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Abstract

We derive lower bounds on the power of breather solutions ψn(t) = e−iΩtφn, Ω > 0 of a Discrete
Nonlinear Schrödinger Equation with cubic or higher order nonlinearity and site-dependent anharmonic
parameter, supplemented with Dirichlet boundary conditions. For the case of a defocusing DNLS, one of the
lower bounds depends not only on the dimension of the lattice, the lattice spacing, and the frequency of the
periodic solution, but also on the excitation threshold of time periodic and spatially localized solutions of the
focusing DNLS, proved by M. Weinstein in Nonlinearity 12, 673–691, 1999. Our simple proof via a direct
variational method, makes use of the interpolation inequality proved by Weinstein, and its optimal constant
related to the excitation threshold. We also provide existence results (via the mountain pass theorem) and
lower bounds on the power of breather solutions for DNLS lattices with sign-changing anharmonic parameter.
Numerical studies considering the classical defocusing DNLS, the case of a single nonlinear impurity, as well
as a random DNLS lattice are performed, to test the efficiency of the lower bounds.

1 Introduction

In this paper, we study solutions of a generalized DNLS equation, supplemented with Dirichlet boundary
conditions

iψ̇n + ǫ(∆dψ)n − Λn|ψn|
2σψn = 0, ||n|| ≤ K, (1.1)

ψn = 0, ||n|| > K, (1.2)

where ||n|| = max1≤i≤N |ni| for n = (n1, n2, . . . , nN ) ∈ Z
N . In other words we consider the DNLS equation

(1.1) in the finite lattice ZN
K = ZN ∩ {−K ≤ n1, n2, . . . , nN ≤ K}. In (1.1), ǫ > 0 is a discretization parameter

ǫ ∼ h−2 with h being the lattice spacing, and (∆dψ)n stands for the N -dimensional discrete Laplacian

(∆dψ)n∈ZN =
∑

m∈Nn

ψm − 2Nψn, (1.3)

where Nn denotes the set of 2N nearest neighbours of the point in ZN with label n.

Note especially that we take the nonlinearity parameter Λ := (Λn)||n||≤K ∈ R(2K+1)N

in Equation (1.1) to
be site-dependent. We consider three possible alternative cases for Λ:
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(F ) (Focusing case) Λn ≤ 0, n ∈ ZN
K and Λ 6= 0 (Λ ∈ R(2K+1)N

is not identically the zero vector having at
least one negative coordinate).

(D) (Defocusing case) Λn ≥ 0, n ∈ ZN
K and Λ 6= 0 (Λ ∈ R(2K+1)N

is not identically the zero vector having
at least one non-negative coordinate).

(SC) (Sign-changing case) In some S+ ⊂ ZN
K , {Λn}n∈S+ > 0 and in S− := ZN

K \ S+, {Λn}n∈S−
≤ 0, where

{Λn}n∈S−
6= 0 (not identically the zero vector in S−).

The solutions we consider to (1.1) are restricted to time-periodic solutions of the form

ψn(t) = e−iΩtφn, Ω > 0, (1.4)

where the sign of Ω is crucial to our study.
We can associate a power to any solution of the form (1.4), defined as

P [φ] =
∑

n∈ZN

|φn|
2 (1.5)

Our paper is devoted to an analytic and numerical study of lower bounds on the power of solutions of the form
(1.4) to (1.1) as functions of Λ and the other parameters of the problem. We concentrate on the Defocusing
and the Sign-changing cases. Although historically the main interest was in the focusing case, more recently
interest has grown in the other two cases, starting perhaps with the paper by Kivshar in 1993 [10].

A characteristic example of a site dependent nonlinearity parameter covered by conditions (D) or (SC), is
that of a single nonlinear impurity at the origin n = 0, see M. I. Molina [13, 15], M. I. Molina & H. Bahlouli
[14], G. P. Tsironis, M. I. Molina & D. Hennig [16]. Another recent example of work on an inhomogeneous
lattice is [11].

Solutions (1.4) are usually called breathers (or sometimes solitons), from the comparison with a class of
exact solutions of the sine-Gordon equation of the same name. We note that there is a growing interest in the
study of such modes in discrete lattices. A number of papers have studied the stability analysis of such solutions
in both cubic and saturable DNLS lattices (c.f. [1, 5, 18]).

A key work in this area on existence of solutions is the 1999 paper by Weinstein [17] on the focusing case
(F) of (1.1) with constant Λ. Since we make extensive use of the results in [17], we briefly summarise these
here to make our paper more self-contained. In this paper Weinstein considered the focusing Discrete Nonlinear
Schrödinger Equation (DNLS) [4, 9]

iψ̇n + ǫ(∆dψ)n + |ψn|
2σψn = 0, σ > 0, n = (n1, n2, . . . , nN ) ∈ Z

N , (1.6)

and resolved the hypothesis suggested by S. Flach, K. Kladko & R. MacKay [6] for this equation, on the existence
of excitation thresholds for the existence of nonlinear localized modes for Hamiltonian dynamical systems defined
on multidimensional lattices. More precisely, the numerical studies and heuristic arguments of [6], suggested
that there is a lower bound on the energy of a breather (time periodic and spatially localized standing wave
solutions), if the lattice dimension is greater than or equal to a certain critical value. The hypothesis of [6] was
resolved by

Theorem 1.1 (M. Weinstein [17, Theorem 3.1,pg. 678]). Let σ ≥ 2
N

. Then there exists a ground state
excitation threshold Rthresh > 0.

A minimizer of the variational problem

IR = inf {H[φ] : P [φ] = R} . (1.7)

is called a a ground state [17, Definition, pg. 676]. Here the Hamiltonian H[φ] and the power P [φ] are the
fundamental conserved quantities, where

H[φ] = ǫ(−∆dφ, φ)2 −
1

σ + 1

∑

n∈ZN

|φn|
2σ+2. (1.8)

Theorem 1.1, states that if 0 < σ < 2
N

, then IR < 0 for all R > 0. That is, the variational problem (1.7) has
a solution for all R > 0 and there is no excitation threshold. However when σ ≥ 2

N
, there exists an excitation
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threshold Rthresh such that (a) if R > Rthresh then IR < 0, and a ground state exists and (b) if R < Rthresh

then IR = 0, and there is no ground state minimizer of (1.7).
Theorem 1.1, justifies the existence of an excitation threshold for spatially localized and time periodic

solutions of the form

ψn(t) = eiωtφn, ω > 0, n ∈ Z
N , t ∈ R, (1.9)

φn ∈ ℓ2.

The threshold value, Rthresh, is related to the best constant of an interpolation inequality which is a discrete
analogue of the Sobolev-Gagliardo-Nirenberg inequality.

Theorem 1.2 (M. Weinstein [17, Theorem 4.1,pg. 682]) Assume that σ ≥ 2
N

. Then there exists C > 0, such
that for all φ ∈ ℓ2, the following interpolation inequality holds

∑

n∈ZN

|φn|
2σ+2 ≤ C

(

∑

n∈ZN

|φn|
2

)σ

(−∆dφ, φ)2. (1.10)

If C∗ is the infimum over all such constants for which inequality (1.10) holds, then the excitation threshold
Rthresh is defined by [17, pg. 680, Eqn. (4.2)]

(σ + 1)ǫ (Rthresh)
−σ

= C∗, (1.11)

and the optimal constant C∗ has the variational characterization

1

C∗
= inf

φ ∈ ℓ2

φ 6= 0

(
∑

n∈ZN |φn|2
)σ

(−∆dφ, φ)2
∑

n∈ZN |φn|2σ+2
.

This completes our summary of Weinstein’s results.
In our paper, to establish that problem (1.1)-(1.2) admits time periodic solutions (1.4), we follow a variational

approach (constrained minimization problem) as used in [17]. However, one of our claims in Section 2, is that
by using the discrete interpolation inequality (1.10), a simple proof of an explicit lower bound on the power of
solutions (1.4) of the DNLS (1.1)-(1.2) under condition (D), can be derived. It is shown that the lower bound
exhibits an interesting relation between the parameters N, σ,Ω, ǫ,Λn as well as on the excitation threshold
for the periodic solutions of the focusing DNLS (1.6) derived by Weinstein. A numerical comparison with an
Rthresh-independent lower bound, indicates for a derivation of an explicit upper bound on Rthresh depending on
σ, ǫ,N (Section 4).

Section 3 of our paper is devoted to the extension of the results on the existence of breathers as well on the
lower bounds of their power, for the DNLS (1.1), under condition (SC). In this case, (1.1) cannot be considered
as focusing or defocusing, and the existence of a nontrivial breather solution (1.4) is proved via the Mountain
Pass Theorem (MPT) [8], as a saddle point of the functional

E [φ] =
ǫ

2
(−∆dφ, φ)2 −

Ω

2

∑

||n||≤K

|φn|
2 +

1

2σ + 2

∑

||n||≤K

Λn|φn|
2σ+2.

We remark on an important difference of the results of this manuscript compared with those of [17]: the
threshold Rthresh (which is used in Theorem 2.1, to provide an optimal value for the constant C∗ of the inequality
(1.10)) is a global excitation threshold for the breathers, depending on σ,N , while the lower bounds derived in
this paper are “local” in the sense that they depend also on the frequency Ω (as well as on Λn, ǫ, σ,N). These
bounds should not be viewed as a prediction of the excitation threshold in the case of σ ≥ 2/N nor as a theoretical
prediction of the numerical power of periodic solutions but as prediction of the smallest power a periodic solution
for any Ω, Λn, ǫ,σ, N , satisfying the assumptions for the derivation of the bounds. From this point of view,
these bounds are “global” since no periodic solution has power smaller than the derived estimates. The global
character of the estimates is revealed when one considers “limiting” cases of large values of σ > 2/N : The
numerical studies in Section 4, verify that for large values of frequencies the estimates are not only satisfied but
are also quite sharp estimates of the real power of the corresponding periodic solutions. Thus the lower bounds
derived are of particular physical importance, since they provide a lower bound for the power of each breather
of prescribed frequency Ω, corresponding to DNLS lattices covered by the form of (1.1).
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In the case of constant or constant-sign anharmonic parameters, the conditions on the existence of breather
solutions with respect to the frequencies are similar to the requirement that they do not belong to the phonon
band (see Remark 4.1). In the case of the indefinite sign, non trivial breathers exist for any Ω > 0.

Although the study is limited to the finite dimensional lattice, this case is of importance especially for
numerical simulations: since the infinite lattice cannot be modelled numerically, numerical investigations should
consider finite lattices with Dirichlet or periodic boundary conditions. The choice of boundary conditions only
matters, if the pulse is moving and collides with the boundary. We expect that similar bounds can be derived for
the case of periodic boundary conditions, by considering appropriate variational problems, but the details have
to be checked. The numerical study performed in this paper, considers as examples, the standard defocusing
DNLS, the case of a single nonlinear impurity Λn = δn,0 and the case of a random DNLS where Λn is described
by a uniform distribution of +1 and −1.

We mention at this point, that an analytical and numerical study, on various lower bounds of the power
of time periodic solutions, of the DNLS equation with saturable and power nonlinearities in infinite and finite
lattices, is considered in [3].

2 A lower bound for time periodic solutions of the defocusing DNLS

in a finite lattice

In this section we discuss a lower bound for time periodic solutions of the defocusing DNLS in a finite lattice
and its relation to the excitation threshold of the focusing DNLS.

Substitution of the solution (1.4) into (1.1)-(1.2) shows that φn satisfies the system of algebraic equations

−ǫ(∆dφ)n − Ωφn = −Λn|φn|
2σφn, Ω > 0, ||n|| ≤ K, (2.1)

φn = 0, ||n|| > K. (2.2)

The finite dimensional problem (2.1)–(2.2) will be formulated in the finite dimensional subspaces of the sequence
spaces ℓp, 1 ≤ p ≤ ∞,

ℓp(ZN
K) = {φ ∈ ℓp : φn = 0 for ||n||| > K} . (2.3)

Clearly ℓp(ZN
K) ≡ C

(2K+1)N

, endowed with the norm

||φ||p =





∑

||n||≤K

|φn|
p





1
p

.

Moreover, it is easy to check by using Hölder’s inequality that

||φ||p ≤ (2K + 1)
N(q−p)

qp ||φ||q ≤ ||φ||p, 1 ≤ p ≤ q <∞. (2.4)

The principal eigenvalue of the operator −∆d denoted by λ1 > 0, can be characterized as

λ1 = inf
φ ∈ ℓ2(ZN

K)
φ 6= 0

(−∆dφ, φ)2
∑

||n||≤K |φn|2
, (2.5)

Hence (2.5) implies the inequality

ǫλ1

∑

||n||≤K

|φn|
2 ≤ ǫ(−∆dφ, φ)2 ≤ 4ǫN

∑

||n||≤K

|φn|
2. (2.6)

Thus from (2.6), we find for λ1 the bound

λ1 ≤ 4N. (2.7)

In the case of an 1D-lattice n = 1, . . . ,K, the eigenvalues of the discrete Dirichlet problem −∆dφ = λφ, with
φ real, are given explicitly by

λn = 4 sin2

(

nπ

4(K + 1)

)

, n = 1, . . . ,K,



Periodic solutions of the defocusing DNLS 5

while for a N-dimensional problem, the eigenvalues are:

λ(n1,n2,...,nN ) = 4

[

sin2

(

n1π

4(K + 1)

)

+ sin2

(

n2π

4(K + 1)

)

+ . . .+ sin2

(

nNπ

4(K + 1)

)]

,

nj = 1, . . . ,K j = 1, . . . , N.

In consequence, the principal eigenvalue of the discrete Dirichlet problem −∆dφ = λφ, with φ real, is given by

λ1 ≡ λ(1,1,...,1) = 4N sin2

(

π

4(K + 1)

)

.

We also mention that the inequality (1.10) holds for any element of the finite dimensional space φ ∈ ℓ2(ZN
K).

The result of this note is stated in the following

Theorem 2.1 We consider the functional

H[φ] = ǫ(−∆dφ, φ)2 +
1

σ + 1

∑

||n||≤K

Λn|φn|
2σ+2, (2.8)

and the variational problem on ℓ2(ZN
K)

inf







H[φ] :
∑

||n||≤K

|φn|
2 = R > 0







, (2.9)

Then there exists a minimizer φ̂ ∈ ℓ2(ZN
K) for the variational problem (2.9) and Ω = Ω(R) > 0, such that

Ω > ǫλ1, (2.10)

both satisfying the Euler-Lagrange equation (2.1), and
∑

||n||≤K |φ̂n|2 = R2.

Moreover, if σ ≥ 2
N

and

Ω > 4ǫN, (2.11)

the power of the minimizer P [φ̂] satisfies the lower bound

Rthresh ·

[

Ω − 4Nǫ

4ǫMN(σ + 1)

]
1
σ

≤ P [φ̂], M = max
||n||≤K

{Λn} (2.12)

where Rthresh ≡ Rthresh(σ,N, ǫ) is the excitation threshold of solutions (1.9) of the focusing DNLS (1.6).

Proof: We consider the set

B =







φ ∈ ℓ2(ZN
K) :

∑

||n||≤K

|φn|
2 = R2







. (2.13)

Clearly H : B → R is a C1-functional (see [8, Lemma 2.3, pg. 121]). Also, it is bounded from below: inequality
(2.6), implies that

H[φ] ≥ ǫ(−∆dφ, φ)2 ≥ ǫλ1R
2. (2.14)

We are restricted to the finite dimensional space ℓ2(ZN
K), and it follows that any minimizing sequence associated

with the variational problem (2.9) is precompact: any minimizing sequence has a subsequence, converging to a

minimizer. Thus E attains its infimum at a point φ̂ in B. Now, for the C1-functional

LR[φ] =
∑

||n||≤K

|φn|
2 −R2, (2.15)

we get that for any φ ∈ B

〈L′
R[φ], φ〉 = 2

∑

||n||≤K

|φ|2 = 2R2 > 0. (2.16)
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Thus the Regular Value Theorem ([2, Section 2.9], [7, Appendix A,pg. 556 ]) implies that the set R2 = L−1
R (0)

is a C1-submanifold of ℓ2(ZN
K). By applying the Lagrange multiplier rule, we get the existence of a parameter

Ω = Ω(R) ∈ R, such that

〈

H′[φ̂] − ΩL′
R[φ̂], ψ

〉

= 2ǫ(−∆dφ̂, ψ)2 + 2
∑

||n||≤K

Λn|φ̂n|
2σφ̂nψn (2.17)

−2ΩRe
∑

||n||≤K

φ̂nψn = 0, for all ψ ∈ ℓ2(ZN
K).

By 〈·, ·〉 we denote the duality bracket between ℓ2(ZN
K) and its isomorphic dual C(2K+1)N

(hence this bracket

actually coincides with the scalar product (·, ·)2). Setting ψ = φ̂ in (2.17), we find that

2ǫ(−∆dφ̂, φ̂)2 + 2
∑

||n||≤K

Λn|φ̂|
2σ+2 = 2Ω

∑

||n||≤K

|φ̂n|
2. (2.18)

By using inequality (2.6) and (2.17) we get the inequality

2ǫλ1

∑

||n||≤K

|φ̂n|
2 ≤ 2ǫ(−∆dφ̂, φ̂)2 + 2

∑

||n||≤K

Λn|φ̂|
2σ+2 = 2Ω

∑

||n||≤K

|φ̂n|
2, (2.19)

implying that

Ω > ǫλ1,

that is, (2.10). Lastly, we shall use (1.10), with the optimal constant (1.11), to estimate the second term on the
rhs of (2.18): we have

2ǫ(−∆dφ̂, φ̂)2 + 2 max
||n||≤K

{Λn}C∗





∑

||n||≤K

|φ̂n|
2





σ

(−∆dφ̂, φ̂)2 ≥ 2Ω
∑

||n||≤K

|φ̂n|
2. (2.20)

Since from (2.6)

∑

||n||≤K

|φ̂n|
2 ≥

1

4N
(−∆dφ̂, φ̂)2,

inequality (2.20) becomes

2ǫ(−∆dφ̂, φ̂)2 + 2MC∗





∑

||n||≤K

|φ̂n|
2





σ

(−∆dφ̂, φ̂)2

≥
2Ω

4N
(−∆dφ̂, φ̂)2. (2.21)

Thus, from (2.21), we get

ǫ+MC∗R
2σ ≥

Ω

4N
. (2.22)

Now from (2.22) we may infer the the lower bound

[

Ω − 4Nǫ

4MNC∗

]
1
σ

< R2. (2.23)

Replacing the value C∗, given by (1.2), in inequality (2.23), we find

Rthresh ·

[

Ω − 4Nǫ

4ǫMN(σ + 1)

]
1
σ

≤ R2, M = max
||n||≤K

{Λn},

which is the lower bound (2.12). Note that (2.10) implies (2.20), due to (2.7). ⋄
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Remark 2.1 The lower bound (2.12) has the following implementation, through Theorem 2.1. There exists a

frequency Ω > ǫλ1 and a nontrivial minimizer φ̂ ∈ ℓ2(ZN
K) of the problem (2.9), such that ψn(t) = e−iΩtφ̂n, is

a solution of (1.1)-(1.2). Furthermore if Ω satisfies (2.11), its power satisfies the lower bound (2.12).

A lower bound for the minimizer φ̂ without using the interpolation inequality (1.10), can be derived directly
by (2.18), by using (2.6) instead. We find from (2.18) that

4ǫNR2 +MR2σ+2 ≥ ΩR2σ+2. (2.24)

From (2.24) we find the estimate

[

Ω − 4Nǫ

M

]
1
σ

≤ R2, σ > 0. (2.25)

It is our aim in Section 4, to examine by a numerical study if the lower bounds (2.12) and (2.25) can serve
as estimates for the threshold on the power of breather solutions (1.4) of (1.1)-(1.2), as well as a comparison
with respect to their possible optimal behaviour.

3 Lower bounds for periodic solutions in the the case of sign-changing

anharmonic parameters.

We shall extend the results of the previous section to the case of (1.1)-(1.2) with sign-changing anharmonic
parameter. Under condition (SG), the DNLS equation (1.1) cannot be considered as focusing or defocusing.
The method based on the Mountain Pass Theorem (MPT) [2, Theorem 6.1, pg. 140] will be used also here (see
[8]), to establish that there exist nontrivial breathers (1.4).

Theorem 3.1 We consider the DNLS equation (1.1) assuming that (SG) is satisfied. For Ω > 0 given, there
exists nontrivial φ ∈ ℓ2(ZN

K) such that ψn(t) = e−iΩtφn, is a solution of the DNLS equation (1.1). Moreover
the power of the nontrivial periodic solution satisfies the lower bounds

[

ǫλ1 − Ω

−minn∈S−
{Λn}

]
1
σ

< R2, 0 < Ω < ǫλ1 σ > 0, (3.1)

[

Ω − 4Nǫ

maxn∈S+{Λn}

]
1
σ

< R2, Ω > 4ǫN, σ > 0. (3.2)

Proof: As in [8], we shall seek for non-trivial breathers as critical points of C1-functional E : ℓ2 → R defined as

E(φ) =
ǫ

2
(−∆dφ, φ)2 −

Ω

2

∑

||n||≤K

|φn|
2 +

1

2σ + 2

∑

||n||≤K

Λn|φn|
2σ+2. (3.3)

By the differentiability of E , it can be easily checked that any critical point of E is a solution of

(−∆dφ, ψ)2 − Ω(φ, ψ)2 = (−Λ|φ|2σφ, ψ)2, for all ψ ∈ ℓ2, Λ = (Λn)||n||≤K , (3.4)

which in turns, is equivalently, a solution of (1.1).
Clearly E [0] = 0. Next, we shall verify the existence of z ∈ ℓ2(ZN

K), such that ||z||22 = θ2 > 0 satisfying
E [z] > 0, which is the first assumption of MPT. We consider

{zn}n∈Z
N
K

= {zn}n∈S+ + {zn}n∈S−
, such that

{

{zn}n∈S+ > 0,
{zn}n∈S−

= 0.
(3.5)

We observe that

E [z] =
ǫ

2
(−∆dz, z)2 −

Ω

2

∑

n∈S+

|zn|
2 +

1

2σ + 2

∑

n∈S+

Λn|zn|
2σ+2

≥
ǫ

2
(−∆dz, z)2 −

Ω

2

∑

n∈S+

|zn|
2 +

minn∈S+{Λn}

2σ + 2

∑

n∈S+

|zn|
2σ+2

≥ −
Ω

2

∑

n∈S+

|zn|
2 +

minn∈S+{Λn}

2σ + 2

∑

n∈S+

|zn|
2σ+2. (3.6)
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Applying (2.4) for q = 2σ + 2 and p = 2, we get that

||φ||2σ+2
2σ+2 ≥

1

(2K + 1)Nσ
||φ||2σ+2

2 . (3.7)

Combining (3.6) with (3.7) we get that

E [z] ≥ −
Ω

2

∑

n∈S+

|zn|
2 +

minn∈S+{Λn}

(2σ + 2)(2K + 1)Nσ





∑

n∈S+

|zn|
2





σ+1

. (3.8)

Then from (3.8), it follows that the requirement E [z] > 0 holds if z satisfies (3.5) and

θ2 >

[

Ω(2σ + 2)(2K + 1)Nσ

2 minn∈S+{Λn}

]

1
σ

.

Now consider some χ ∈ ℓ2(ZN
K) with ||χ||2 = 1 such that

{χn}n∈Z
N
K

= {χn}n∈S+ + {χn}n∈S−
, where

{

{χn}n∈S+ = 0,
{χn}n∈S−

> 0.

Setting ζ = tχ ∈ ℓ2(ZN
K), for some t > 0, we observe that

E[ζ] =
t2

2
ǫ(−∆dζ, ζ)2 −

Ωt2

2
+

t2σ+2

2σ + 2

∑

n∈S−

Λn|zn|
2σ+2. (3.9)

Letting now t→ +∞ we get from condition (P ), that E [tχ] → −∞. Thus choosing χ as in (3.9) and t sufficiently
large, we derive the existence of some z1 ∈ ℓ2(ZN

K) such that E [z1] < ρ. Furthermore, since we are restricted in
the finite lattice (ZN

K ), the functional E satisfies Palais-Smale condition [2, Definition 4.1, pg. 130]. Hence, the
conditions of MPT are satisfied, justifying the existence of nontrivial breather solution (1.4).

Since the nontrivial critical point φ of the functional E is a solution of (3.4) we may set ψ = φ in (3.4), to
get that

ǫ(−∆dφ, φ)2 − Ω
∑

||n||≤K

|φn|
2 +

∑

||n||≤K

Λn|φn|
2σ+2 = 0. (3.10)

From (3.10) we get the inequality

∑

n∈S+

Λn|φn|
2σ+2 +

∑

n∈S−

Λn|φn|
2σ+2 = Ω

∑

||n||≤K

|φn|
2 − ǫ(−∆dφ, φ)2

≥ (Ω − 4ǫN)
∑

||n||≤K

|φn|
2. (3.11)

Assuming that Ω > 4ǫN we get from (3.11) that

∑

n∈S+

Λn|φn|
2σ+2 >

∑

n∈S−

{−Λn}|φn|
2σ+2, {−Λn}n∈S−

≥ 0. (3.12)

Thus in the case where Ω > 4ǫN , the “defocusing part” of the nonlinearity “dominates” in the sense of (3.12).
In this case and since

∑

n∈S−

{−Λn}|φn|2σ+2 ≤ 0, we deduce that

(Ω − 4ǫN)
∑

||n||≤K

|φn|
2 ≤

∑

n∈S+

Λn|φn|
2σ+2 +

∑

n∈S−

Λn|φn|
2σ+2

<
∑

n∈S+

Λn|φn|
2σ+2

< max
n∈S+

{Λn}
∑

n∈S+

|φn|
2σ+2

< max
n∈S+

{Λn}
∑

||n||≤K

|φn|
2σ+2. (3.13)
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Using (2.4) and (3.13), we find the lower bound

[

Ω − 4Nǫ

maxn∈S+{Λn}

]
1
σ

< R2.

On the other hand, when the “focusing part” dominates in the sense of

∑

n∈S+

Λn|φn|
2σ+2 <

∑

n∈S−

{−Λn}|φn|
2σ+2, (3.14)

we get from (3.11) that

(

Ω

4N
− ǫ

)

(−∆dφ, φ)2 ≤ Ω
∑

||n||≤K

|φn|
2 − ǫ(−∆dφ, φ)2 < 0, (3.15)

due to (2.6). Thus (3.14) holds when the frequency of the breather solution satisfies

Ω < 4ǫN. (3.16)

By using (2.6), we get from (3.11) and (3.15) that

(ǫλ1 − Ω)
∑

||n||≤K

|φn|
2 ≤ ǫ(−∆dφ, φ)2 − Ω

∑

||n||≤K

|φn|
2

= −
∑

n∈S+

Λn|φn|
2σ+2 −

∑

n∈S−

Λn|φn|
2σ+2

≤
∑

n∈S−

{−Λn}|φn|
2σ+2

. ≤ − min
n∈S−

{Λn}
∑

||n||≤K

|φn|
2σ+2. (3.17)

Condition (3.16), implies that Ω < ǫλ1. In this case, we may infer from (3.17) the lower bound

[

ǫλ1 − Ω

−minn∈S−
{Λn}

]
1
σ

< R2.

Finally, when

∑

n∈S+

Λn|φn|
2σ+2 =

∑

n∈S−

{−Λn}|φn|
2σ+2, (3.18)

i.e.
∑

||n||∈S+
Λn|φn|

2σ+2 = 0, then from (3.11) we get that

−∆dφn = Ωφn, ||n|| ≤ K,

φn = 0, ||n|| > K.

Thus when (3.18), it follows that Ω is an eigenvalue of the Discrete Laplacian, and φ behaves as a corresponding
eigensolution of the discrete eigenvalue problem. ⋄

Remark 3.1 Working exactly as in the proof of the estimate (2.12) we may replace the estimate (3.2) of the
case Ω > 4ǫN , by

Rthresh ·

[

Ω − 4Nǫ

4ǫM1N(σ + 1)

]
1
σ

≤ R2, M1 = max
||n||≤K

|Λn| (3.19)

which is the extension of the estimate (2.12) in the case of sign-changing anharmonic parameters.
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Remark 3.2 Setting Ω = 0 in (3.6), (3.8) as well as in (3.9), it can be easily checked that Theorem 3.1 can be
used for the proof of existence of nontrivial steady state solutions of (1.1)-(1.2) under condition (SC) for the
anharmonic parameter, i.e. solutions of the problem

−ǫ(∆dφ)n = −Λn|φn|
2σφn, Ω > 0, ||n|| ≤ K, (3.20)

φn = 0, ||n|| > K. (3.21)

The result of Theorem 3.1 if combined with [8, Theorem 2.6, pg.125] establishes the existence of periodic
solutions (1.4) for any Ω ∈ R. Moreover, it is straightforward to check that inequality (3.17) is valid for Ω < 0.
Thus the lower bound (3.1) for the power of periodic solutions (1.4) is valid for any in Ω ∈ (−∞, ǫλ1), that is

[

ǫλ1 − Ω

−minn∈S−
{Λn}

]
1
σ

< R2, Ω ∈ (−∞, ǫλ1), σ > 0. (3.22)

4 Numerical studies of the lower bounds.

We perform a numerical study to test the lower bounds derived in the previous sections. This numerical study
consists in checking that the power of a numerically calculated breather is higher than the theoretical thresholds
estimates. To this end, we consider single site breathers (i.e. localized solutions with only one excited site at
the anti-continuous limit, ǫ = 0), which are the lowest power solutions.

Figures 1-4 refers to the cases (σ = 2, N = 1, ǫ = 0.25), (σ = 1, N = 2, ǫ = 0.15), (σ = 10, N = 1, ǫ = 0.25)
and (σ = 2, N = 2, ǫ = 0.15), respectively. All the cases consider the value σ ≥ 2

N
of Theorem 1.1, where the

excitation threshold appears.
Figure 1 shows the power of a family of single site breathers together with the corresponding threshold

estimates (2.12), (2.25), for a homogeneous lattice (Λn = 1 ∀n). The inset in each picture is a numerical
verification of Theorem 1.1, demonstrating the region where the numerical power of periodic solutions (1.9) of
the focusing DNLS (1.6) for the same values of σ, N, ǫ, reaches the minimum value Rthresh. These numerical
values have been inserted in the estimate (2.12). The numerical study shows that the numerical power of
periodic solutions (1.4) of the defocusing DNLS (1.1)-(1.2), fulfills the estimates. It can also be remarked, that
the numerical studies indicate that

lower bound (2.12) < lower bound (2.25). (4.1)

From this numerical observation and the appearance of Rthresh in (2.12), we may guess an explicit upper bound
for Rthresh,

Rthresh < [4ǫN(σ + 1)]
1
σ , σ ≥

2

N
. (4.2)

Testing the estimate with the values for the parameters in figure 1, we get for (a) Rthresh < 1.732, for (b)
Rthresh < 2.4, for (c) Rthresh < 1.270 and for (c) Rthresh < 1.897. In all cases the numerical calculated Rthresh

satisfies the above estimates. We remark that in the vicinity of Ω = 1, the numerical power tends to infinity
when N = 1 and σ > 2 and to a finite value for the cases N = 1, σ = 2 and N = 2, σ ≥ 1. Explanations for
this behavior are not straightforward, we refer to [12] for a detailed discussion.

Figure 2, demonstrates the results of the numerical study for the DNLS (1.1)-(1.2) for the case of a single
nonlinear impurity Λn = δn,0. For the estimate (2.12) the values of Rthresh of figure 1 have been used. As it
is shown, both theoretical estimates can serve as satisfactory predictions of a lower bound for the numerical
power of the breathers. In comparison with the case of constant anharmonic parameter, the accuracy of both
estimates is increased. In this case also (4.1) is also satisfied.

Figure 3 present the results of a numerical study for a DNLS lattice with sign-changing anharmonic param-
eter. We choose as an example, a random DNLS lattice (1.1)-(1.2). The random site dependent anharmonic
parameter Λn is given by a random uniform distribution of +1 and −1. The figure shows the numerical power
of breathers against the estimates (3.2) and (3.19) (here M1 = max||n||≤K |Λn| = 1), for the random DNLS
lattice. Both figures justify that both theoretical estimates, are fulfilled as a lower bounds for the power of
breathers with frequency Ω > 4ǫN , also in the case of the random DNLS lattice.

The results of the numerical study checking the estimate (3.1) and especially (3.22) for the random DNLS
lattice, are presented in figure 4. For Ω < 0 as well as for the case 0 ≤ Ω < ǫλ1, it follows that the lower
bound (3.22) gives satisfactory quantitative predictions for lower bounds on the real power of the breathers of
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Figure 1: Numerical power for solutions (1.4), of the defocusing DNLS (1.1)-(1.2), with constant anharmonic
parameter Λn = 1. (a) σ = 2, N = 1 (σ = 2

N
), (b) σ = 1, N = 2 (σ = 2

N
), (c) σ = 10, N = 1 (σ > 2

N
),

(d) σ = 2, N = 2 (σ > 2
N

). The inset in each case, shows a magnification of the region where the power of
periodic solutions (1.9) of the focusing DNLS (1.6), reaches its minimum value. In case (a), Rthresh = 1.009, in
case (b), Rthresh = 0.855, in case (c), Rthresh = 1.098 and in case (d), Rthresh = 1.047. Full line corresponds to
the numerical calculated single site breathers, dashed line to the estimate (2.12) and dotted line to the estimate
(2.25).
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Figure 2: Numerical power for single site breathers centered at the nonlinear impurity site (1.4), of the defocusing
DNLS (1.1)-(1.2) with a nonlinear impurity Λn = δn,0.
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Figure 3: Numerical power for solutions (1.4) for the random DNLS lattice (1.1)-(1.2) against the theoretical
estimates (3.2) and (3.19). The numerical solutions are single site breathers centered at n = 0, for which
Λn = +1.
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Figure 4: Numerical power for solutions (1.4) for the random DNLS lattice (1.1)-(1.2) against the theoretical
estimate (3.22). The numerical solutions are single site breathers centered at n = 1, for which Λn = −1.

the random DNLS lattice. Notice that the Ω is always below 0 because single site breathers in random lattices
always bifurcate with another breather solution for Ω < 0 (see Refs. [20] and [21]). We also refer to [19], on the
application of numerical methods, for calculating power thresholds of localized excitations in DNLS lattices.

Remark 4.1 The results of [17] prove the existence of an excitation threshold, which appears for the case
σ ≥ 2/N , as well the existence of a frequency ω∗ > 0 on which this threshold value on the power is achieved.
The corresponding solution ψn(t) = eiω∗tφn is a ground state having power Pthresh-the excitation threshold value.
However, the thresholds we have calculated in the paper are “local” ones, i.e. they are value above which the
power of each breather with given Λn, ǫ, σ, and Ω must be. On the other hand, noting that the numerical power
approaches in a quite sharp manner the theoretical estimates, for “limiting” large values of of the nonlinearity
exponent σ > 2/N (as it is observed in the case σ = 10) and large frequencies, can be considered also as “global”
in the sense that they predict the smallest value a breather can have for any Ω, σ,N satisfying the assumptions
for the derivation of the estimates. We remark that similar “global” bounds have been shown in [3] for the
case σ < 2/N which is the case of nonexistence of the excitation threshold of [17], as well as for the saturable
nonlinearity.

Finally, we note that the phonon band of the defocusing DNLS equation extends to the interval [0, 4Nǫ].
Then breathers frequencies must lie in the intervals Ω > 4Nǫ, or Ω < 0. It is the former case which we consider
in this paper (except in Figure 4, where the latter is considered).
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