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Abstract. We present an algebraic formulation of genus 2 hyperelliptic func-
tions which exploits the underlying covariance of the family of genus 2 curves.
This allows a simple interpretation of all identities in representation theoretic
terms. We show how the classical theory is recovered when one branch point
is moved to infinity.

1. Introduction

We will consider the family of curves in C2

(1.1) y2 = λ6x
6 + λ5x

5 + λ4x
4 + λ3x

3 + λ2x
2 + λ1x + λ0,

where the λi are complex parameters. The generic member of this family is a
curve of genus 2 with branch points in general position. In the classical theory one
branch point is usually moved to infinity using a rational linear transformation so
that λ6 = 0. The value of λ5 is simultaneously taken to equal 4.

The problem of uniformization [4, 8] of the Jacobian Sym2V of any generic curve,
V, of this family is solved, after repositioning the branch point, by defining three
two index functions on the Jacobian. These functions are rational in positions
(x1, y1) and (x2, y2) on the curve:

℘22 = x1 + x2,(1.2)

℘12 = −x1x2,(1.3)

℘11 =
F 0(x1, x2)− 2y1y2

4(x1 − x2)2
,(1.4)

where F 0(x1, x2) is the polar form

F 0(x1, x2) = 4(x1x2)2(x1 + x2) + 2λ4(x1x2)2 + λ3(x1x2)(x1 + x2)

+ 2λ2(x1x2) + λ1(x1 + x2) + 2λ0.(1.5)

The three ℘ functions are meromorphic functions of variables u1 and u2, on the
Jacobi variety, defined by holomorphic differentials

du1 =
dx1

y1
+

dx2

y2
,(1.6)

du2 =
x1dx1

y1
+

x2dx2

y2
.(1.7)
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As we shall need them frequently we insert here the expressions for the corre-
sponding derivatives in terms of the xi and yi

∂

∂u1
=

1
x1 − x2

(
−x2y1

∂

∂x1
+ x1y2

∂

∂x2

)
,(1.8)

∂

∂u2
=

1
x1 − x2

(
y1

∂

∂x1
− y2

∂

∂x2

)
.(1.9)

With respect to these variables the ℘ functions satisfy exactness conditions
∂℘12

∂u1
=

∂℘11

∂u2
,

∂℘22

∂u1
=

∂℘12

∂u2
,

and can be written as double logarithmic derivatives of an entire function, σ, on
the Jacobi variety

(1.10) ℘rs = −∂2 lnσ(u1, u2)
∂ur∂us

.

The three index symbols ℘ijk, defined by differentiation with respect to the ui,
are also rational functions in the xi and yi. In fact

y1 = x1℘222 + ℘122,

y2 = x2℘222 + ℘122,
(1.11)

and so the points ((x1, y1), (x2, y2)) of Sym2V can be expressed as rational functions
in the two and three index ℘ symbols. This is the solution to the uniformization
problem up to the study of the properties of the ℘ functions themselves from the
identities and differential equations they satisfy.

One important identity for the two index symbols is obtained by elimination
of the xi from the defining equations and represents a realization of the Kummer
surface, det K = 0, where:

(1.12) K =




−λ0
1
2λ1 2℘11 −2℘12

1
2λ1 −(λ2 + 4℘11) 1

2λ3 + 2℘12 2℘22

2℘11
1
2λ3 + 2℘12 −(λ4 + 4℘22) 2

−2℘12 2℘22 2 0


 .

Formulae exist for products of three index symbols as cubics in the two index
symbols (see Appendix E) and the final, classical identity amounts to a set of five
partial differential equations for the ℘ functions, i.e. fourth order equations for the
σ function:

℘2222 − 6℘2
22 =

1
2
λ3 + λ4℘22 + 4℘12,(1.13)

℘1222 − 6℘22℘12 = λ4℘12 − 2℘11,(1.14)

℘1122 − 2℘22℘11 − 4℘2
12 =

1
2
λ3℘12,(1.15)

℘1112 − 6℘12℘11 = −λ0 − 1
2
λ1℘22 + λ2℘12,(1.16)

℘1111 − 6℘2
11 = −1

2
λ0λ4 +

1
8
λ1λ3 − 3λ0℘22 + λ1℘12 + λ2℘11.(1.17)

The purpose of the current work is to consider the role of representations of
SL2(C) in the above uniformization theory. Although there are tantalising glimpses
in the classical theory of objects which seem to want such an interpretation, these
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are obscured by the canonical decision to place one branch point at infinity, a
decision which is not respected by the full SL2(C) action. In order to make the
covariant nature of the theory apparent it is desirable firstly to retain general values
for the λi, and secondly to define the ℘ functions appropriately. We indicate in the
next section how our approach differs from the classical way of expressing covariance
of which a more detailed exposition will be presented elsewhere [3].

We shall denote our new ℘ functions simply by the calligraphic symbol P, thus:
Pij , Pijk, Pijk...l.

2. A covariant approach.

For ease of exchange with the representation theory we rewrite λi as
(
6
i

)
gi. The

curve

(2.1) y2 = g6x
6 + 6g5x

5 + 15g4x
4 + 20g3x

3 + 15g2x
2 + 6g1x + g0,

is transformed under the rational, PSL2(C) map

(2.2) x 7→ X =
αx + β

γx + δ
, y 7→ Y =

y

(γx + δ)3
,

to one of the same form but with new values for the parameters:

(2.3) Y 2 = G6X
6 + 6G5X

5 + 15G4X
4 + 20G3X

3 + 15G2X
2 + 6G1X + G0.

The parameters (g6, .., g0) transform to (G6, .., G0) under a seven dimensional, ir-
reducible representation of SL2(C). The action on x, y and the gi is generated by
the vector fields (sl2(C)),

e = − ∂

∂x
+

6∑
0

(6− i)gi+1
∂

∂gi
,(2.4)

f = x2 ∂

∂x
+ 3xy

∂

∂y
+

6∑
0

igi−1
∂

∂gi
,(2.5)

h = −2x
∂

∂x
− 3y

∂

∂y
+

6∑
0

(2i− 6)gi
∂

∂gi
,(2.6)

which are sections of the tangent bundle of a nine dimensional manifold with local
coordinates x, y, g0, . . . , g6.

Writing the curve as y2− g(x) = 0 one sees that it is a covariant for the SL2(C)
action:

e(y2 − g(x)) = 0,(2.7)

f(y2 − g(x)) = 6x(y2 − g(x)),(2.8)

h(y2 − g(x)) = −6(y2 − g(x)).(2.9)

This action induces an action on the holomorphic differentials du1 and du2

(1.6,1.7)

du1 =
dx1

y1
+

dx2

y2
,(2.10)

du2 =
x1dx1

y1
+

x2dx2

y2
,(2.11)
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namely:

(2.12)
(

du1

du2

)
7→

(
dU1

dU2

)
=

(
δ γ
β α

)(
du1

du2

)
.

Accordingly,

(2.13)
(

∂u1

∂u2

)
7→

(
∂U1

∂U2

)
=

(
α −β
−γ δ

)(
∂u1

∂u2

)
.

and consequently the second derivatives with respect to u1 and u2 transform accord-
ing to the three dimensional symmetric product of the two dimensional representa-
tion. Double index objects in the theory, such as ℘ij , which are second derivatives
should transform accordingly. But ℘11, ℘12 and ℘22 do not do so if they are taken
to be defined by equations (1.2,1.4) for the generic curve, F 0 being replaced the
corresponding generic polar form.

Instead, in the standard treatments [5] the ℘ij are defined for branch points
in general position by linear sums of the above ℘ij and the addition of certain
constants [5, 3] in such a way as to force the correct transformation properties.
These generalised functions (given the same labels) are then seen to satisfy the five
equations,

−1
3
(℘2222 − 6℘2

22) = g2g6 − 4g3g5 + 3g2
4 + g4℘22 − 2g5℘12 + g6℘11,(2.14)

−1
3
(℘1222 − 6℘22℘12) =

1
2
(g1g6 − 3g2g5 + 2g3g4)

+ g3℘22 − 2g4℘12 + g5℘11,
(2.15)

−1
3
(℘1122 − 2℘22℘11 − 4℘2

12) =
1
6
(g0g6 − 9g2g4 + 8g2

3)

+ g2℘22 − 2g3℘12 + g4℘11,
(2.16)

−1
3
(℘1112 − 6℘12℘11) =

1
2
(g0g5 − 3g1g4 + 2g2g3)

+ g1℘22 − 2g2℘12 + g3℘11,
(2.17)

−1
3
(℘1111 − 6℘2

11) = g0g4 − 4g1g3 + 3g2
2 + g0℘22 − 2g1℘12 + g2℘11.(2.18)

which will be seen to be covariant (Section 4).
The drawback of the defining expressions for the generic curve is that covariance

is forced by an unnatural choice of the generalised functions. The coefficients of their
linear, defining expressions are functions of the coefficients of the transformation
which moves a branch point to infinity and hence are functions of the λi.

In view of this we proceed to a natural, ab initio definition for the two index
symbols associated with the generic curve which ensures their covariance. The
price of such a covariant definition will be a slightly more complicated set of rela-
tions between indexed objects although these relations will have the virtues both
of being generated by simple algebraic operations and of being classified by the
representations of SL2(C) they carry.

One checks that

(2.19) P22 =
2

x1 − x2
, P12 = −x1 + x2

x1 − x2
, P11 =

2x1x2

x1 − x2
,
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have the following properties:

P22x1x2 + P12(x1 + x2) + P11 = x2 − x1,

P22x
2
1 + 2P12x1 + P11 = 0,

P22x
2
2 + 2P12x2 + P11 = 0,

∂

∂u1
P22 =

∂

∂u2
P12,

∂

∂u1
P12 =

∂

∂u2
P11,

(2.20) P2
12 − P11P22 = 1.

It follows from these properties that the triplet (P11,P12,P22) transforms as does
(∂2

u1
, ∂u1∂u2 , ∂

2
u2

), that we may put Pij = ∂ui
∂uj

Υ and that Υ satisfies the Monge-
Ampére equation,

(2.21)
(

∂2Υ
∂u1∂u2

)2

− ∂2Υ
∂u1

2

∂2Υ
∂u2

2 = 1,

so that Υ = Υ(u1, u2) is a surface of constant negative curvature equal to −2.
The expressions for the corresponding three index symbols, following from dif-

ferentiation, are:

P111 = 2
y1x

3
2 + y2x

3
1

(x1 − x2)3
,(2.22)

P112 = −2
y1x

2
2 + y2x

2
1

(x1 − x2)3
,(2.23)

P122 = 2
y1x2 + y2x1

(x1 − x2)3
,(2.24)

P222 = −2
y1 + y2

(x1 − x2)3
.(2.25)

One constructs symbols of arbitrary numbers of indices by differentiation with
respect to u1 and u2. The symbol P{p,q} will denote a P function having p + q
indices, p of them equal to 1 and the remaining q equal to 2. So

∂u1P{p,q} = P{p+1,q},(2.26)

∂u2P{p,q} = P{p,q+1}.(2.27)

There are p+q+1 symbols with p+q indices and they form a basis for a p+q+1
dimensional irreducible representation of SL2(C) induced by the action on x and y
and generated by the action of sl2(C) given by:

e(P{p,q}) = pP{p−1,q+1},(2.28)

f(P{p,q}) = qP{p+1,q−1},(2.29)

h(P{p,q}) = (p− q)P{p,q}.(2.30)

They are the highest weight irreducibles in the N fold symmetric product of the
fundamental representation.

The derivatives raise the dimension of a representation. They are not, however,
sl2(C)-module homomorphisms but satisfy the following important commutation
relations:

(2.31) [e, ∂u1 ] = ∂u2 , [f, ∂u1 ] = 0, [h, ∂u1 ] = ∂u1 ,
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(2.32) [e, ∂u2 ] = 0, [f, ∂u2 ] = ∂u1 , [h, ∂u2 ] = −∂u2 .

In the simplest case, P{0,2} = P22, P{1,1} = P12 and P{2,0} = P11, so that
e(P11) = 2P12, e(P12) = P22 , e(P22) = 0, f(P11) = 0, f(P12) = P11 and f(P22) =
2P12. One easily checks that the condition P2

12 − P11P22 = 1 is an invariant
constraint:

e(P2
12 − P11P22) = 2P12P22 − 2P12P22 = 0,

f(P2
12 − P11P22) = 2P12P11 − 2P11P12 = 0.

From these we derive, by differentiation, a pair of identities involving two and
three index objects,

P11P122 − 2P12P112 + P22P111 = 0,(2.33)

P11P222 − 2P12P122 + P22P112 = 0,(2.34)

where the left hand sides comprise an irreducible two dimensional representation
of SL2(C).

A further differentiation yields an irreducible three dimensional representation
of SL2(C) involving also 4-index objects

2P1112P12 + 2P2
112 − P1111P22 − 2P111P122 − P11P1122 = 0,

2P1122P12 + P112P122 − P1112P22 − P111P222 − P11P1222 = 0,(2.35)

2P1222P12 + 2P2
122 − P1122P22 − 2P112P222 − P11P2222 = 0.

We must require that all equations of the theory be invariant or, more generally,
covariant in this way.

3. Identities

Denote by Vn+1 the n+1 dimensional irreducible representation spanned by the
symbols carrying n indices and by G7 the seven dimensional representation carried
by the coefficients {g6, g5, g4, g3, g2, g1, g0} of the family of curves. When we write
An we will mean a generic n dimensional representation.

An important construction for us is the following.
On the one hand note that ∂ui

are almost intertwining operators for the action
of SL2(C) in that they commute with one of f and e and hence map highest or
lowest weight vectors in one representation to highest or lowest weight vectors in
another. This observation holds for tensor products of representations too, ∂ui

being extended, like e and f , as a derivation. However, not all representations can
be obtained by a chain of such almost intertwining operators. On the other hand,
if we modify the action to the following Hirota maps,

D1 : a⊗ b 7→ ∂u1a⊗ b− a⊗ ∂u1b,(3.1)

D2 : a⊗ b 7→ ∂u2a⊗ b− a⊗ ∂u2b,(3.2)

D12 : a⊗ b 7→ ∂u1a⊗ ∂u2b− ∂u2a⊗ ∂u1b,(3.3)

then all the highest and lowest weight vectors for irreducibles in the decomposition
(plethysm) of an arbitrary tensor product can be constructed. More details are
available in [1, 2] where, the reader should note, only one of these Hirota maps is
used.
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It is interesting to note that the Monge-Ampére equation (2.21) has the form:

(3.4)
1
2
Sym(D2

12Υ⊗Υ) + 1 = 0.

Although this is an unconventional formulation, such “Hirota” forms are of enor-
mous value and influence in the theory of integrable differential equations where
they play a role in the classification of systems, in forming ansätze for their solu-
tions and in their infinite dimensional geometric description. But it is amusing to
note [6, 7] that Baker in his book on “Multiply Periodic Functions” of 1907 [5, p49]
introduces the notation

(3.5) ∆nσ(x)σ(x′) = lim
x→x′

(∂x − ∂x′)nσ(x)σ(x′),

which is precisely the conventional Hirota operator and writes the left hand sides
of equations (2.14) in a bilinear “Hirota” form. In view of this it seems appropriate
to christen the generalised maps we have introduced above, Baker-Hirota maps.

We now take a systematic look at some simple tensor products.

3.1. Sym(V3⊗V3). The tensor product Sym(V3⊗V3) decomposes into irreducibles
A1 ⊕ A5 of dimensions one and five. The first is just the invariant, P2

12 − P11P22.
The A5 is the representation with basis {P2

22,P12P22, 2P2
12 +P11P22,P12P11,P2

11}.

3.2. V4⊗V3. The tensor product V4⊗V3 decomposes as A2⊕A4⊕A6. The highest
weight elements of each representation (by highest weight we will mean, merely
as a matter of convention, “belonging to the kernel of f”), can be found using
Hirota maps. We indicate the highest weight element by writing it explicitly as an
argument to An:

V4 ⊗ V3 = A6(P{3,0} ⊗ P{2,0})(3.6)

⊕A4(P{2,1} ⊗ P{2,0} − P{3,0} ⊗ P{1,1})

⊕A2(P{1,2} ⊗ P{2,0} − 2P{2,1} ⊗ P{1,1} + P{3,0} ⊗ P{0,2}).

The A2 here is easily seen to be exactly the two dimensional representation
(2.33).

The A4 irreducible, expressed in terms of the original variables (xi, yi), has the
basis

P111P12 − P112P11 = 2
y1x

3
2 − y2x

3
1

(x1 − x2)3
,(3.7)

P112P12 − 2P122P11 + P111P22 = −6
y1x

2
2 − y2x

2
1

(x1 − x2)3
,(3.8)

P122P12 − 2P112P22 + P222P11 = −6
y1x2 − y2x1

(x1 − x2)3
,(3.9)

P222P12 − P122P22 = 2
y1 − y2

(x1 − x2)3
.(3.10)

These expressions complement those for the three index symbols themselves.
These, however, are symmetric under interchange of points (x1, y1) and (x2, y2)
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whereas the former are antisymmetric. In particular they allow us to recover ex-
pressions for y1 and y2 and not only their symmetric functions:

x1 =
1− P12

P22
, x2 = −1 + P12

P22
,(3.11)

y1 =
2
P22

∂u2

(
1− P12

P22

)
, y2 =

2
P22

∂u2

(
1 + P12

P22

)
.(3.12)

Because the Pij are functions of two complex variables, these formulae do not consti-
tute a unformization of the original genus two curve though they are a parametriza-
tion in a much weaker sense.

3.3. Sym(V4 ⊗ V4). The next interesting product is Sym(V4 ⊗ V4), the sum of an
A7 and an A3.

Sym(V4 ⊗ V4) = A7(P{3,0} ⊗ P{3,0})
(3.13)

⊕A3(P{3,0} ⊗ P{1,2} − 2P{2,1} ⊗ P{2,1} + P{1,2} ⊗ P{3,0}).

The A3 here is essentially V3 up to a factor: I = 2y1y2
(x1−x2)3

which is easily seen to
be invariant by applying e and f . Thus,

P111P122 − P2
112 = IP11,(3.14)

P111P222 − P122P112 = 2IP12,(3.15)

P112P222 − P2
122 = IP22.(3.16)

We can construct an explicitly invariant expression for I which is the trivial
representation sitting inside V4 ⊗ V4 ⊗ V3:

(3.17) I = −1
2

∣∣∣∣∣∣
P111 P112 P122

P112 P122 P222

P11 P12 P22

∣∣∣∣∣∣ .

Alternatively there is clearly a relation between the square of I and a rather
unmanageable sextic in the two index symbols, see A.

The A7 gives us a set of identities between two and three index symbols. The
highest weight vector is

(3.18) P2
111 = 4

y2
1x6

2 + y2
2x6

1

(x1 − x2)6
+ 4I x3

1x
3
2

(x1 − x2)3
,

of which the right hand side can be written as a sextic function of the Pij involving
the invariant I = 2y1y2

(x1−x2)3
, and the lowest weight vector (in the kernel of e) is,

(3.19) P2
222 = 4

y2
1 + y2

2

(x1 − x2)6
+ 4I 1

(x1 − x2)3
.

The recursive application of e to the first or of f to this second equality generates
a sequence of seven identities of which the left hand sides are all quadratics in the
three index symbols. Rather than interrupt the flow, we present only the lowest
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weight identity here and the whole set in Appendix B.

P2
222 −

1
2
IP3

22 =
1
8

g0P22
6 − 3

4
g1P12P22

5 − 15
8

g2

(P11P22 − 2P12
2
)P22

4

+
5
2

g3P12

(
3P11P22 − 4P12

2
)P22

3 +
15
8

g4

(
8P12

4 − 8P11P12
2P22

+P11
2P22

2
)P22

2 − 3
4

g5P12

(
16P12

4 − 20P11P12
2P22

+ 5P11
2P22

2
)P22 − 1

8
g6

(P11P22 − 2P12
2
) (P11

2P22
2

−16P11P12
2P22 + 16P12

4
)
.(3.20)

Although these are the natural forms of the identities, it is possible to solve
them for the binomials PijkPlmn in terms of I and the 2-index functions. There
are ten such binomials so one supplements the seven equations of the set using the
three identities (3.14). The resulting system (in which I is regarded as a functional
parameter) has rank 10 in the binomials and so can be solved. However the results
are not particularly different from (3.20) to be worth displaying.

It is interesting to note the following identity for the second term on the l.h.s. of
(3.20)

IP3
22 = − (P222P12 + P222 − P122P22) (P222P12 − P222 − P122P22) .

This can be shown by application of (2.33). Applying f to the r.h.s. of this generates
another 7-dimensional representation, the final equation factoring to give

IP3
11 = − (P111P12 − P11P112 + P111) (P111P12 − P11P112 − P111) .

Corresponding to Baker’s five equations for the four index objects, ℘ijkl, we
should like to find a set of five equations for the Pijkl. The tensor product V5 ⊗
V3 decomposes as A7 ⊕ A5 ⊕ A3 so it is natural to look at the five dimensional
representation here. The lowest weight vector is

(3.21) P2222P12 − P1222P22 = −6
(y1 + y2)(y1 − y2)

(x1 − x2)5
+

d
dx1

(y1)2 + d
dx2

(y2)2

(x1 − x2)4
.

This is also obtained by differentiation of P222P12 − P122P22 with respect to u2.
The right hand side can be calculated in a straightforward way to give the first
term in the five dimensional representation

P2222P12 − P1222P22 = −3
2
g1P4

22 +
15
2

g2P12P3
22 − 15g3P2

12P2
22 + 15g4P3

12P22

− 3
2
g5(5P2

11P2
22 + 4 + 10P11P22) +

3
2
g6P11P12 (2 + P11P22).

The system is of rank four in the four index objects, a full list is given in Appendix
C.

The A3 arises from differentiation of the A2 from V4 ⊗ V3 and use of the A3 in
V4 ⊗ V4. One derives any identity from another by use of the e and f operators:

P11P1122 − 2P12P1112 + P22P1111 = −2IP11,

P11P1222 − 2P12P1122 + P22P1112 = −2IP12,

P11P2222 − 2P12P1222 + P22P1122 = −2IP22.
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Consequently one has the invariant relation (from V3 ⊗ V3 ⊗ V5):

P2
22P1111 − 4P22P12P1112 + 2(2P2

12 + P11P22)P1122

− 4P11P12P1222 + P2
11P2222 = 4I.

The A7 arises from straight differentiation of P222 with respect to u2 and the
lowest weight vector is,

P22P2222 − 3P2
222 = −12g6P4

12 + 30g5P3
12P22 + 9g6P2

12P11P22 − 30g4P2
12P2

22

− 15g5P12P11P2
22 + 15g3P12P3

22 −
3
4
g6P2

11P2
22 +

15
2

g4P11P3
22 −

15
4

g2P4
22.

This system of seven equations is of rank five in the four index quantitites, so
allowing the derivation of expressions for them in terms of two and three index
objects, though it will be seen that this is not a very natural approach.

These identities and the consequent expressions for the Pijkl are presented in
Appendix D.

A very natural question to ask concerns the representation theoretic value of
the polar form which features so prominently in the classical theory. In the new
invariant formulation, this polar form is replaced by [5, 3]

F (x1, x2) = 2 g0 + 6 (x2 + x1) g1 + 6
(
3x2x1 + x2

1 + x2
2

)
g2

+ 2 (x2 + x1)
(
x2

1 + 8x2x1 + x2
2

)
g3 + 6x2x1

(
3x2x1 + x2

1 + x2
2

)
g4

+ 2g6x
3
1x

3
2 + 6x2

1x
2
2 (x2 + x1) g5,(3.22)

and it is straightforward to check that the combination J = 1
2P3

22F (x1, x2) is an
invariant

J = g0P3
22 − 6g1P12P2

22 + 3g2(4P2
12 + P11P22)P22 − 4g3P12(2P2

12 + 3P11P22)

+ 3g4P11(4P2
12 + P11P22)− 6g5P2

11P12 + g6P3
11,

(3.23)

since it lies in the kernel of both e and f . It is the trivial representation sitting
inside G7 ⊗ V3 ⊗ V3 ⊗ V3.

As a final note, the expressions for the original curve, y2
1 = g(x1) and y2

2 = g(x2)
are expressible directly in terms of the two and three index quantities

P22(P2
122P22 − P2

222P11) = Γ6(P11,P12,P22),

(P12P222 − P122P22)P222 = Γ5(P11,P12,P22),

where Γ6 and Γ5 are homogeneous polynomials of degrees 6 and 5, respectively,
in their arguments. The first is the seven dimensional representation sitting inside
V4 ⊗ V4 ⊗ V3 ⊗ V3 and the second that in V4 ⊗ V4 ⊗ V3.

4. Specialization

It is necessary to establish a link with the classical theory in which one branch
point is dismissed to infinity and where the definitions of the ℘ij given in the
introduction stand. The relations between the (xi, yi) and the ui, however, is
unchanged so that the expressions for derivatives are as before. The old and
new symbols are easily related: P11 = −P22℘12, P12 = − 1

2P22℘22 and ℘11 =
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(F 0(x1, x2) − 4I)/(8P22). Because the quadratic condition P2
12 − P11P22 = 1 im-

plies

(4.1) P2
22 =

4
℘2

22 + 4℘12
,

we obtain

(4.2) P11 = − 2℘12√
℘2

22 + 4℘12

, P12 = − ℘22√
℘2

22 + 4℘12

, P22 =
2√

℘2
22 + 4℘12

.

The verification that ∂℘22/∂u1 = ∂℘12/∂u2 is straightforward; showing that
∂℘11/∂u2 = ∂℘12/∂u1 rather less so.

Differentiation yields expressions for three index objects:

℘222 =
∂℘22

∂u2
= 2

P12P222 − P22P122

P2
22

=
y1 − y2

x1 − x2
,(4.3)

℘122 =
∂℘22

∂u1
= 2

P12P122 − P22P112

P2
22

=
x1y2 − x2y1

x1 − x2
,(4.4)

℘112 =
∂℘12

∂u1
=
P11P122 − P22P111

P2
22

=
x2

2y1 − x2
1y2

x1 − x2
,(4.5)

from which follows the classical parametrization (1.11). We have also from equalities
of cross differentiation (e.g. ∂℘22/∂u1 = ∂℘12/∂u2), the identity

(4.6) −℘222℘12 + ℘122℘22 + ℘112 = 0.

A differentiation yields the formula for the final three index symbol,

(4.7) ℘111 =
∂℘11

∂u1
=

y2ψ(x1, x2)− y1ψ(x2, x1)
4(x1 − x2)2

,

where [5]

ψ(x1, x2) = 4x3
1x2(3x1 + x2) + 60g4x

3
1x2 + 20g3x

2
1(x1 + 3x2)

+ 30g2x1(x1 + x2) + 6g1(3x1 + x2) + 4g0.

In order to recover the classical equations for the many index ℘ functions, we
start by differentiating equations (4.2) in order to express the Pijk in terms of ℘12,
℘22, ℘112, ℘122 and ℘222. Further I is expressed in terms of ℘11, ℘12 and ℘22 from
the relation for ℘11 given above and the definition of F 0(x1, x2). Substituting these
expressions into the seven dimensional representation coming from V4⊗V4, setting
g6 = 0, g5 = 2/3 and solving for the binomial terms gives

℘2
222 = 4℘12℘22 + 4℘3

22 + 20g3℘22 + 15g2 + 4℘11 + 15g4℘
2
22,(4.8)

℘222℘122 = 2℘2
12 + 15℘12℘22g4 + 10℘12g3 + 4℘2

22℘12 − 2℘22℘11 + 3g1,

(4.9)

℘2
122 = 15g4℘

2
12 + 4℘2

12℘22 − 4℘11℘12 + g0,(4.10)

℘112℘222 = 2℘2
12℘22 + 4℘11℘12 + 2℘11℘

2
22 + 10g3℘12℘22 + 15g2℘12 − 3g1℘22,

(4.11)

℘112℘122 = 2℘3
12 + 10℘2

12g3 + 2℘22℘11℘12 + 3℘12g1 − g0℘22,

(4.12)

℘2
112 = 4℘2

12℘11 + 15℘2
12g2 − 6g1℘12℘22 + g0℘

2
22.(4.13)
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These are to be compared with the classical formulae of Appendix E when the λ’s
are replaced by the appropriate multiples of g’s. Note that the identities involving
℘111 are so far missing from the above. To obtain these we should use the relation
(4.7), rewritten to express ℘111 as a linear combination of ℘222 and ℘122, first to
obtain the products ℘111℘112 etc. in terms of what we have already then finally
the square ℘2

111.
Differentiating once more the expressions we obtained for the reductions of the

Pijk to give the four index objects, we may substitute into the five dimensional
representation inside V4 ⊗ V4 and solve for ℘2222, ℘1222, ℘1122 and ℘1112

℘2222 = 4℘12 + 6℘2
22 + 15g4℘22 + 10g3,(4.14)

℘1222 = 6℘12℘22 + 15g4℘12 − 2℘11,(4.15)

℘1122 = 4℘2
12 + 10g3℘12 + 2℘22℘11,(4.16)

℘1112 = 15g2℘12 + 6℘11℘12 − g0 − 3g1℘22.(4.17)

These are to be compared with the classical equations of Appendix F, with the gi

replaced by the corresponding λi. Again, ℘1111 is missing from our set but it can
easily be found by taking the double u1 derivative of the ℘1222 equation and using,
say, the expression for ℘1112.

Finally, let us return to the covariant classical equations (2.14). Recall that the
indexed ℘-functions there do transform as representations of SL2(C). These equa-
tions can be seen to be an equality between five dimensional representations. The
left hand side is built from the representations with bases {℘2222, ℘1222, ℘1122, ℘1112,
℘1111} and {℘2

22, ℘22℘12, 2℘2
12 + ℘11℘22, ℘11℘12, ℘

2
11}, the right hand side from the

five dimensional representation sitting inside Sym(G7 ⊗G7) and that in the prod-
uct of G7 and {℘11, ℘12, ℘22}. Application of the e and f operators allows one to
construct the whole set of equations from any individual equation. The same would
go for any identities satisfied by the classical ℘ functions for the generic curve and
this will form the subject of a further paper [3].

5. Conclusions

In this paper we have presented a purely algebraic approach to the uniformization
of the general genus two hyperelliptic curve in which all identities can be interpreted
as covariants for the action of SL2(C). In order to be able to derive such identities
we have defined new sets of covariant, indexed P functions for the generic curve
and we have shown that the classical theory is recovered when one branch point is
moved to infinity.

A number of questions remain.
The first concerns the nature of the function Υ which satisfies a Monge-Ampere

equation. Is this function simply related to an entire function? The second concerns
the general structure of the identities. Are all identities generated by a finite number
of tensoring and intertwining operations?

And there are further directions for study.
Given that it is possible to apply these methods to the classically defined, covari-

ant ℘ functions [3], can we use the same approach outlined here to derive identities,
as opposed to merely verifying them?

In another direction, can we obtain expansions of the function Υ in higher and
higher degree covariants analogous to the classical expansions?



A SL(2) COVARIANT THEORY OF GENUS 2 HYPERELLIPTIC FUNCTIONS 13

Finally, how do we extend this treatment to curves of higher genera and, further,
to curves of the forms,

yp = λ2g+2x
2g+2 + λ2g+1x

2g+1 + λ2gx
2g + . . .?
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Appendix A. The expression for I2
.

I2 = − 3
16
P11P5

22(−6g2
1 + 5g2g0) +

15
32
P2

11P4
22(−16g3g1 + 2g4g0 + 15g2

2)

+
1
16
P3

11P3
22(−36g5g1 + 225g4g2 − 200g2

3 + g6g0)

+
15
32
P4

11P2
22(−16g5g3 + 2g6g2 + 15g2

4)− 3
16
P5

11P22(5g6g4 − 6g2
5)

+
15
8
P12P11P22

4(−3g2g1 + 2g3g0)− 15
8
P12P2

11P3
22(10g3g2 − 9g1g4 + g5g0)

+
15
8
P12P3

11P2
22(−10g4g3 − g1g6 + 9g5g2) +

15
8
P12P11

4P22(2g6g3 − 3g5g4)

− 15
2
P2

12P11P3
22(−2g3g1 + g4g0) +

9
8
P2

12P2
11P22

2(25g4g2 + g6g0 − 16g5g1)

− 15
2
P2

12P3
11P22(−2g5g3 + g6g2) +

15
2
P3

12P11P2
22(−3g1g4 + g5g0)

− 15
2
P3

12P2
11P22(3g5g2 − g1g6)− 3P4

12P11P22(−6g5g1 + g6g0) +
1
32
P6

11g6
2

+
15
2
P2

11P4
12g6g2 +

15
8
P4

11P2
12g6g4 − 3

8
P5

11P12g6g5 − 5P3
11P3

12g6g3

− 6P11P5
12g6g1 +

15
8
P2

12g2g0P4
22 − 6P5

12g5g0P22 +
15
2
P4

12g4g0P22
2

− 5P3
12g3g0P3

22 −
3
8
P12g1g0P22

5 +
1
32

g2
0P6

22 + 2P6
12g6g0.
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Appendix B. The A7 representation in quadratics in Pijk.

P2
222 −

1
2
IP3

22 =
5
2

(
3P11P12P4

22 − 4P3
12P3

22

)
g3 +

15
8

(P2
11P4

22 + 8P4
12P2

22 − 8P11P2
12P3

22

)
g4

+
3
4

(
20P11P3

12P2
22 − 16P5

12P22 − 5P2
11P12P3

22

)
g5 +

1
8

(
32P6

12 − P3
11P3

22 − 48P11P4
12P22

+18P2
11P2

12P2
22

)
g6 +

1
8
g0P6

22 −
3
4
P12g1P5

22 +
15
8

(
2P2

12P4
22 − P11P5

22

)
g2.

P122P222 − 1
2
P12IP2

22 =
5
2

(P2
11P4

22 − 2P11P2
12P3

22

)
g3 +

15
8

(
4P11P3

12P2
22 − 3P2

11P12P3
22

)
g4

+
3
4

(
8P2

11P2
12P2

22 − 8P11P4
12P22 − P3

11P3
22

)
g5 +

1
8

(
5P12P3

11P2
22 − 20P2

11P3
12P22

+ 16P11P5
12

)
g6 − 3

4
P11g1P5

22 +
1
8
g0P12P5

22 +
15
8
P12P11g2P4

22.

3P2
122 + 2P112P222 − 1

2
(
4P2

12P22 + P11P2
22

) I = −25
2
P12P2

11g3P3
22 +

75
8

(
2P2

11P2
12P2

22

−P3
11P3

22

)
g4 +

15
4

(
3P12P3

11P2
22 − 4P2

11P3
12P22

)
g5 +

5
8

(
8P2

11P4
12 − 8P2

12P3
11P22

+P4
11P2

22

)
g6 +

5
8

(
2P2

12P4
22 − P11P5

22

)
g0 − 15

4
g1P11P12P4

22 +
75
8
P2

11g2P4
22.

9P122P112 + P111P222 −
(
3P12P11P22 + 2P3

12

) I = −25P3
11g3P3

22 +
75
4
P12P3

11g4P2
22

+
15
2

(P4
11P2

22 − 2P2
12P3

11P22

)
g5 +

5
4

(
4P3

12P3
11 − 3P12P4

11P22

)
g6 +

5
4

(
4P3

12P3
22

−3P11P12P4
22

)
g0 +

15
2

(P2
11P4

22 − 2P11P2
12P3

22

)
g1 +

75
4

g2P2
11P12P3

22.

2P122P111 + 3P2
112 −

1
2

(P2
11P22 + 4P2

12P11

) I = −25
2

g3P12P3
11P2

22 +
75
8
P4

11g4P2
22

− 15
4
P12P4

11g5P22 +
15
8

(
2P2

12P4
11 − P5

11P22

)
g6 +

5
8

(P2
11P4

22 + 8P4
12P2

22 − 8P11P2
12P3

22

)
g0

+
15
4

(
3P2

11P12P3
22 − 4P11P3

12P2
22

)
g1 +

75
8

(
2P2

11P2
12P2

22 − P3
11P3

22

)
g2.

P112P111 − 1
2
P12P2

11I =
5
2

(P4
11P2

22 − 2P2
12P3

11P22

)
g3 +

15
8

g4P12P4
11P22 − 3

4
P5

11g5P22

+
1
8

(
16P5

12P22 − 20P11P3
12P2

22 + 5P2
11P12P3

22

)
g0 +

3
4

(
8P2

11P2
12P2

22 − 8P11P4
12P22

−P3
11P3

22

)
g1 +

15
8

(
3P2

11P3
12P22 − 4P12P3

11P2
22

)
g2 +

1
8
P12P5

11g6.

P2
111 −

1
2
P3

11I =
5
2

(
3P12P4

11P22 − 4P3
12P3

11

)
g3 +

15
8

(
2P2

12P4
11 − P5

11P22

)
g4 − 3

4
g5P12P5

11

+
1
8
P6

11g6 +
1
8

(
32P6

12 − P3
11P3

22 − 48P11P4
12P22 + 18P2

11P2
12P2

22

)
g0 +

3
4

(
20P2

11P3
12P22

−5P12P3
11P2

22 − 16P11P5
12

)
g1 +

15
8

(
8P2

11P4
12 − 8P2

12P3
11P22 + P4

11P2
22

)
g2.
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Appendix C. The A5 inside V5 ⊗ V3.

P2222P12 − P1222P22 = −3
2

g1P22
4 − 15P12

2g3P22
2 + 15P12

3g4P22 − 6P12
4g5

+
15
2
P12g2P22

3 − 3P11P12
2g5P22 + 3P11P12

3g6 +
3
2
P11

2g5P22
2 − 3

2
P11

2P12g6P22.

2P12P1222 + P11P2222 − 3P1122P22 = 3 g1P12P22
3 − 12P11P12

3g5

− 9P12P11
2g5P22 + 6P11

2P12
2g6 − 30P11P12g3P22

2 + 30P11P12
2g4P22

+
15
2
P11g2P22

3 − 3
2
P11

3g6P22 − 3
2

g0P22
4 +

15
2

g4P11
2P22

2.

3P11P1222 − 3P1112P22 = 9 g1P12
2P22

2 − 9P12
2P11

2g5 − 45
2

g2P11P12P22
2

+
9
2
P12P11

3g6 − 9
2

g0P12P22
3 +

45
2
P12g4P11

2P22 + 9 g1P11P22
3 − 9P11

3g5P22.

3P1122P11 − 2P12P1112 − P1111P22 = 12 g1P12
3P22 − 30 g2P11P12

2P22

− 6 g0P12
2P22

2 + 9 g1P11P12P22
2 − 3 g5P12P11

3 − 15
2
P11

2g2P22
2

+
3
2
P11

4g6 +
3
2
P11g0P22

3 − 15
2

g4P11
3P22 + 30 g3P11

2P12P22.

P11P1112 − P12P1111 = 6 g1P12
4 − 15 g2P11P12

3 − 3 g0P12
3P22 + 3 g1P11P12

2P22

+
3
2
P12P11g0P22

2 − 15
2

g4P12P11
3 + 15 g3P11

2P12
2 − 3

2
g1P11

2P22
2 +

3
2

g5P11
4.

Appendix D. The A7 inside V5 ⊗ V3.

P2222P22 − P222
2 =

15
4

g2P22
4 − 15P12g3P22

3 + 30P12
2g4P22

2

− 30P12
3g5P22 + 12P12

4g6 − 15
2
P11g4P22

3 + 15P11P12g5P22
2

− 9P11P12
2g6P22 +

3
4
P11

2g6P22
2.

P12P2222 − 3P122P222 + 2P1222P22 = −15
2

g2P12P22
3 + 15P12

2g3P22
2.

− 15P12
3g4P22 + 6P12

4g5 + 45P12P11g4P22
2 − 42P11P12

2g5P22+

+ 15P11P12
3g6 − 15

2
P12P11

2g6P22 − 45
2
P11g3P22

3 +
39
4
P11

2g5P22
2

+
15
4

g1P22
4.
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8P12P1222 + P11P2222 − 9P122
2 − 6P112P222 + 6P1122P22 = 75P12P11g3P22

2

− 90P12P11
2g5P22 + 30P11P12

3g5 + 30P12
2P11

2g6 +
375
4
P11

2g4P22
2

− 15
2
P11

3g6P22 − 75P11g2P22
3 +

15
4

g0P22
4 + 15 g1P12P22

3 − 75P12
2P11g4P22.

6P12P1122 + 2P11P1222 − 9P122P112 − P111P222 + 2P1112P22 = 15P12
2P11

2g5

− 75
2
P12P11

2g4P22 +
15
2
P12P11

3g6 − 75
2

g2P11P12P22
2 +

15
2

g0P12P22
3

+ 15 g1P12
2P22

2 + 75P11
2g3P22

2 − 45
2
P11

3g5P22 − 45
2

g1P11P22
3.

8P12P1112 + 6P11P1122 − 6P122P111 − 9P112
2 + P1111P22 = −75 g2P11P12

2P22

+ 30 g0P12
2P22

2 + 30 g1P12
3P22 + 75 g3P12P11

2P22 + 15 g5P12P11
3

− 90 g1P11P12P22
2 − 75P11

3g4P22 +
15
4
P11

4g6 +
375
4

g2P11
2P22

2 − 15
2
P11g0P22

3.

P12P1111 + 2P11P1112 − 3P112P111 = −15 g2P11P12
3 + 15 g0P12

3P22 + 6 g1P12
4

+ 15 g3P12
2P11

2 − 42 g1P11P12
2P22 − 15

2
g4P12P11

3 + 45 g2P12P11
2P22

− 15
2
P12P11g0P22

2 − 45
2

g3P11
3P22 +

15
4

g5P11
4 +

39
4

g1P11
2P22

2.

P11P1111 − P111
2 = 12 g0P12

4 − 30 g1P11P12
3 + 30 g2P12

2P11
2 − 9P12

2P11g0P22

− 15 g3P12P11
3 + 15P12g1P11

2P22 +
15
4

g4P11
4 − 15

2
g2P11

3P22 +
3
4
P11

2g0P22
2.

Appendix E. Classical quadratic identities in ℘ijk

℘2
111 =

1
16

λ4λ1
2 +

1
4

℘22λ1
2 +

1
16

λ3
2λ0 + 4℘3

11 + ℘2
11λ2 +

1
4

℘11λ3λ1+

+ ℘11℘12λ1 − λ4℘11λ0 − 1
4

λ4λ2λ0 − 4℘22℘11λ0 − ℘22λ2λ0 +
1
2

λ3℘12λ0 + ℘2
12λ0.

℘2
112 = ℘2

22λ0 − ℘12℘22λ1 + ℘2
12λ2 + 4℘2

12℘11

℘2
122 = 4℘2

12℘22 + ℘2
12λ4 − 4℘12℘11 + λ0.

℘2
222 = ℘22λ3 + λ4℘

2
22 + 4℘3

22 + 4℘12℘22 + λ2 + 4℘11.

℘111℘112 = −1
2

λ2λ0 − 2℘11λ0 +
1
8

λ1
2 +

1
2

℘2
12λ1 + ℘11℘12λ2 − 1

2
℘11℘22λ1+

+
1
8

λ3℘12λ1 − 1
4

λ3℘22λ0 − ℘12℘22λ0 + 4℘12℘
2
11.

℘122℘111 = −1
2

℘11λ1 − ℘12λ0 + 2℘2
12℘11 + ℘12℘22λ1 − 1

4
λ3λ0 +

1
2

℘11℘12λ3+

+
1
4

λ4℘12λ1 + 2℘22℘
2
11 −

1
2

λ4℘22λ0 − 2℘2
22λ0.
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℘222℘111 = −℘11λ2 − 1
2

℘12λ1 − ℘2
12λ3 − 1

8
λ3λ1 − 1

8
℘12λ3

2 − ℘2
22λ1−

− 2℘3
12 − 4℘2

11 −
1
2

℘11℘22λ3 + 6℘12℘22℘11 − 1
4

λ4℘22λ1+

+ 2℘22℘12λ2 +
1
2

λ4℘12λ2 + 2λ4℘12℘11.

℘122℘112 = −℘22λ0 + 2℘12℘22℘11 +
1
2

℘12λ1 +
1
2

℘2
12λ3 + 2℘3

12.

℘222℘112 =
1
2

℘12℘22λ3 − 1
2

℘22λ1 + 2℘2
12℘22 + 2℘2

22℘11 + 4℘12℘11 + ℘12λ2

℘222℘122 = ℘22℘12λ4 + 2℘2
12 + 4℘12℘

2
22 +

1
2

λ1 +
1
2

℘12λ3 − 2℘22℘11.

Appendix F. Classical identities for ℘ijkl.

℘1111 =
1
8

λ3λ1 + ℘12λ1 − 3℘22λ0 − 1
2

λ4λ0 + 6℘2
11 + ℘11λ2.

℘1112 = 6℘12℘11 − λ0 − 1
2

℘22λ1 + ℘12λ2.

℘1122 = 2℘22℘11 + 4℘2
12 +

1
2

℘12λ3.

℘1222 = ℘12λ4 + 6℘12℘22 − 2℘11.

℘2222 = 6℘2
22 + ℘22λ4 + 4℘12 +

1
2

λ3.
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