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Abstract In one–dimensional translationally invariant anharmonic lattices, an ex-
tended Bloch state with two or more strongly correlated particles is usu-
ally called a quantum breather. Here we study an attractive fermionic
Hubbard model with two kind of particles of opposite spin. We discuss
the existence of breathers, and several effects that break the transla-
tional symmetry of the system and localize the breather in the lattice.
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1. Introduction

Recent theoretical developments and improved experimental tech-
niques has led to growing interest in the phenomenon of localization of
energy by nonlinearity in anharmonic lattices. The existence and prop-
erties of these intrinsic localized modes, known as discrete breathers,
have been subject of an much investigation (see, e.g [1] for a number of
recent reviews of this topic). At present, discrete breathers in classical
systems is a relatively well understood phenomenon, but knowledge of
the quantum equivalent of discrete breathers is not very developed. In
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particular we restrict ourselves to a study of small lattices and a small
number of quanta where some numerically exact solutions can be found.
Although of less interest to the study of bulk matter, such studies are
relevant to the recent developments in quantum nanotechnology and
applications in quantum computing [7].

The quantum equivalent of a discrete breather in a translationally
invariant anharmonic lattice is an extended Bloch state with two or more
particles in a strongly correlated state. There exist some theoretical
results (i.e. [2, 3]), and some experimental observations of these states
in different quantum systems, as mixtures of 4–methyl–pyridine [4], in
Cu benzoates [5], and in doped alkalihalides [6].

Here we present some results on a quantum one–dimensional lattice
problem with a small number of quanta. We study a periodic lattice
with f sites containing fermions, described by an attractive fermionic
Hubbard model (FH) with two kinds of particles with opposite spins. It
is a model of interest in connection with the theory of high-Tc super-
conductivity [8], and it can be used to describe bound states of electron
and holes in some nanostructures as nanorings (excitons) [9]. Many of
the results could be extended to a great variety of systems, i.e., we have
obtained similar results with a periodic lattice containing bosons and
described by the quantum discrete nonlinear Schrödinger equation [10].

This paper is organized as follows: In the next section we present
the model, and in Section 3 we study the existence of breathers in the
simplest nontrivial case. In Section 4, we consider some modifications
that break the translational symmetry of the lattice, and can localize
the breather in the lattice. In Section 5 we extend the previous results,
obtained in the simplest nontrivial case, to more complicated situations.
Finally, in Section 6, we summarize our findings and present our conclu-
sions.

2. The model

We consider an anharmonic lattice with f sites and two kinds of
fermions with opposite spins described by an attractive fermionic Hub-
bard model (FH). The Hamiltonian of the system is given by

Ĥ = −
f

∑

j=1

γja
†
jajb

†
jbj + εja

†
j(aj−1 + aj+1) +meεjb

†
j(bj−1 + bj+1), (1)

where a†j(aj) and b†j(bj) are raising (lowering) operators for different elec-
tronic spin states, satisfying the standard fermionic anticommutation re-
lations. The parameter ratio γj/εj represent the ratios of anharmonicity
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to nearest–neighbor, hopping energy, and me is the ratio of the effec-
tive mass of one type of fermion to the other. To eliminate the effects
related to the finite size of the chain, we consider periodic boundary con-
ditions and, initially, a translational invariant lattice, γj = γ and εj = ε,
independent of j. In general we consider ε = 1.

The Hamiltonian (1) conserves the number of quanta N , and it is
possible to apply the number–state–method to calculate the eigenvalues
and eigenvectors of the Hamiltonian operator [11]. We use a number–
state–basis |ψn〉 = [na

1, n
a
2, ..., n

a
f ;nb

1, n
b
2, ..., n

b
f ], where na

i (nb
i) represents

the number of quanta of fermions a (b) at site i. In this case, Na =
∑

i n
a
i , Nb =

∑

i n
b
i , and N = Na + Nb. A general wave function is

|Ψn〉 =
∑

n cn|ψn〉. As a first step, we restrict ourselves to study the
simplest nontrivial case Na = 1, Nb = 1, and as a second step we
consider more complicated situations with a small number of quanta,
although many of the results are valid for larger values of Na and Nb.
The bound states correspond to exciton states, localized electron/hole
states that may appear in nanorings.

3. Quantum breathers in a translational
invariant lattice

In a homogeneous quantum lattice with periodic boundary condi-
tions, it is possible to block–diagonalize the Hamiltonian operator using

eigenfunctions of the translation operator T̂ defined as T̂ b†j = b†j+1T̂

(T̂ a†j = a†j+1
T̂ ). In each block, the eigenfunctions have a fixed value of

the momentum k, with τ = exp(ik) being an eigenvalue of the transla-
tion operator [11]. In this way, it is possible to calculate the dispersion
relation E(k) with a minimal computational effort. The corresponding
matrix in the case Na = Nb = 1 is

Hk = −



















γ q∗ 0 . . q
q 0 q∗ 0 . 0
0 q 0 q∗ . .
. . . . . .
. . . q 0 q∗

q∗ . . . q 0



















,

where q = (me + τ∗).
In this simplest non–trivial case, if the anharmonicity parameter is

large enough, as Fig 1 shows, there exists an isolated eigenvalue for each
k which corresponds to a localized eigenfunction, in the sense that there
is a high probability for finding the two quanta at the same site. But due
to the translational invariance of the system, there is an equal probability
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for finding these two quanta at any site of the system. In these cases,
some analytical expressions can be obtained in some asymptotic limits
(for a recent discussion see [2, 11, 12]). Note that, qualitatively, the
existence of this localized state is independent of the value of parameter
me.
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Figure 1. Eigenvalues E(k). N = 2, f = 19, γ = 4. me = 1 (top) and me = 0.2
(bottom).

If we consider for simplicity the case k = 0, the ground state unnor-
malized eigenfunction is

|Ψ〉 = [10 . . . 0; 10 . . . 0]+[01 . . . 0; 01 . . . 0]+. . . [0 . . . 01; 0 . . . 01]+O(γ−1),

i.e. on a lattice of length f , the unnormalized coefficients ci of the first
f terms are equal to unity and the rest are O(γ−1).

4. Trapping in a lattice with broken
translational symmetry

In this section we will consider some modifications that can break
the translational invariance of the lattice, changing the coefficients ci

and localize the breather around a particular point of the lattice. In
these cases, the Hamiltonian operator cannot be block-diagonalized us-
ing eigenvectors of the translation operator. Although the computational
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effort increases, it is still possible to calculate its eigenvalues and eigen-
vectors if f and N are small enough, by using algebraic manipulation
methods and numerical eigenvalue solvers. In this section we restrict to
the situation Na = Nb = 1.

Perhaps the simplest way to break the translational invariance of the
lattice is by considering non–flux boundary conditions to simulate a
finite–size chain. In this case, the solution becomes weakly localized
around the middle of the lattice. If f is high enough, and we do no take
into account boundary effects, this case reduces to the homogeneous
lattice case.

A alternative mechanism for breaking the translational invariance can
be the existence of local inhomogeneities or impurities. In our model,
this can be modeled by making one or more of the γj or the εj depen-
dent on j. This can occur because of localized impurities or long–range
interaction between non nearest-neighbors sites due to non–uniform ge-
ometries of the lattice chain. The interplay between these two sources
of localization, nonlinearity and impurities is important to understand
the properties of these bound states.

(a) (b)

α

Figure 2. Two non-uniform chain geometries.

Two examples of non–uniform geometries are shown in Fig. 2. In Fig.
2a, a twisted circular geometry causes an interaction between two sites
of the chain, which are distant with respect to measurement along the
length of the chain. This model has been used in a classical model of a
globular protein [13], and it has been shown that moving breathers de-
scribed by the DNLS equation can be trapped at the cross–over point.
Fig. 2b shows another possible geometry, a bent chain, that has been
recently studied in the context of the DNLS equation and photonic crys-
tal context [14] and in Klein–Gordon systems [15]. In all these cases,
the geometry effects can be modeled by adding a long–range interaction
term of the form

α`,m(b†`bm + b†mb`), (2)
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where ` and m are the neighbouring sites put brought closer in the
twisted–chain case, and m = m0 − 1 and ` = m0 + 1 in the bent–chain
case, where m0 is the vertex of the chain.

We will analyze in more detail these modifications that break the
translational invariance of the system.

4.1 Localization in a chain with impurities

We introduce a local inhomogeneity in the anharmonic parameter in
our system and retain periodic boundary conditions, in order to isolate
the effect caused by this local inhomogeneity alone. We put γ` = γimp,
and γj = γ for j 6= l.

In the homogeneous system, as discussed above, if the anharmonicity
parameter is large enough there exists a high probability of finding the
two particles at the same site of the chain, but with equal probability at
any site of the chain. If we consider a point impurity, a isolated localized
bound state appears, as shown in Fig. 3. This state has minimal energy
and corresponds to the ground state.
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Figure 3. Eigenvalues E as a function of the expected value of k corresponding to
the localized eigenfunctions. N = 2, f = 19, me = 1 and γ = 4. Point impurity at
the site ` = 10. Homogeneous chain (top). γimp = 4.5 (center). γimp = 5 (bottom).

If we analyze this ground state, we observe that as γimp increases,
the localization around the impurity increases too, as shown in Fig 4.
In particular, the main contribution to the wave function corresponds
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to the bound states centered around the impurity. There exists also a
small contribution that corresponds to states with particles in adjacent
sites around this local inhomogeneity.
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Figure 4. Square wave function amplitudes |cn|2 corresponding to the ground state
as a function of the positions of the two fermions along the chain na and nb. f = 19
and γ = 4. Point impurity at the site ` = 10. (a) Homogeneous chain, me = 1. (b)
γimp = 4.5, me = 1. (c) γimp = 5, me = 1. (d) γimp = 5, me = 0.2.

If we analyze the contribution of the components of the wave function
of the ground state corresponding to the two particles centered around
the local inhomogeneity in the same site, in adjacent sites, and separated
by one site, as shown in Fig 5, we observe that the localization increases
very rapidly with the magnitude of the impurity. Varying the value
of me from unity amplifies this effect even further. We note that, in
this case, as harmonic terms are homogeneous (null), there exists no
Anderson–like localization.

4.2 Localization in a twisted chain

In order to simulate the twisted chain shown in Fig. 2a, we consider a
long–range hopping term between sites m and ` given by parameter αm,`.
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Figure 5. Some components of the wave function corresponding to the ground
state. N = 2, f = 19, γ = 4 and me = 1. Two particles centered on the impurity
(continuous line). Two particles in adjacent sites with one of them centered on the
impurity (dashed–dotted line). Two particles separated by one site and one of them
on the impurity (dotted line).

As Fig. 6 shows, this coupling generates a localized bound state around
the sites m and ` that is a ground state of the system, a phenomenon
similar to that shown in Fig 3. Although there exist some degree of
localization in the harmonic case (γ = 0) due to an Anderson–like effect,
the existence of bound states due to the anharmonicity parameter γ
strongly increases the localization. Similar results have been obtained
with different values of the parameter αm`.

4.3 Localization in a bent chain

To simulate the bend shown in Fig. 2b, we introduce an additional
term that takes into account the interaction between the two neigh-
bouring sites of the vertex. In this case, if we suppose that the hop-
ping term varies as the inverse of the square of the distance between
sites, the parameter α can be related to the wedge angle θ through
α = 1

2
/(1 − cos θ)−1.

As shown in Fig. 7, due to the existence of this long–range interac-
tion, there exist a localization phenomenon around the vertex of the
chain. If the wedge angle is small enough, the ground state is mainly
a bound state with the two particles localized in the neighbouring site
of the vertex, but when this angle decreases, the contribution of the
components corresponding to non–localized states with particles around
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Figure 6. Square wave function amplitudes |cn|2 corresponding to the ground state
as function of the positions of the two fermions na and nb along the twisted chain.
Long range interaction between sites m = 5 and ` = 15 with αm` = 1 and f = 19.
(a) γ = 0 (harmonic case), me = 1. (b) γ = 2, me = 1. (c) γ = 4, me = 1. (d) γ = 4,
me = 0.2.

the vertex becomes significant. In the limit θ → 0, the lattice becomes
a T-junction. We have found that in this system, the ground state is
mainly localized around the junction.

We have compared this localization effect with the Anderson-like lo-
calization in the harmonic system (γ = 0). As shown in Fig. 8, the exis-
tence of bound states in the anharmonic case implies that the localization
effect due to the curvature of the system increases. This enhancement
decreases when θ decreases, although there exists a maximum around
θ ≈ 0.5.

We note that this model, to give a more realistic approximation of
a bent chain, must be improved to take into account the long–range
interaction between all sites that becomes significant when the angle θ
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Figure 7. Square wave function amplitudes |cn|2 corresponding to the ground state
as a function of the positions of the two fermions na and nb along the bent chain.
f = 19 and γ = 4. (a) θ = π, me = 1. (b) θ = π/3, me = 1. (c) θ = π/10, me = 1.
(d) θ = π/10, me = 0.2.

is small enough. We have considered the model given by the Hamiltonian

Ĥ = −γ
f

∑

j=1

a†jajb
†
jbj −

f
∑

j=1

∑

i>j

1

d2
ij

(a†iaj + a†jai) −

f
∑

j=1

∑

i>j

me

d2
ij

(b†i bj + b†jbi), (3)

where dij represents the distance between sites i and j. We have found
the same qualitative behavior.

5. Higher number of quanta

In previous sections, we have restricted our studies to the case Na =
Nb = 1. Proceeding as the same way, it is possible –in principle– to
construct the Hamiltonian matrix for any value of the quantum numbers
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Figure 8. Some components of the wave function corresponding to the ground state.
N = 2, f = 19 and me = 1. Localized state corresponding to the two particles at
the neighbor site of the vertex and γ = 4 (continuous line). Two particles in a non–
localized state at neighbouring sites of the vertex and γ = 4 (dashed-dotted line).
Two particles in a non–localized state at neighbouring sites of the vertex and γ = 0
(dotted line).

Na and Nb and to calculate the spectrum. However, the computational
effort increases rapidly and can go beyond the limits of computational
convenience. Nevertheless, we have studied some cases involving a higher
number of fermions. In particular, we have considered the case Na = 2
and Nb = 1 and the case Na = Nb = 2.

In general, we have found the same qualitative behavior than in the
previous case. In the homogeneous system, if the anharmonic parameter
is high enough, the ground state is mainly a localized state, in the sense
that there exists a high probability to find two different fermions at the
same point of the lattice, but due to the translational invariance of the
system, with equal probability of finding these two particles at any site
of the system. However, we observe that the main components of the
ground state correspond to states where fermions of the same type are
as far apart as possible from each other. This is a similar effect as due
to the finite–size of the chain where the ground state is weakly localized
around the center of the chain. When a fermion is close to other of the
same type, the hopping in that direction is limited, as in the case of a
finite–size chain.

When we introduce some local inhomogeneities in the system, we
have observed similar localization phenomena as noted above. In Fig
9 we show the case Na = 2 and Nb = 1 with a point impurity at the
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anharmonic parameter. We observe that the ground state is mainly a
bound state. The two different fermions are mainly in a localized state
centered at the impurity with the other fermion in the other extremum
of the chain. We note that there exists a significant contribution of
other components corresponding to localized states of the two different
fermions in the impurity and the other one in different sites of the chain,
this contribution being more significant when it corresponds to states
where the two fermions are separated by a large number of sites. This
system, in the context of excitons in ring geometries, is usually called
ortho–trion, and can be viewed as an exciton plus an additional electron
smeared over the ring [16].
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Figure 9. Some components of the wave function of the ground state corresponding
to the case f = 11, Na = 2, Nb = 1, γ = 4, point impurity at the site ` = 6 and
γimp = 5. na represents the position of one of the fermions of type (a) (the other
fermion is located at na + 5) and nb the position of the fermion of type (b). me = 1
(left), me = 0.2 (right).

In the other cases, when a local inhomogeneity is introduced by means
of a long–range interaction term, or Na = Nb = 2 is considered, the be-
havior is similar. The ground state corresponds to a localized state
centered at the local inhomogeneities where different fermions are to-
gether and fermions of the same type are located as further apart as
possible one from the other.

6. Conclusions

In this work we have shown some results related with the existence
and properties of quantum breathers in a fermionic Hubbard model with
two kinds of particles of opposite spins. We have studied the existence
of localized states due to the nonlinearity and to the influence of local
inhomogeneities in these localized states. In particular, we have found
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that these local inhomogeneities, due to the geometrical factor and to a
long–range interaction or an impurity in the anharmonicity parameter,
break the translational invariance of the system and localize the ground
state around a particular site of the chain. We expect that these results
are rather general, and could be extended to a great variety of systems.
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