσσθθθ,σσσ>π̄̄π̄π,000) ∈ B, and of course H = (1,−rH,−Hθθθ,000) ∈ B. From Proposition A.1
we then see that M(X̄,H)(t) = X̄(t)H(t)−X̄(0) and {(X̄(t)H(t),Ft); t ∈ [0, T ]} is a martingale.
In conjunction with (4.20)(ii), this motivates the following definition of X̄:

X̄(t) := −H−1(t)E
(

1
A

(
Ȳ (T ) +B

)
H(T )

∣∣∣∣Ft) , a.s., ∀t ∈ [0, T ]. (4.29)

Since Ȳ (T ) is square-integrable (from Ȳ ∈ B and Remark 3.3), and A and B are sub-
ject to Condition 2.7(ii), it follows from the square-integrability of H (see Remark 4.10) that
(1/A)

(
Ȳ (T ) +B

)
H(T ) is integrable, so that the conditional expectation at (4.29) exists. The

next proposition, the proof of which is given in Appendix A, establishes square-integrability
properties of the process X̄:

Proposition 4.11. Recall (4.28) and (4.29). Then E[supt∈[0,T ]|X̄(t)|2] < ∞ and the process
{(X̄(t)H(t),Ft); t ∈ [0, T ]} is a locally square-integrable martingale (see Definition 3.8).

In view of Proposition 4.11 and Proposition 3.9, there are integrands ΛΛΛX̄H ∈ L2
loc(W) and

ΓΓΓX̄H ∈ L2
loc(M) such that X̄H has the following representation for all t ∈ [0, T ]:

X̄(t)H(t) = X̄(0)H(0) +
N∑
n=1

∫ t

0

ΛX̄Hn (s) dWn(s) +
D∑

i,j=1

∫ t

0

ΓX̄Hij (s) dMij(s), a.s. (4.30)
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Setting ξ(t) := X̄(t)H(t) and using the integration-by-parts formula together with (4.30) and
(4.28), we can expand X̄(t) = ξ(t)H−1(t) to obtain

X̄(t) = X̄(0) +
∫ t

0

(
r(s)X̄(s−) + π̄ππ>(s)σσσ(s)θθθ(s)

)
ds+

∫ t

0

π̄ππ>(s)σσσ(s) dW(s)

+
D∑

i,j=1

∫ t

0

H−1(s) ΓX̄Hij (s) dMij(s),
(4.31)

in which we define
π̄ππ(t) := (σσσ>(t))−1

(
ΛΛΛX̄H(t)H−1(t) + X̄(t−)θθθ(t)

)
. (4.32)

From (4.32), one has π̄ππ ∈ P?. Moreover, from the uniform boundedness of σσσ and θθθ (recall
Remark 2.6), the continuity and strict positivity of the state price density process H, the
square-integrability of X̄ (see Proposition 4.11), and ΛΛΛX̄H ∈ L2

loc(W), one easily sees that∫ T
0
‖π̄ππ(t)‖2 dt <∞, a.s. so that the integrals on the right of (4.31) are defined. The next result,

proved in Appendix A, establishes that the {Ft}-semimartingale at (4.31) is a member of the
space B (see (3.6) and Remark 3.3) and the process {πππ(t)} is square-integrable:

Proposition 4.12. Recall (2.3), (4.29), (4.31), and (4.32). Then π̄ππ ∈ L2(W) and

X̄ ≡ (X̄(0), rX̄− + π̄ππ>σσσθθθ,σσσ>π̄ππ,ΓΓΓX̄HH−1) ∈ B. (4.33)

The main result of the present section follows next (see Appendix A for the proof):

Theorem 4.13. Define the R-valued process X̄ as at (4.29) (in terms of the dual solution Ȳ
given by Proposition 4.8, the strictly positive state price density H at (4.28), the filtration {Ft}
at (2.1), and the FT -measurable random variables A and B specified by Condition 2.7), and
define the RN -valued process π̄̄π̄π as at (4.32) (in terms of the process X̄ and the dW-integrand
ΛΛΛX̄H given by the martingale representation theorem at (4.30)). Then

(a) X̄ ∈ A (in particular ΓΓΓX̄H = 000, ν[M ]-a.e. in the expansion (4.30) - recall Notation 3.2);
(b) the pair (X̄, Ȳ ) ∈ A× B satisfies (4.20) - (4.22);
(c) π̄̄π̄π ∈ A (see (2.6)), X̄ = Xπ̄ππ (see (2.4)) and

E[J(Xπ̄̄π̄π(T ))] = inf
πππ∈A

E[J(Xπππ(T ))] = sup
Y ∈B
{−Ψ(Y )} = −Ψ(Ȳ ). (4.34)

In particular π̄̄π̄π defined at (4.32) is optimal for the quadratic minimization problem (2.8).

Theorem 4.13 establishes the optimal portfolio π̄̄π̄π for (2.8) in terms of the {Ft}-predictable
process ΛΛΛX̄H given by the {Ft}-martingale representation theorem (see (4.30) and recall (2.1)).
Notice that this optimal portfolio is similar in form to that given by Labbé and Heunis (2007,
Proposition 5.6) except that in place of the integrand ΛΛΛX̄H at (4.32) one has an integrand ψψψ
given by the classical Itô martingale representation theorem for the Brownian filtration of W
only; this difference of course reflects the role of the regime-state Markov process α.

Remark 4.14. The quadratic minimization problem (2.8) includes the case of mean-square hedg-
ing, namely minimizing the mean-square discrepancy E

[
|Xπ(T )− C|2

]
of the wealth Xπ(T ) at

close of trade from a specified square-integrable contingent claim C. The problem of mean-
variance portfolio selection also falls within the scope of problem (2.8). The goal is to minimize
the variance var(Xπ(T )) over portfolios π ∈ A subject to the additional constraint EXπ(T ) = d
for some specified d ∈ R, that is admissible portfolios which also attain the specified expected
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wealth d at close of trade. By introducing a scalar Lagrange multiplier for the constraint on
the expected wealth at close of trade one reduces the problem to the form of (2.8) in which
the coefficients A and B in the quadratic loss function (2.5) are constants. This was worked
out in Labbé and Heunis (2007, Section 6)) for general convex portfolio constraints but without
regime-switching. With the essential saddle-point relation (4.34) at hand, the calculation for the
regime-switching case is completely identical and is not given here.

5 Examples

Remark 5.1. In this section, we study two special cases of problem (2.8) in which Conditions
2.4 and 2.7 are appropriately strengthened. In return for these stronger conditions, we can use
the results on convex duality from Section 4 to get explicit portfolios in “feedback form” on the
current (or instantaneous) wealth. With N (P) as at (2.1), define the filtration of the regime-state
Markov process α, namely

Fαt := σ{α(s), s ∈ [0, t]} ∨ N (P), t ∈ [0, T ]. (5.1)

Example 5.2. For this example we shall strengthen the basic conditions of Section 2 as follows:

Condition 5.3. Conditions 2.1, 2.3, 2.4 and 2.7 hold but are supplemented as follows: (i)
the processes {r(t)}, {bn(t)} and {σnm(t)} are specifically {Fαt }-predictable (instead of just
{Ft}-predictable, as in Condition 2.4); (ii) the coefficients A and B in (2.5) are non-random
constants with A > 0 (this strengthens Condition 2.7(ii)); and (iii) the portfolio constraint set
K is specifically a vector subspace (this strengthens Condition 2.7(i)).

The vector subspace constraint set K can model trading restrictions such as prohibition
of investment in some designated stocks and/or maintaining the investment in two or more
designated stocks in a fixed ratio.
Remark 5.4. Zhou and Yin (2003) have addressed problem (2.8) with Condition 5.3 strengthened
to the case of no portfolio constraints (i.e. K := RN ), and with the {Fαt }-predictability of the
market parameters simplified to that of Markov-modulation, that is the market parameters are
determined on t ∈ [0, T ] in terms of the Markov process {α(t)} by

r(t) := r̃(t, α(t−)), bn(t) := b̃n(t, α(t−)), σnm(t) := σ̃nm(t, α(t−)), (5.2)

in which r̃(·, i), b̃n(·, i) and σ̃nm(·, i) are given R-valued uniformly bounded Borel-measurable
deterministic functions on [0, T ] for all i = 1, 2, . . . , D. The market parameters at instant t are
thus determined completely by the instantaneous value α(t−) of the Markov process, rather than
through the more general predictable dependence on the paths of α allowed by Condition 5.3
(the Markov-modulated case is discussed further at Remark 5.9).

Define the RN -valued process (see Remark 2.6)

ξξξ(t) := θθθ(t)− proj
[
θθθ(t)

∣∣∣∣σσσ−1(t)K̃
]
, t ∈ [0, T ], (5.3)

in which proj[z|C] is the uniquely defined projection of z ∈ RN onto a vector subspace C ⊂ RN ,
and K̃ := {z ∈ RN : z>ηηη ≥ 0 for all ηηη ∈ K} is the polar subspace of K.
Remark 5.5. From Condition 5.3 and Remark 2.6 one easily sees that the RN -valued process ξξξ at
(5.3) is uniformly bounded and {Fαt }-predictable. Moreover, from (5.3), ξξξ(t) and θθθ(t)− ξξξ(t) are
orthogonal, thus (i) ξξξ>(t)θθθ(t) = ‖ξξξ(t)‖2. Since K is a vector subspace we also have (ii) K̃ = K⊥

(the orthogonal complement of K), as well as the elementary identity (iii) (σσσ−1(t)K̃)⊥ = σσσ>(t)K.
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Problem (2.8) is addressed in Labbé and Heunis (2007, Example 6.2, page 94) in the case
where the market parameters are uniformly bounded and deterministic (this strengthens Con-
dition 5.3(i)), Condition 5.3(ii) holds, and the constraint set K is a closed convex cone. Under
these conditions, the optimal portfolio is obtained in feedback form (see Labbé and Heunis (2007,
eq. (6.25))); in the special case where the constraint set K is not only a closed convex cone but
a vector subspace, this optimal portfolio simplifies to the feedback form

π̄ππ(t) := −
(
X̄(t) +

B

A

β(T )
β(t)

)(
σσσ>(t)

)−1
ξξξ(t), for X̄ := Xπ̄̄π̄π, (5.4)

(recall (2.4) and (4.24)).

Remark 5.6. Suppose that B = 0 in the loss function (2.5). The portfolio at (5.4) is then

π̄ππ(t) := −X̄(t)
(
σσσ>(t)

)−1
ξξξ(t), for X̄ := Xπ̄̄π̄π, (5.5)

and (5.5) of course gives the optimal portfolio when the market parameters are deterministic.
Moreover, if we discard the assumption that the market parameters are deterministic, and sup-
pose that the market parameters satisfy Condition 5.3(i) (i.e. are {Fαt }-predictable) then it is
intuitively plausible that (5.5) still gives the optimal portfolio (when B = 0), that is one can
effectively “ignore” the randomness arising from α in the market parameters. The intuition at
work here is based on the notion of “totally unhedgeable coefficients” discussed by Karatzas
and Shreve (1998, Example 6.7.4): since the Brownian motion W in the price model (2.2) is
independent of the Markov process α (recall Condition 2.1), to whose filtration the market pa-
rameters are adapted (by Condition 5.3(i)), the risk that is inherent in the market parameters is
“undiversifiable” and should be “ignored” (see the discussion in Karatzas and Shreve (1998, page
306)). The practical significance of this is that the optimal portfolio at (5.5) for deterministic
market parameters and B = 0 should then extend immediately to random market parameters
which satisfy Condition 5.3(i). What happens when B 6= 0? In this case there is a decided
technical obstacle in the way of applying the intuition of totally unhedgeable coefficients to the
portfolio at (5.4), since, with a random interest rate r, the process {β(T )β−1(t), t ∈ [0, T ]}
cannot be {Ft}-adapted (see (4.24)), and therefore (5.4) does not even define a valid portfolio
process. Despite this, we shall nevertheless establish that the optimal portfolio for the problem
(2.8) subject to Condition 5.3 has a structure very similar to that of (5.4), namely it is given by

π̄ππ(t) := −
(
X̄(t) +

B

A
γ(t−)

)(
σσσ>(t)

)−1
ξξξ(t), for X̄ := Xπ̄̄π̄π, (5.6)

in which γ is an appropriate R-valued uniformly bounded cadlag and {Fαt }-adapted “offset” pro-
cess which will be constructed from the convex duality results of Section 4 (the “left-continuous
adjustment” in γ(t−) at (5.6) ensures the {Ft}-predictability of π̄ππ).

As a preliminary to the construction of an optimal portfolio in the form of (5.6), suppose we
apply the feedback at (5.6) to the wealth equation (2.4) when γ is just some arbitrary R-valued
uniformly bounded cadlag {Fαt }-adapted process. We obtain

dX̄(t) = r(t)X̄(t) dt−
(
X̄(t) +

B

A
γ(t−)

)
ξξξ>(t)θθθ(t) dt−

(
X̄(t) +

B

A
γ(t−)

)
ξξξ>(t) dW(t). (5.7)

Using Itô’s formula it is easy to establish that the unique solution of (5.7) is given by

X̄(t) = β−2(t)φ(t)Ĥ(t)
(
x0 −

B

A

∫ t

0

(βγ) (s−) dG(s)
)
, for all t ∈ [0, T ], (5.8)
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in which (βγ)(t) := β(t)γ(t), t ∈ [0, T ], and (recalling Remark 5.5(i))

φ(t) := exp
{
−
∫ t

0

ξξξ>(s)θθθ(s) ds
}

= exp
{
−
∫ t

0

‖ξξξ(s)‖2 ds
}
, (5.9)

Ĥ(t) := β(t)E (−ξξξ •W) (t), G(t) := β(t)φ−1(t)Ĥ−1(t). (5.10)

Remark 5.7. From (5.8) we have (i) X̄(0) = x0, and in view of (5.7) and the uniform boundedness
postulated for γ and the market parameters, it is easily established that

E
[

max
t∈[0,T ]

|X̄(t)|p
]
<∞, ∀p ∈ [1,∞), (5.11)

(this is a standard calculation identical to that for Karatzas and Shreve (2005, Solution of
5.3.15)). In view of (5.11), (5.6), Remark 5.5, and Remark 2.5, it is clear that (ii) π̄ππ ∈ L2(W)
(see (2.3)). Now define (iii) ΥX̄ := rX̄ + π̄ππ>σσσθθθ and (iv) ΛΛΛX̄ := σσσ>π̄̄π̄π; from (5.11) and (ii) we get
(v) ΥX̄ ∈ L21 (recall (3.4)) and (vi) ΛΛΛX̄ ∈ L2(W). Moreover, combining (5.7) and (5.6) gives
the relation dX̄(t) = ΥX̄(t) dt+(ΛΛΛX̄(t))> dW(t), so that (vii) X̄ = (x0,ΥX̄ ,ΛΛΛX) ∈ A (from (v),
(vi), and Remark 3.3). Now (5.3) and Remark 5.5(iii) give ξξξ(ω, t) ∈ σσσ>(ω, t)K and thus (viii)
π̄ππ(t) ∈ K, (P ⊗ Leb)-a.e. (see (5.6)). Then (ix) π̄̄π̄π ∈ A (from (viii), (ii), and (2.6)), hence (x)
π̄ππ ∈ U(X̄) (from (ix), (iv), (iii) and (4.1)).

Remark 5.8. To summarize, we have shown that if X̄ and π̄̄π̄π are defined by (5.6) in terms of
an arbitrary uniformly bounded cadlag and {Fαt }-adapted process γ, then X̄ ∈ A (see Remark
5.7(vii)) and relations (4.20)(i) and (4.22)(ii)(iii) of Proposition 4.2 are satisfied (see Remark
5.7(i)(iv)(x)). It remains to construct some Ȳ ≡ (Ȳ0,ΥȲ ,ΛΛΛȲ ,ΓΓΓȲ ) ∈ B, together with some
uniformly bounded cadlag and {Fαt }-adapted process γ, in such a way that (4.20)(ii), (4.21),
and (4.22)(i) are satisfied when π̄ππ and X̄ are defined by (5.6) in terms of this constructed γ. It
then follows from Proposition 4.2 that π̄̄π̄π given by (5.6) is the optimal portfolio in feedback form.

Before constructing Ȳ and γ in accordance with Remark 5.8, let us recall the following: for
deterministic market parameters we have seen that the optimal portfolio is given by (5.4), which
is (5.6) with γ(t) := β(T )β−1(t), t ∈ [0, T ], thus in particular (a) γ is R-valued uniformly bounded
and nonrandom with γ(T ) = 1; and (b) (βγ) is a constant function, namely (βγ)(t) = (βγ)(0)
for all t ∈ [0, T ]. In order to deal with {Fαt }-predictable market parameters, we are going to
suppose that γ at (5.6) has properties which are a “natural generalization” of properties (a) and
(b) noted above for the deterministic case. In fact, motivated by (a) we shall suppose

γ is an R-valued uniformly bounded cadlag {Fαt }-adapted process with γ(T ) = 1 a.s. (5.12)

and, motivated by (b), we shall suppose that (βγ)(t) := β(t)γ(t) is a cadlag {Fαt }-adapted special
semimartingale of the form

(βγ)(t) = (βγ)(0) +
D∑

i,j=1

∫ t

0

{
ζ

(1)
ij (s) d〈Mij〉(s) + ζ

(2)
ij (s) dMij(s)

}
, (5.13)

for some nonrandom (βγ)(0) ∈ R and some {Fαt }-predictable integrands ζ(1) and ζ(2) for which
the integrals are defined (recall the predictable quadratic variation 〈Mij〉 at (3.1)).

It is not a priori evident that a process γ having properties (5.12) and (5.13) even exists.
It will nevertheless be seen that, by assuming existence of such a γ, we shall be able to use
the convex duality results of Section 4 to establish conditions which guide us in the explicit
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construction of a process γ which indeed satisfies (5.12) and (5.13), and which furthermore is
such that (5.6) gives the optimal portfolio.

Since the canonical martingales {Mij(t)} are purely discontinuous (see (3.2)) it follows from
(5.13) and (5.10) that [G, βγ] = 0, hence Itô’s formula applied to the product of G and βγ gives∫ t

0

(βγ)(s−) dG(s) = (βγ)(t)G(t)−(βγ)(0)−
D∑

i,j=1

∫ t

0

G(s)
{
ζ

(1)
ij (s) d〈Mij〉(s) + ζ

(2)
ij (s) dMij(s)

}
.

(5.14)
Upon substituting (5.14) into the right side of (5.8), taking t = T and using γ(T ) = 1 (recall
(5.12)), we obtain

X̄(T ) +
B

A
= β−2(T )φ(T )Ĥ(T )

((
x0 +

B

A
(βγ)(0)

)
+
B

A

D∑
i,j=1

∫ T

0

G(s)
{
ζ

(1)
ij (s) d〈Mij〉(s) + ζ

(2)
ij (s) dMij(s)

})
,

(5.15)

(notice that (5.10) gives β−1(t)φ(t)Ĥ(t)G(t) = 1). Motivated by the right side of (5.15) define

η(t) :=
(
x0 +

B

A
(βγ)(0)

)
+
B

A

D∑
i,j=1

∫ t

0

G(s)
{
ζ

(1)
ij (s) d〈Mij〉(s) + ζ

(2)
ij (s) dMij(s)

}
, (5.16)

R(t) := E
[
β−2(T )φ(T ) | Fαt

]
, Ȳ (t) := −AĤ(t)η(t)R(t). (5.17)

From (5.17), (5.16) and (5.15) we find

X̄(T ) +
B

A
= − Ȳ (T )

A
. (5.18)

We expand the triple product which defines Ȳ at (5.17) by Itô’s formula. To this end, first use
the {Fαt }-martingale representation theorem (see Elliott (1976, Lemma 3.3)) to represent the
{Fαt }-martingale R given by (5.17). Since R is uniformly lower-bounded by a strictly positive
constant (the market parameters are uniformly bounded by Condition 2.4) we have

R(t) = R(0) +
D∑

i,j=1

∫ t

0

R(s−)ϑ̂Rij(s) dMij(s), (5.19)

for some {Fαt }-predictable integrand {ϑ̂ϑϑ
R
}. Moreover, since R is uniformly bounded, from (5.19)

and the Burkholder inequality (Liptser and Shiryayev (1989, Theorem 1.9.7, page 75)) one gets

E


 D∑
i,j=1

∫ T

0

|ϑ̂Rij(s)|2 d[Mij ](s)


p
2
 <∞, ∀p ∈ [1,∞). (5.20)

Next, use the Itô product formula to first expand Ĥη (recall (5.16) and (5.10)) and then expand
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(Ĥη)R (using (5.19)). In view of (5.17) and (3.2) we obtain

Ȳ (t) = −AR(0)
(
x0 +

B

A
(βγ)(0)

)
−
∫ t

0

r(s)Ȳ (s−) ds−
∫ t

0

Ȳ (s−)ξξξ>(s) dW(s)

+
D∑

i,j=1

∫ t

0

Ȳ (s−)ϑ̂Rij(s) dMij(s)−B
D∑

i,j=1

∫ t

0

R(s−)β(s)φ−1(s)
(

1 + ϑ̂Rij(s)
)
ζ

(2)
ij (s) dMij(s)

−B
D∑

i,j=1

∫ t

0

R(s−)β(s)φ−1(s)
(
ζ

(1)
ij (s) + ϑ̂Rij(s)ζ

(2)
ij (s)

)
d〈Mij〉(s).

(5.21)

Now suppose the integrands ζζζ(1) and ζζζ(2) (recall (5.13)) are related by

ζ
(1)
ij + ϑ̂Rijζ

(2)
ij = 0. (5.22)

Then it follows from (5.21) that Ȳ has the “required form”

Ȳ (t) = Ȳ0 +
∫ t

0

ΥȲ (s) ds+
∫ t

0

(ΛΛΛȲ (s))>W(s) +
D∑

i,j=1

∫ t

0

ΓȲij(s) dMij(s), (5.23)

(compare with (3.7)) in which we have defined

Ȳ0 := −R(0) (Ax0 +B(βγ)(0)) , (5.24)

ΥȲ (t) := −r(t)Ȳ (t−), ΛΛΛȲ (t) := −Ȳ (t−)ξξξ(t), (5.25)

ΓȲij(t) := Ȳ (t−)ϑ̂Rij(t)−BR(t−)β(t)φ−1(t)
(

1 + ϑ̂Rij(t)
)
ζ

(2)
ij (t). (5.26)

Moreover using (5.13), (5.19), (5.22), and the Itô product formula to expand R(βγ), one obtains

R(t)(βγ)(t) = R(0)(βγ)(0) +
D∑

i,j=1

∫ t

0

R(s−)
(

(βγ)(s−)ϑ̂Rij(s) + ζ
(2)
ij (s)

(
1 + ϑ̂Rij(s)

))
dMij(s).

(5.27)
The integrand at (5.27) is {Fαt }-predictable, thus R(βγ) is a {Fαt }-local martingale; but R(βγ) is
uniformly bounded (see (5.17) and (5.12)) so that R(βγ) is actually a {Fαt }-martingale. Moreover
since γ(T ) = 1 (see (5.12)), from (5.17) we have R(T )(βγ)(T ) = β−1(T )φ(T ), that is

R(βγ) is a uniformly bounded {Fαt }-martingale and R(T )(βγ)(T ) = β−1(T )φ(T ). (5.28)

To summarize: if there exists a process γ which satisfies (5.12) and (5.13), and if furthermore the
integrands at (5.13) are related by (5.22), then (5.28) holds. This latter assertion is the essential
clue for constructing the process γ, for it motivates the following definition: put

γ(t) :=
S(t)

β(t)R(t)
, for S(t) := E

[
β−1(T )φ(T ) | Fαt

]
, (5.29)

(recall (4.24) and R(t) at (5.17)). Now it must be checked that γ defined by (5.29) indeed satisfies
(5.12) and (5.13), and that the integrands ζζζ(1) and ζζζ(2) at (5.13) also satisfy (5.22).
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Clearly (5.12) is immediate from (5.29), (5.17), (5.9), (4.24) and the uniform boundedness of
ξξξ and θθθ (see Remarks 5.5 and 2.6). As for verifying (5.13), we must expand the ratio (βγ)(t) =
S(t)/R(t) using Itô’s formula. To this end, exactly as at (5.19) and (5.20), we have

S(t) = S(0) +
D∑

i,j=1

∫ t

0

S(s−)ϑ̂Sij(s) dMij(s), (5.30)

for some {Fαt }-predictable integrand {ϑ̂ϑϑ
S
} such that

E


 D∑
i,j=1

∫ T

0

|ϑ̂Sij(s)|2 d[Mij ](s)


p
2
 <∞, ∀p ∈ [1,∞). (5.31)

Using (5.30), (5.19) and the general Itô formula (see Liptser and Shiryayev (1989, Theorem 2.3.1,
page 118)) to expand (βγ)(t) = S(t)/R(t), one finds that (5.13) indeed holds, with

(βγ)(0) :=
S(0)
R(0)

, ζ
(1)
ij (t) :=

S(t−)
R(t−)

ϑ̂Rij(t)
(
ϑ̂Rij(t)− ϑ̂Sij(t)

)
1 + ϑ̂Rij(t)

,

ζ
(2)
ij (t) := −S(t−)

R(t−)
ϑ̂Rij(t)− ϑ̂Sij(t)

1 + ϑ̂Rij(t)
,

(5.32)

and it is clear that the integrands ζζζ(1) and ζζζ(2) defined at (5.32) also satisfy the relation (5.22).
From now on the initial value (βγ)(0) and integrands ζζζ(1) and ζζζ(2) appearing in (5.13) are

defined by (5.32). With these parameters we have shown that Ȳ defined by (5.16) and (5.17)
satisfies (5.18), and has the form of (5.23), with Ȳ0, ΥȲ , ΛΛΛȲ and ΓΓΓȲ given by (5.24) - (5.26).
Inserting (βγ)(0) and ζζζ(2) from (5.32) into (5.24) and (5.26) gives

Ȳ0 = −[AR(0)x0 +BS(0)], (5.33)

ΓȲij(t) = Ȳ (t−)ϑ̂Rij(t) +Bβ(t)φ−1(t)S(t−)
(
ϑ̂Rij(t)− ϑ̂Sij(t)

)
. (5.34)

It remains to check that ΥȲ ∈ L21, ΛΛΛȲ ∈ L2(W), and ΓΓΓȲ ∈ L2(M), as required to see that
Ȳ = (Ȳ0,ΥȲ ,ΛΛΛȲ ,ΓȲ ) ∈ B (see (5.23) and recall Remark 3.3). We address this next.

From (5.10) and Itô’s formula we have dG(t) = G(t)
(
2‖ξξξ(t)‖2 dt+ ξξξ>(t) dW(t)

)
; combining

this with (5.16) and (5.14) then gives

η(t) = x0 +
B

A
(βγ)(t)G(t)− 2B

A

∫ t

0

(βγ)(s−)G(s)‖ξξξ(s)‖2 ds

− B

A

∫ t

0

(βγ)(s−)G(s)ξξξ>(s) dW(s).
(5.35)

But, from (5.10), the uniform boundedness of ξξξ (see Remark 5.5), and (5.9), one also has

E

[
sup
t∈[0,T ]

|Ĥ(t)|q
]
<∞ and E

[
sup
t∈[0,T ]

|G(t)|q
]
<∞, ∀q ∈ R. (5.36)

From (5.36) and (5.35), and using the Burkholder inequality to bound the expected value of the
supremum over t ∈ [0, T ] of the p-th order exponent of the magnitude of the dW-integral, one
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easily obtains E
[
supt∈[0,T ]|η(t)|p

]
< ∞ for all p ∈ [1,∞). From this, together with the bound

on Ĥ given by (5.36), the uniform boundedness of R, and the definition of Ȳ at (5.17), one finds

E

[
sup
t∈[0,T ]

|Ȳ (t)|p
]
<∞, ∀p ∈ [1,∞). (5.37)

In view of (5.37) and (5.25), it follows that ΥȲ ∈ L21 and ΛΛΛȲ ∈ L2(W). It remains to show
ΓΓΓȲ ∈ L2(M) (see (3.5)). We have

E

 D∑
i,j=1

∫ T

0

|Ȳ (t−)ϑ̂Rij(t)|2 d[Mij ](t)

 ≤ E

 sup
t∈[0,T ]

|Ȳ (t)|2
 D∑
i,j=1

∫ T

0

|ϑ̂Rij(t)|2 d[Mij ](t)

 <∞,
(5.38)

(the final inequality follows from the Cauchy inequality with (5.37) and (5.20)), so that (5.38)

gives ϑ̂ϑϑ
R
Ȳ− ∈ L2(M). Since βφ−1S− is uniformly bounded, from (5.20) and (5.31) one obtains

βφ−1ϑ̂ϑϑ
R
S− ∈ L2(M) and βφ−1ϑ̂ϑϑ

S
S− ∈ L2(M). Now ΓΓΓȲ ∈ L2(M) follows from (5.34).

We have shown that Ȳ , defined by (5.16), (5.17) and (5.32), satisfies (5.23), and that Ȳ =
(Ȳ0,ΥȲ ,ΛΛΛȲ ,ΓΓΓȲ ) ∈ B (see Remark 3.3), with the integrands ΥȲ and ΛΛΛȲ given by (5.25), and
the integrand ΓΓΓȲ given by (5.34). Since Ȳ (t−) = Ȳ (t) for all except countably many values of
t, the adjoint relation (4.21) follows from (5.25), while (5.18) gives (4.20)(ii). In view of this
and Remark 5.8, it only remains to verify the complementary slackness relation (4.22)(i). From
(5.3), (5.25) and (4.15), one has ΘΘΘȲ (t) = Ȳ (t)σσσ(t)[ξξξ(t) − θθθ(t)] ∈ K̃ and thus δ(ΘΘΘȲ (t)) = 0,
(P ⊗ Leb)-a.e. But π̄ππ(t) ∈ K, (P ⊗ Leb)-a.e., and K̃ = K⊥ (see Remark 5.7(viii) and Remark
5.5(ii)) thus π̄ππ>(t)ΘΘΘȲ (t) = 0 (P⊗ Leb)-a.e. which establishes (4.22)(i). Relations (4.20) - (4.22)
are therefore satisfied by (X̄, Ȳ ) ∈ A × B. From (5.29), (5.17), and Proposition 4.2, it follows
that, with

γ(t) :=
E
[
β−1(T )φ(T ) | Fαt

]
β(t)E [β−2(T )φ(T ) | Fαt ]

=
E
[
exp

{∫ T
t

[
r(s)− ‖ξξξ(s)‖2

]
ds
} ∣∣∣∣Fαt ]

E
[
exp

{∫ T
t

[2r(s)− ‖ξξξ(s)‖2] ds
} ∣∣∣∣Fαt ] , ∀ t ∈ [0, T ], (5.39)

the feedback portfolio π̄̄π̄π defined by (5.6) is optimal for problem (2.8) when Condition 5.3 holds
(the second equality at (5.39) follows from (5.9) and (4.24)).
Remark 5.9. Suppose the market parameters not only satisfy Condition 5.3 but are also Markov-
modulated (recall Remark 5.4). Then, from Remark 2.6, (5.2) and (5.3), we have

r(t) = r̃(t, α(t−)), θθθ(t) = θ̃θθ(t, α(t−)), ξξξ(t) = ξ̃ξξ(t, α(t−)), (5.40)

where θ̃θθ(t, i) := σ̃σσ−1(t, i)[b̃(t, i) − r̃(t, i)1] and ξ̃ξξ(t, i) := θ̃θθ(t, i) − proj[θ̃θθ(t, i)|σ̃σσ−1(t, i)K̃] for all
i = 1, 2, . . . , D and t ∈ [0, T ]. With {r(t)} and {ξξξ(t)} at (5.40) inserted into (5.39), the arguments
in the conditional expectations of the numerator and denominator are σ{α(u), u ∈ [t, T ]}-
measurable, and it follows from the Markov property of α (see e.g. Chung (1982, (iia) on page
3)) that γ simplifies to

γ(t) =
E
[
exp

{∫ T
t

[
r̃(s, α(s−))− ‖ξ̃ξξ(s, α(s−))‖2

]
ds
} ∣∣∣∣α(t)

]
E
[
exp

{∫ T
t

[
2r̃(s, α(s−))− ‖ξ̃ξξ(s, α(s−))‖2

]
ds
} ∣∣∣∣α(t)

] , ∀ t ∈ [0, T ], (5.41)
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that is γ(t) at (5.41) depends just on the instantaneous value α(t) of the regime-state Markov
chain α.

Remark 5.10. The basic approach followed in Example 5.2 is as follows: motivated by the
deterministic case and the intuition of totally unhedgeable coefficients we propose the candidate
optimal portfolio at (5.6). Processes γ (see (5.39)) and Ȳ ∈ B (see (5.23), (5.25), (5.33), (5.34))
are then constructed such the pair (X̄, Ȳ ) satisfies the optimality relations of Proposition 4.2
(for X̄ defined by (5.6) and (2.4)). It then follows that (5.6) is the optimal portfolio in feedback
form, and Ȳ solves the dual problem of minimizing the dual functional Ψ(·) (recall (4.14)) over
the vector space B.

Example 5.11. For this example we modify Condition 5.3 as follows:

Condition 5.12. Suppose Condition 5.3, except that the interest-rate process {r(t)} is non-
random (instead of {Fαt }-predictable) and Borel-measurable on [0, T ], and the portfolio con-
straint set K is a non-empty closed convex cone in RN (instead of specifically a vector subspace).

In Condition 5.12 we generalize the portfolio constraint set K from a vector subspace to a
closed convex cone, but suppose in return that the interest-rate is non-random. The economic
justification for this latter assumption is that the regime states of the market, given by the
Markov chain {α(t)} (e.g. “bullish” or “bearish”), have a clear and direct influence on stock
prices through the market parameters {bn(t)} and {σnm(t)} (recall (2.2) and Condition 2.4). On
the other hand the interest-rate {r(t)} is (or should be) set by a central bank irrespective of
the stock market and its regime states; this lack of dependence is captured by Condition 5.12 (a
similar argument is given by Zhou and Yin (2003, Section 6)).

The goal is to construct an optimal portfolio π̄̄π̄π in feedback form (see Remark 5.1) for the
problem (2.8) when Condition 5.12 holds. To this end, define

ξξξ1(t) := θθθ(t)− proj
[
θθθ(t)

∣∣∣∣σσσ−1(t)K̃
]

and ξξξ2(t) := θθθ(t) + proj
[
−θθθ(t)

∣∣∣∣σσσ−1(t)K̃
]
, (5.42)

in which proj [z |C] := arg minηηη∈C‖z − ηηη‖ is the (unique) projection of z ∈ RN onto a closed
convex set C ⊂ RN and K̃ := {z ∈ RN : z>ηηη ≥ 0 for all ηηη ∈ K} is the polar cone of −K.

Remark 5.13. It follows easily from Condition 5.12 and Remark 2.6 that the RN -valued processes
ξξξ1 and ξξξ2 at (5.42) are uniformly bounded and {Fαt }-predictable.

For i = 1, 2, define portfolio π̄ππi and corresponding wealth process X̄i in the feedback form

π̄ππi(t) := −
(
X̄i(t) +

B

A
γ(t)

)(
σσσ>(t)

)−1
ξξξi(t), for X̄i := Xπ̄ππi , (5.43)

(recall (2.4)) in which the “wealth offset” process γ is given by (see (4.24))

γ(t) :=
β(T )
β(t)

= exp

{
−
∫ T

t

r(s) ds

}
, for all t ∈ [0, T ]. (5.44)

When all market parameters are non-random then (see Labbé and Heunis (2007, Example 6.2))
the optimal portfolio is

(a) given by π̄ππ1 with corresponding wealth process X̄1 when Ax0 +Bβ(T ) ≥ 0,
(b) given by π̄ππ2 with corresponding wealth process X̄2 when Ax0 +Bβ(T ) < 0.

}
(5.45)
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Notice that the portfolio given by (5.45) reduces to π̄ππ defined by (5.4) and (5.3) when the
constraint set K is a vector subspace, for in this case ξξξ1 = ξξξ2 = ξξξ, thus π̄̄π̄π1 = π̄̄π̄π2 = π̄̄π̄π.

When Condition 5.12 holds, then of course γ at (5.44) is still non-random, and the intuition
of “totally unhedgeable coefficients” articulated in Remark 5.6 suggests that (5.45) should again
give the optimal portfolio. Our goal is to establish this on the basis of Proposition 4.2. To this
end, observe from (5.43), (2.4) and Itô’s formula (exactly as at (5.8)) that

X̄i(t) = β−2(t)φi(t)Ĥi(t)
(
x0 −

B

A

∫ t

0

(βγ) (s−) dGi(s)
)
, for i = 1, 2, (5.46)

in which (recall (4.24))

φi(t) := exp
{
−
∫ t

0

ξξξ>i (s)θθθ(s) ds
}
, for i = 1, 2, (5.47)

Ĥi(t) := β(t)E (−ξξξi •W) (t), Gi(t) := β(t)φ−1
i (t)Ĥ−1

i (t), for i = 1, 2. (5.48)

Remark 5.14. Define (i) ΥX̄i := rX̄i + π̄̄π̄π>i σσσθθθ and (ii) ΛX̄i := σσσ>π̄̄π̄πi. From (5.43) and (2.4) we
have the relation dX̄i(t) = ΥX̄i(t) dt + (ΛX̄i(t))> dW(t); we shall later establish (see Remark
5.15(b)) that ΥX̄i ∈ L21 and ΛX̄i ∈ L2(W), that is X̄i = (x0,ΥX̄i ,ΛX̄i) ∈ A (see Remark 3.3).

Since (βγ)(t) = β(T ), t ∈ [0, T ] (recall (5.44)), we have
∫ t

0
(βγ)(s−) dGi(s) = β(T )[Gi(t)− 1].

Substituting this into (5.46), and using β−1(t)φi(t)Ĥi(t)Gi(t) = 1 (see (5.48)), gives

X̄i(t) +
B

A
γ(t) = β−2(t)φi(t)Ĥi(t)

(
x0 +

B

A
β(T )

)
, for all t ∈ [0, T ]. (5.49)

From (5.48), (5.49), Remark 5.13, and uniform boundedness of the market parameters (see
Condition 5.12), one has

E
[

max
t∈[0,T ]

|Ĥi(t)|p
]
<∞ and E

[
max
t∈[0,T ]

|X̄i(t)|p
]
<∞, for each p ∈ [1,∞). (5.50)

Remark 5.15. (a) Given the closed convex cone C ⊂ RN define the polar cone of −C, namely
(i) C̃ := {z ∈ RN : z>ηηη ≥ 0, ∀ ηηη ∈ C} (this is a closed convex cone). From Hiriart-Urruty
and Lemaréchal (2001, Theorem A.3.2.5) one has the identity (ii) z = proj [z | − C] + proj[z | C̃]
for all z ∈ RN . Now put (iii) C := σσσ>(ω, t)K and z := θθθ(ω, t) (for some fixed (ω, t)); then it
is easily checked that (iv) C̃ = σσσ−1(ω, t)K̃, and it follows from (5.42) together with (ii), (iii),
and (iv) that ξξξ1(ω, t) = θθθ(ω, t) − proj[θθθ(ω, t) |σσσ−1(ω, t)K̃] = proj[θθθ(ω, t) | − σσσ>(ω, t)K], that is
(v) ξξξ1(ω, t) ∈ −σσσ>(ω, t)K for all (ω, t). In the same way, but using z := −θθθ(ω, t) and C given
by (iii) in (ii), one finds (vi) ξξξ2(ω, t) = −proj[−θθθ(ω, t) | − σσσ>(ω, t)K] ∈ σσσ>(ω, t)K for all (ω, t).

(b) When Ax0 + Bβ(T ) ≥ 0, then X̄1(t) + BA−1γ(t) ≥ 0, t ∈ [0, T ] (see (5.49)), thus from
(5.43), (v), and the fact that K is a cone, we get (vii) π̄̄π̄π1(t) ∈ K, (P ⊗ Leb)-a.e. In exactly
the same way, when Ax0 + Bβ(T ) < 0, then X̄2(t) + BA−1γ(t) < 0, t ∈ [0, T ], and it follows
from (5.43) and (vi) that (viii) π̄̄π̄π2(t) ∈ K, (P⊗ Leb)-a.e. But, from (5.50), (5.43), Remark 5.13,
and Remark 2.5, it follows that (ix) π̄̄π̄πi ∈ L2(W) (see (2.3)) and thus (x) π̄̄π̄πi ∈ A (see (2.6),
(vii), (viii)) for i = 1, 2. Recalling Remark 5.14(i)(ii), it follows from (5.50) and (ix) that (xi)
ΥX̄i ∈ L21 (see (3.4)) and ΛX̄i ∈ L2(W), and therefore (xii) X̄i = (x0,ΥX̄i ,ΛX̄i) ∈ A (see
Remark 3.3). Moreover, from (xii), (x), Remark 5.14(i)(ii), and (4.1) we have (xiii) π̄ππi ∈ U(X̄i).

(c) We therefore see that (4.20)(i) and (4.22)(ii) are satisfied (as follows from (xii) and (xiii)),
and (4.22)(iii) also holds (see Remark 5.14(ii)). It therefore remains to construct dual processes
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Ȳi = (Ȳi(0),ΥȲi ,ΛΛΛȲi ,ΓΓΓȲi) ∈ B, for i = 1, 2, such that the pair (X̄1, Ȳ1) [respectively (X̄2, Ȳ2)]
satisfies the remaining relations (4.20)(ii), (4.21), and (4.22)(i) when Ax0 +Bβ(T ) ≥ 0 [respec-
tively Ax0 +Bβ(T ) < 0]. It then follows from Proposition 4.2 that the optimal portfolio is indeed
given by (5.45). We construct the dual processes Ȳi next.

Motivated by the right side of (5.49), for i = 1, 2, define (see (5.42), (5.47), (5.48))

Ri(t) := E
[
β−2(T )φi(T ) | Fαt

]
, Ȳi(t) := − (Ax0 +Bβ(T ))Ri(t)Ĥi(t), (5.51)

(β−2(T ) is non-random, and thus can be factored out of the conditional expectation defining
Ri(t), but it is easier to leave it in place as shown). From (5.51) and (5.49) with t = T , we have

X̄i(T ) +
B

A
= − Ȳi(T )

A
, i = 1, 2. (5.52)

We next calculate Ȳi at (5.51) using Itô’s formula. Just as at (5.19) and (5.20), we can expand
the strictly positive and uniformly bounded {Fαt }-martingale Ri defined at (5.51) as follows:

Ri(t) = Ri(0) +
D∑

j,k=1

∫ t

0

Ri(s−)ϑ̂Rijk (s) dMjk(s), (5.53)

for some {Fαt }-predictable integrand {ϑ̂ϑϑ
Ri

(t)} such that

E


 D∑
j,k=1

∫ T

0

|ϑ̂Rijk (s)|2 d[Mjk](s)


p
2
 <∞, ∀p ∈ [1,∞). (5.54)

Then from (5.53), (5.51), the definition of Ĥi at (5.48), and the Itô product formula, we obtain

Ȳi(t) = Ȳi(0) +
∫ t

0

ΥȲi(s) ds+
∫ t

0

(
ΛΛΛȲi(s)

)>
dW(s) +

D∑
j,k=1

∫ t

0

ΓȲijk(s) dMjk(s), (5.55)

in which
Ȳi(0) = −Ri(0) (Ax0 +Bβ(T )) , (5.56)

ΥȲi(t) := −r(t)Ȳi(t−), ΛΛΛȲi(t) := −Ȳi(t−)ξξξi(t), ΓΓΓȲi(t) := Ȳi(t−)ϑ̂ϑϑ
Ri

(t). (5.57)

In view of (5.50), together with the uniform boundedness of Ri and (5.51), we find

E

[
sup
t∈[0,T ]

|Ȳi(t)|p
]
<∞, ∀ p ∈ [1,∞). (5.58)

Remark 5.16. In view of (5.58), (5.57), and Remark 5.13, we get ΥȲi ∈ L21 and ΛΛΛȲi ∈ L2(W)
(see (3.4) and (2.3)). Moreover, from (5.57), (5.54) and a calculation identical to that at (5.38),
we obtain ΓΓΓȲi ∈ L2(M), so it follows that Ȳi = (Ȳi(0),ΥȲi ,ΛΛΛȲi ,ΓΓΓȲi) ∈ B, i = 1, 2 (see (5.55) and
Remark 3.3). From (5.52), the pair (X̄i, Ȳi) ∈ A×B satisfies (4.20)(ii), and, since Ȳi(t) = Ȳi(t−)
for all except countably many values of t, it follows from (5.57) that each Ȳi satisfies (4.21). In
view of Remark 5.15(c), it remains only to verify the complementary slackness relation (4.22)(i);
it is here that the sign of Ax0 +Bβ(T ) plays a critical role. From (4.15), (5.42) and (5.57),

ΘΘΘȲi(t) = (−1)iȲi(t)σσσ(t) proj
[
(−1)i+1θθθ(t)

∣∣∣∣σσσ−1(t)K̃
]
, (P⊗ Leb)-a.e., (5.59)
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and then, from (5.59) and (5.43),

π̄ππ>i (t)ΘΘΘȲi(t) = (−1)i+1

[
X̄i(t) +

B

A
γ(t)

]
Ȳi(t)ξξξ>i (t) proj

[
(−1)i+1θθθ(t)

∣∣∣∣σσσ−1(t)K̃
]
, (P⊗ Leb)-a.e.

(5.60)
Now it follows from Hiriart-Urruty and Lemaréchal (2001, Theorem A.3.2.5) that ξξξi(t) and
proj[(−1)i+1θθθ(t) |σσσ−1(t)K̃] are orthogonal for i = 1, 2 (recall (5.42)), thus from (5.60)

π̄ππ>i (t)ΘΘΘȲi(t) = 0, (P⊗ Leb) -a.e., (5.61)

and of course

σσσ(ω, t) proj
[
(−1)i+1θθθ(ω, t)

∣∣∣∣σσσ−1(ω, t)K̃
]
∈ K̃ =

{
z ∈ RN | δ(z) = 0

}
, for each (ω, t). (5.62)

Now suppose that Ax0 + Bβ(T ) ≥ 0: from (5.51) one obtains Ȳ1(t) ≤ 0, t ∈ [0, T ], and thus,
since K̃ is a cone, it follows from (5.62) and (5.59) that ΘΘΘȲ1

(t) ∈ K̃, that is δ(ΘΘΘȲ1
(t)) = 0,

(P ⊗ Leb)-a.e. Combining this with (5.61) shows that (π̄̄π̄π1, Ȳ1) satisfies (4.22)(i). Next, suppose
that Ax0 +Bβ(T ) < 0: then (5.51) gives Ȳ2(t) > 0, t ∈ [0, T ], so that (5.62), (5.59), and the fact
that K̃ is a cone, gives ΘΘΘȲ2

(t) ∈ K̃, that is δ(ΘΘΘȲ2
(t)) = 0, (P ⊗ Leb)-a.e. Combining this with

(5.61) shows that (π̄̄π̄π2, Ȳ2) also satisfies (4.22)(i). It now follows from Remark 5.15(c) that (5.45)
is the optimal portfolio for the problem (2.8) when Condition 5.12 holds.

Exactly as at Remark 5.10, we see that Ȳ1 (respectively Ȳ2) is a solution of the dual problem
of minimizing Ψ(·) when Ax0 +Bβ(T ) ≥ 0 (respectively Ax0 +Bβ(T ) < 0).

Remark 5.17. In Example 5.2, the {Fαt }-martingale representation theorem is used in the expan-

sions at (5.19) and (5.30). Notice that the integrands ϑ̂ϑϑ
R

and ϑ̂ϑϑ
S

obtained from these expansions
do not feature at all in the optimal portfolio, which is given only by (5.6) and (5.39). These inte-
grands nevertheless play an absolutely essential role in constructing the integrand ΓΓΓY ∈ L2(M)
for the dual process Ȳ in such a way that the pair (X̄, Ȳ ) satisfies the relations (4.20) - (4.22)
of Proposition 4.2 (see the expression for ΓΓΓȲ at (5.34)). This is consistent with the comments
made in Remark 4.3. A similar remark applies to Example 5.11 (see the expansion at (5.53) and
the expression for ΓΓΓȲi at (5.57)). Finally, as noted at Remark 4.4, the integrand ΓΓΓȲ constructed
with the aid of the {Fαt }-martingale representation theorem is a Lagrange multiplier for the
constraint of prohibited hedging in the regime-state α.

The optimal portfolio in Example 5.11 (see (5.45)) depends on the sign of the quantity Ax0 +
Bβ(T ). The reason for this is that projection onto a closed convex cone is generally not linear;
the sign condition on Ax0 + Bβ(T ) nevertheless ensures that the processes X̄i(t) + BA−1γ(t)
(for i = 1, 2, see (5.43)) are also of fixed sign over the interval t ∈ [0, T ] in such a way that the
portfolios π̄̄π̄πi at (5.43) take values in the closed convex cone K (see Remark 5.15(b)) and the
complementary slackness condition (4.22)(i) is satisfied (see Remark 5.16). On the other hand,
projection onto a vector subspace is linear, and therefore the optimal portfolio in Example 5.2
(in which the constraint set K is a vector subspace - recall Condition 5.3) does not depend on
the sign of Ax0 + Bβ(T ). It is for this reason that we can deal with a random interest rate
process in Example 5.2; although the sign of the quantity X̄(t) + BA−1γ(t−) in the optimal
portfolio (5.6) is not necessarily constant (with γ(t) given by (5.39)), this does not matter since
projection onto a vector subspace is linear. The following question arises from this discussion:
what is the optimal portfolio in the case where all market parameters (including the interest rate
r) are random as in Condition 5.3(i), and the constraint set K is a general closed convex cone
(as in Condition 5.12)? This case is not clearly understood and requires further effort.
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A Appendix: Proofs

We collect in this appendix the proofs of several results already stated.
We shall need the following technical result on semimartingales in B (recall Remark 3.3)

which follows from Bismut (1973, Proposition I-1).

Proposition A.1. For any X ≡ (X0,ΥX ,ΛΛΛX ,ΓΓΓX) ∈ B and Y ≡ (Y0,ΥY ,ΛΛΛY ,ΓΓΓY ) ∈ B, define

M(X,Y )(t) :=X(t)Y (t)−X0Y0 −
∫ t

0

(
ΥX(s)Y (s) +X(s)ΥY (s)

)
ds

−
N∑
n=1

∫ t

0

ΛXn (s)ΛYn (s) ds−
D∑

i,j=1

∫ t

0

ΓXij (s)Γ
Y
ij(s) d[Mij ](s).

(A.1)

Then {(M(X,Y )(t),Ft); t ∈ [0, T ]} is a martingale, null at the origin.

Proof of Proposition 4.2: Fix X ≡ (X0,ΥX ,ΛΛΛX) ∈ A and Y ≡ (Y0,ΥY ,ΛΛΛY ,ΓΓΓY ) ∈ B. From
the convex conjugates defined at (4.9)-(4.11), we get the following inequalities (i), (ii) and (ii):
(i) l0(X0) +m0(Y0) ≥ X0Y0, (ii) J(X(T )) +mT (Y (T )) ≥ −X(T )Y (T ),
(iii) L(t,X(t),ΥX(t),ΛΛΛX(t))+M(t, Y (t),ΥY (t),ΛΛΛY (t)) ≥ X(t)ΥY (t)+ΥX(t)Y (t)+(ΛΛΛX(t))>ΛΛΛY (t),
for all (ω, t) ∈ [0, T ]× Ω. It follows from (i), (ii) and (iii), together with (4.7) and (4.14), that

Φ(X)+Ψ(Y ) ≥ X0Y0 +E
∫ T

0

(
X(t)ΥY (t) + ΥX(t)Y (t) +

(
ΛΛΛX(t)

)>
ΛΛΛY (t)

)
dt−E (X(T )Y (T )) .

From Proposition A.1 and the fact that X ∈ A, hence ΓΓΓX := 000 (recall Remark 3.3), one sees
that the right-hand side is −E(M(X,Y )(T )) = 0, as required for (4.17).

That (4.18) implies (4.19) follows from (4.17), while the converse is immediate. Now fix
arbitrary X̄ ≡ (X̄0,ΥX̄ ,ΛΛΛX̄) ∈ A and Ȳ ≡ (Ȳ0,ΥȲ ,ΛΛΛȲ ,ΓΓΓȲ ) ∈ B. An argument which is
absolutely identical to that for the proof of Labbé and Heunis (2007, Proposition 5.2) establishes
that (4.18) holds if and only if the following relations (iv), (v) and (vi) hold:
(iv) l0(X̄0) +m0(Ȳ0) = X̄0Ȳ0,

(v) L(t, X̄(t),ΥX̄(t),ΛΛΛX̄(t))+M(t, Ȳ (t),ΥȲ (t),ΛΛΛȲ (t)) = X̄(t)ΥȲ (t)+ΥX̄(t)Ȳ (t)+
(
ΛΛΛX̄
)>

(t)ΛΛΛȲ (t),

(vi) J(X̄(T )) +mT (Ȳ (T )) = −X̄(T )Ȳ (T ).
Again, an argument which is absolutely identical to that in the proof of Labbé and Heunis (2007,
Proposition 5.3) establishes that the preceding relations (iv), (v) and (vi) hold if and only if
relations (4.20) - (4.22) hold. Thus (4.18) and (4.20) - (4.22) are equivalent. �

Remark A.2. Put ‖(y,λλλ,γγγ)‖SSS := {y2 + ΣnE
∫ T

0
|λn(t)|2 dt + Σi,jE

∫ T
0
|γij(t)|2 d[Mij ](t)}1/2 for

each (y,λλλ,γγγ) ∈ SSS (see the definition of SSS at Proposition 4.6). Then it is clear that ‖·‖SSS is a norm
on SSS with respect to which SSS is a reflexive Banach space (in fact a Hilbert space).

Proof of Proposition 4.8: From Condition 2.7(ii) it is easy (although tedious) to show that
Ψ̃(·) is ‖·‖SSS-coercive (that is Ψ̃(y,λλλ,γγγ) → ∞ as ‖(y,λλλ,γγγ)‖SSS → ∞), and it is clear that Ψ̃(·)
is convex on SSS and proper (since Ψ̃(0) ≤ E[B2/2A] < ∞ and Ψ̃(y,λλλ,γγγ) ≥ x0y > −∞ for all
(y,λλλ,γγγ) ∈ SSS). From Fatou’s theorem and Condition 2.7(ii) one sees that Ψ̃(·) is ‖·‖SSS-lower semi-
continuous. Existence of a minimizer (ȳ, λ̄λλ, γ̄γγ) ∈ SSS of Ψ̃(·) follows from Remark A.2 and Ekeland
and Témam (1976, Proposition II.1.2, p.35), and Ȳ := Ξ(ȳ, λ̄λλ, γ̄γγ) solves (4.16) (see Remark 4.7).
�

Proof of Proposition 4.11: Proof of the square-integrability of X̄ is completely identical to
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the proof of Labbé and Heunis (2007, Lemma 5.1). It remains to see that X̄H is a locally square-
integrable martingale. For each m = 1, 2, . . . put S(m) := inf{t ≥ 0 : H(t) ≥ m}∧T . Then S(m)

is a {Ft}-stopping time, and, since H is continuous, one has S(m) ⇑ T . It follows from (4.29)
that the stopped process (X̄H)S

(m)
is a {Ft}-martingale, and E|X̄(t ∧ S(m))H(t ∧ S(m))|2 ≤

m2E [supt∈[0,T ]|X̄(t)|2] <∞ for each t ∈ [0, T ] as required. �

Proof of Proposition 4.12: In view of (4.31) and (3.6) this is a matter of showing that
rX̄− + π̄ππ>σσσθθθ ∈ L21, σσσ>π̄ππ ∈ L2(W), and H−1ΓΓΓX̄H ∈ L2(M). For each m ∈ N, define the
{Ft}–stopping time

S
(m)
1 := inf

{
t > 0 :

∫ t

0

‖π̄ππ(s)‖2 ds > m or |X̄(t−)|2 > m or |H−1(t)|2 > m

}
∧ T.

Since ΓΓΓX̄H ∈ L2
loc(M), there exists a sequence {S(m)

2 }m∈N of {Ft}-stopping times such that
S

(m)
2 ⇑ T , and ΓΓΓX̄H [0, S(m)

2 ] ∈ L2(M) for all m ∈ N (see Notation 3.5). Define the {Ft}–stopping
time S(m) := S

(m)
1 ∧ S(m)

2 , which is clearly such that S(m) ⇑ T .
We have (i) −2X̄(s−)θθθ>(s)σσσ(s)π̄ππ(s) ≤ (1/2)[4X̄2(s−)‖θθθ(s)‖2 + ‖σσσ>(s)π̄ππ(s)‖2] (exactly as in

the proof of Labbé and Heunis (2007, Lemma 5.2)). Now expand t 7→ X̄2(t ∧ S(m)) by Itô’s
formula (recall (4.31)), take expectations and insert (i) to get

κ ≥ E
∫ S(m)

0

‖σσσ>(s)π̄ππ(s)‖2 ds+
D∑

i,j=1

E
∫ S(m)

0

H−2(s)|ΓX̄Hij (s)|2 d[Mij ](s), (A.2)

in which κ := [2 + 4Tκ2
θθθ]E[supt∈[0,T ] |X̄(t)|2] <∞ (see Proposition 4.11 and Remark 2.6). Since

S(m) ⇑ T , we can take m → ∞ at (A.2) to get H−1ΓΓΓX̄H ∈ L2(M) and σσσ>π̄ππ ∈ L2(W), hence
π̄ππ ∈ L2(W) (by Remark 2.5). That rX̄− + π̄ππ>σσσθθθ ∈ L21 follows from Proposition 4.11 and the
uniform boundedness of r, σσσ and θθθ (recall Condition 2.4 and Remark 2.6). �

In order to establish Theorem 4.13 we shall need the following Lemma A.3 and Lemma A.4:

Lemma A.3. For each ρρρ ∈ L2(W) and γγγ = (γij)Di,j=1 ∈ L2(M), there exists some (P⊗Leb)-a.e.
unique λλλ ∈ L2(W) such that (P⊗ Leb)-a.e.

λλλ(t) + θθθ(t)
∫ t

0

λλλ>(s) dW(s) = ρρρ(t)− θθθ(t)
D∑

i,j=1

∫ t

0

γij(s) dMij(s). (A.3)

Proof. Define the norm ‖·‖L2(W) on L2(W) by ‖λλλ‖2L2(W) := E
∫ T

0
‖λλλ(t)‖2 dt (see (2.3) and recall

that ‖·‖ denotes the Euclidean norm on RN ); with this norm L2(W) is a Banach space. Put
η(t) :=

∑D
i,j=1

∫ t
0
γij(s) dMij(s) and ξξξ(t) := ρρρ(t)− θθθ(t)η(t−), t ∈ [0, T ], and for each λλλ ∈ L2(W)

put Gλλλ(t) := ξξξ(t) − θθθ(t)
∫ t

0
λλλ>(s) dW(s), t ∈ [0, T ]. From the Doob L2-inequality and the Itô

isometry one easily checks that Gλλλ ∈ L2(W) for each λλλ ∈ L2(W). From the Itô isometry
and induction it is easily seen that ‖Gmλλλ1 − Gmλλλ2‖2L2(W) ≤ ‖λλλ1 − λλλ2‖2L2(W)κ

2m
θθθ Tm/m! for all

m = 1, 2, . . . and λλλ1,λλλ2 ∈ L2(W) (recall κθθθ defined at Remark 2.6). Now fix some positive
integer m such that κ2m

θθθ Tm/m! < 1; then Gm is a contraction on the Banach space L2(W) and
the generalized contraction mapping theorem (see Kolmogorov and Fomin (1975, Theorem 1′,
page 70)) establishes that λλλ(t) = Gλλλ(t), (P⊗ Leb)-a.e. for some unique λλλ ∈ L2(W). The result
follows since η(t) = η(t−), (P⊗ Leb)-a.e.
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Lemma A.4. For each (y,λλλ,γγγ) ∈ SSS := R× L2(W)× L2(M) we have the inequality

0 ≤ y(x0 − X̄(0)) + lim
ε↓0

{
E
∫ T

0

1
ε

[
δ
(
ΘΘΘȲ (t) + εΘΘΘΞ(y,λλλ,γγγ)(t)

)
− δ (ΘΘΘȲ (t))

]
dt

}

+ E
∫ T

0

π̄ππ>(t)ΘΘΘΞ(y,λλλ,γγγ)(t) dt− E
D∑

i,j=1

∫ T

0

H−1(t)ΓX̄Hij (t)γij(t) d[Mij ](t);

(A.4)

here Ȳ ≡ Ξ(ȳ, λ̄λλ, γ̄γγ) is given by Proposition 4.8 and ΓΓΓX̄H ∈ L2
loc(M) is the dMij-integrand at

(4.30) (recall also (4.13), (4.25), (4.27), (4.28), (4.29), and (4.32)).

Proof. Fix (y,λλλ,γγγ) ∈ SSS and put (i) R := Ξ(y,λλλ,γγγ). For ε ∈ (0,∞), define the perturbation
(yε,λλλε, γγγε) := (ȳ, λ̄λλ, γ̄γγ) + ε(y,λλλ,γγγ) ∈ SSS. Then (ii) Ξ(yε,λλλε, γγγε) = Ȳ + εR (since Ξ is linear, by
Proposition 4.6(b)) and (iii) ΘΘΘΞ(yε,λλλε,γγγε) = ΘΘΘȲ + εΘΘΘR (see (4.27)). From Proposition 4.8 we have

the optimality inequality (iv) ε−1
[
Ψ̃(yε,λλλε, γγγε)− Ψ̃(ȳ, λ̄λλ, γ̄γγ)

]
≥ 0. Upon taking ε→ 0 in (iv) and

using (i), (ii), (iii), (4.26), and −X̄(T ) = A−1[Ȳ (T ) +B] (see (4.29)), we find

x0y + lim
ε↓0

{
E
∫ T

0

1
ε

[δ (ΘΘΘȲ (t) + εΘΘΘR(t))− δ (ΘΘΘȲ (t))] dt

}
− E

(
X̄(T )R(T )

)
≥ 0. (A.5)

But X̄ ∈ B, with ΥX̄ = rX̄− + π̄ππ>σσσθθθ, ΛΛΛX̄ = σσσ>π̄ππ, ΓΓΓX̄ = ΓΓΓX̄HH−1 (see Proposition 4.12), and
R ∈ B, with R(0) = y, ΥR = −rR, ΛΛΛR = λλλ, ΓΓΓR = γγγ (see Proposition 4.6(c)). Then, from (A.1),

M(X̄, R)(T ) = X̄(T )R(T )−X̄(0)y+
∫ T

0

π̄̄π̄π>(t)ΘΘΘR(t) dt−
D∑

i,j=1

∫ T

0

H−1(t)ΓX̄Hij (t)γij(t) d[Mij ](t),

(since ΘΘΘR(t) = −σσσ(t) [θθθ(t)R(t) + λλλ(t)] - see (i)). From Proposition A.1 we have EM(X̄, R)(T ) =
0; taking expectations in the preceding expression and combining with (A.5) then gives (A.4).

Proof of Theorem 4.13: Fix an arbitrary y ∈ R. From the uniform boundedness of θθθ (see
Remark 2.6) we have that −yθθθ ∈ L2(W). Applying Lemma A.3 to ρρρ := −yθθθ and γγγ := 000, there
exists λλλy ∈ L2(W) such that (i) λλλy(t) + θθθ(t)

∫ t
0
λλλ>y (s) dW(s) = −yθθθ(t), (P⊗ Leb)-a.e. Now put

(ii) R := Ξ(y, βλλλy,000); from (4.25) we find (iii) β−1(t)R(t) = y +
∫ t

0
λλλ>y (s) dW(s). Then, from

(i) and (iii), we obtain (iv) β−1(t)R(t)θθθ(t) + λλλy(t) = 0, (P ⊗ Leb)-a.e., and, from (ii), (iv) and
(4.27), it follows that (v) ΘΘΘΞ(y,βλλλy,000)(t) = −σσσ(t)[θθθ(t)R(t) + β(t)λλλy(t)] = 0, (P ⊗ Leb)-a.e. Upon
identifying (y,γγγ,λλλ) in Lemma A.4 with (y, βλλλy,000) and using (v), we obtain 0 ≤ y(x0 − X̄(0)).
The arbitrary choice of y ∈ R then gives

X̄(0) = x0. (A.6)

Since the support functional δ(·) (recall (4.13)) is positively homogeneous and subadditive (see
Karatzas and Shreve (1998, Section 5.4)), for each ε ∈ (0,∞) we have

1
ε

[
δ
(
ΘΘΘȲ (t) + εΘΘΘΞ(y,λλλ,γγγ)(t)

)
− δ (ΘΘΘȲ (t))

]
≤ δ

(
ΘΘΘΞ(y,λλλ,γγγ)(t)

)
, (A.7)

for all (y,λλλ,γγγ) ∈ R× L2(W)× L2(M). Substituting (A.7) into (A.4) and using (A.6), we get

E
D∑

i,j=1

∫ T

0

H−1(t)ΓX̄Hij (t)γij(t) d[Mij ](t) ≤ E
∫ T

0

[
δ
(
ΘΘΘΞ(y,λλλ,γγγ)(t)

)
+ π̄ππ>(t)ΘΘΘΞ(y,λλλ,γγγ)(t)

]
dt,

(A.8)
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for all (y,λλλ,γγγ) ∈ R× L2(W)× L2(M). We next use (A.8) to establish

π̄ππ ∈ A, (A.9)

(recall (4.32) and (2.6)). Put y := 0 and γγγ := 0 in (A.8) to obtain

E
∫ T

0

[
δ
(
ΘΘΘΞ(0,λλλ,000)(t)

)
+ π̄ππ>(t)ΘΘΘΞ(0,λλλ,000)(t)

]
dt ≥ 0, for all λλλ ∈ L2(W), (A.10)

and set Q := {(ω, t) ∈ Ω× [0, T ] : π̄ππ(ω, t) ∈ K}. By a trivial adaptation of Karatzas and Shreve
(1998, Lemma 5.4.2), corresponding to the RN -valued {Ft}-predictable process π̄ππ there exists
an {Ft}-predictable mapping νννπ̄ππ : Ω × [0, T ] → RN such that ‖νννπ̄ππ(t)‖ ≤ 1, (P ⊗ Leb)-a.e., with
| δ(νννπ̄ππ(t))| ≤ 1, (P⊗ Leb)-a.e. and{

δ(νννπ̄ππ(t)) + π̄ππ>(t)νννπ̄ππ(t) = 0, (P⊗ Leb)-a.e. on Q
δ(νννπ̄ππ(t)) + π̄ππ>(t)νννπ̄ππ(t) < 0, (P⊗ Leb)-a.e. on Ω× [0, T ]−Q. (A.11)

Suppose (P⊗ Leb)(Ω× [0, T ]−Q) > 0; then it follows from (A.11) that

E
∫ T

0

[
δ
(
νννπ̄ππ(t)

)
+ π̄ππ>(t)νννπ̄ππ(t)

]
dt < 0. (A.12)

We shall next show that νννπ̄ππ(t) = ΘΘΘΞ(0,λλλ,000)(t), (P ⊗ Leb)-a.e. for some λλλ ∈ L2(W); it then
follows that (A.12) contradicts (A.10), and consequently (P ⊗ Leb)(Ω × [0, T ] − Q) = 0, that is
π̄ππ(t) ∈ K, (P⊗ Leb)-a.e.; since π̄ππ ∈ L2(W) (see Proposition 4.12) we get (A.9). To this end put
ρρρ(t) := −β−1(t)σσσ−1(t)νννπ̄ππ(t). From the boundedness of β and νννπ̄ππ, together with Remark 2.5, we
get ρρρ ∈ L2(W). From Lemma A.3 for this ρρρ and for γγγ := 0, there exists ξ ∈ L2(W) such that

ξ(t) + θθθ(t)
∫ t

0

ξ>(s) dW(s) = −β−1(t)σσσ−1(t)νννπ̄ππ(t), (P⊗ Leb)-a.e. (A.13)

Now (4.25) gives (vi) Ξ(0, βξ,000)(t) = β(t)
∫ t

0
ξ>(s) dW(s), and, from (4.27) we also have that

(vii) ΘΘΘΞ(0,βξ,000)(t) = −σσσ(t) [θθθ(t)Ξ(0, βξ,000)(t) + β(t)ξ(t)]. Upon combining (A.13), (vi) and (vii),
we find that ΘΘΘΞ(0,βξ,000)(t) = νννπ̄ππ(t), (P ⊗ Leb)-a.e; since βξ ∈ L2(W), this establishes (A.9). We
next show that

ΓΓΓX̄H = 000, ν[M ]-a.e. (recall Notation 3.2). (A.14)

Put ρρρ := −β−1σσσ−1νννπ̄ππ and γγγ := β−1H−1ΓΓΓX̄H . Then ρρρ ∈ L2(W) (exactly as before - see text
preceding (A.13)) and also γγγ ∈ L2(M) (see Proposition 4.12). We can therefore use Lemma A.3
for this pair (ρρρ,γγγ) to see that there exists ηηη ∈ L2(W) such that

ηηη(t) + θθθ(t)
∫ t

0

ηηη>(s) dW(s) = −β−1(t)σσσ−1(t)νννπ̄ππ(t)− θθθ(t)
D∑

i,j=1

∫ t

0

β−1(s)H−1(s)ΓX̄Hij (s) dMij(s).

(A.15)
Set (viii) R := Ξ(0, βηηη,H−1ΓΓΓX̄H). Then (ix) R(t)θθθ(t) = −β(t)ηηη(t)−σσσ−1(t)νννπ̄ππ(t), as follows from
(A.15) and (4.25), and thus (x) ΘΘΘR(t) = −σσσ(t) [θθθ(t)R(t) + β(t)ηηη(t)] = νννπ̄ππ(t), in which the first
equality follows from (4.27) and (viii), and the second equality follows from (ix). From (A.9),
(A.11) and (x), we obtain (xi) δ (ΘΘΘR(t))+π̄ππ>(t)ΘΘΘR(t) = δ(νννπ̄ππ(t))+π̄ππ>(t)νννπ̄ππ(t) = 0, (P⊗Leb)-a.e.
Upon taking (y,λλλ,γγγ) := (0, βηηη,H−1ΓΓΓX̄H) in (A.8), and recalling (viii) and (xi), we find

E
D∑

i,j=1

∫ T

0

H−2(t)|ΓX̄Hij (t)|2 d[Mij ](t) ≤ E
∫ T

0

[
δ (ΘΘΘR(t)) + π̄ππ>(t)ΘΘΘR(t)

]
dt = 0. (A.16)
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Now (A.14) follows from (A.16) and the strict positivity of H (see (4.28)). We next establish

δ (ΘΘΘȲ (t)) + π̄ππ>(t)ΘΘΘȲ (t) = 0, (P⊗ Leb)-a.e. (A.17)

Set (y,λλλ,γγγ) := (−ȳ,−λ̄λλ,−γ̄γγ) (recall Proposition 4.8); from (4.25) we get (xii) Ξ(y,λλλ,γγγ) = −Ȳ ,
and from (4.27) we also have (xiii) ΘΘΘΞ(y,λλλ,γγγ) = −ΘΘΘȲ . Since δ(·) is positively homogeneous, it
follows from (xiii) that δ(ΘΘΘȲ (t) + εΘΘΘΞ(y,λλλ,γγγ)(t)) = δ((1 − ε)ΘΘΘȲ (t)) = (1 − ε)δ(ΘΘΘȲ (t)) for all
0 < ε < 1, that is

1
ε

[
δ
(
ΘΘΘȲ (t) + εΘΘΘΞ(y,λλλ,γγγ)(t)

)
− δ (ΘΘΘȲ (t))

]
= −δ (ΘΘΘȲ (t)) , for all 0 < ε < 1. (A.18)

From (A.18), (xiii), (A.14), (A.6), (A.4), we get (xiv) E
∫ T

0

(
δ (ΘΘΘȲ (t)) + π̄ππ>(t)ΘΘΘȲ (t)

)
dt ≤ 0;

but, from (A.9) and (4.13), we also have (xv) δ (ΘΘΘȲ (t)) = supπππ∈K
{
−πππ>ΘΘΘȲ (t)

}
≥ −π̄ππ>(t)ΘΘΘȲ (t),

(P⊗ Leb)-a.e., and (xv) and (xiv) together give (A.17).
We can now complete the proof of Theorem 4.13: part (a) is immediate from (A.14), Propo-

sition 4.12 and Remark 3.3. As for part (b), (4.20)(i) is (A.6), (4.20)(ii) follows from (4.29) with
t := T , (4.21) follows since Ȳ ∈ B1 (recall Proposition 4.8 and (4.23)), (4.22)(i) is just (A.17),
and (4.22)(ii)(iii) are immediate from (A.14), (A.9), (4.33) and (4.1). For part (c), we have π̄̄π̄π ∈ A
from (A.9). Moreover, upon inserting (A.14) and (A.6) into (4.31), the resulting equation for X̄
is identical to the equation (2.4) for Xπ̄̄π̄π so that X̄ = Xπ̄̄π̄π. In view of part (b) and Proposition
4.2 we obtain (4.19), that is X̄ solves the Bolza problem (4.8). Now (4.34) is immediate from
(4.19) and Remark 4.1. �
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