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Abstract. We present a simple method that allows one to generate and clas-
sify identities for genus two ℘ functions for generic algebraic curves of type
(2,6). We discuss the relation of these identities to the Boussinesq equation
for shallow water waves and show, in particular, that these ℘ functions give
rise to a family of solutions to Boussinesq.

1. Introduction

This paper is an introduction to the role of representation theory in the classical
theory of the genus two ℘-function, the parametrizing function for the Jacobi variety
associated with the algebraic curve

V : y2 = g6x
6 + 6g5x

5 + 15g4x
4 + 20g3x

3 + 15g2x
2 + 6g1x + g0.

Such a curve transforms under the map

x 7→ αx + β

γx + δ
,

y 7→ y

(γx + δ)3
,(1.1)

into a curve of the same kind but with different coefficients. In the classical treat-
ment [2] such a transformation is chosen to make g6 vanish and to normalise 6g5 to
the value 4. The resulting canonical form,

π(V) : Y 2 = 4X5 + 15G4X
4 + 20G3X

3 + 15G2X
2 + 6G1X + G0,

has a branch point at X = ∞. Note that this canonical form is not unique. There
is still at least freedom under transformations (1.1) which would allow, say, G4 to
be set to the value zero. Note too that this canonical form does not cover all curves:
for example, y2 = x6 does not have such a canonical form.

Holomorphic differentials of the first kind on the Jacobian variety Symm(π(V)⊗
π(V)) are

dU1 =
dX1

Y1
+

dX2

Y2
,

dU2 =
X1dX1

Y1
+

X2dX2

Y2
,

where (X1, Y1) and (X2, Y2) are analytic points on π(V).
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Three (Kleinian) doubly indexed objects are defined:

PK
22 = X1 + X2,

PK
12 = −X1X2,

PK
11 =

F (X1, X2)− 2Y1Y2

4(X1 −X2)2
,(1.2)

where F (X1, X2) is the polar form of the quintic

F (X1, X2) = 4(X1 + X2)X2
1X2

2 + 30G4X
2
1X2

2 + 20G3(X1 + X2)X1X2+

30G2X1X2 + 6G1(X1 + X2) + 2G0.

The notation ℘ is usual for these objects but we wish to reserve this symbol for
covariant objects. In fact the classical treatments like [2] are slightly confusing in
that ℘ is used for both classes of object except where the distinction is paramount.
We will be using the notation of Art.13 of [2]. The superscript K is not conventional
either but serves to distinguish these Kleinian objects from slightly different (Baker)
P symbols to be introduced shortly.

It is then shown that ∂U1P
K
12 = ∂U2P

K
11 and ∂U1P

K
22 = ∂U2P

K
12 , so that there

exists a potential function PK such that PK
ij = ∂Ui

∂Uj
PK . This PK function can

be shown to satisfy numerous differential identities. In particular we have

PK
2222 − 6PK2

22 = 10G3 + 15G4P
K
22 + 4PK

12 ,

PK
1222 − 6PK

22PK
12 = 15G4P

K
12 − 2PK

11 ,

PK
1122 − 2PK

22PK
11 − 4PK2

12 = 10G3P
K
12 ,

PK
1112 − 6PK

12PK
11 = −G0 − 3G1P

K
22 + 15G2P

K
12 ,

PK
1111 − 6PK2

11 = −15
2

G0G4 + 15G1G3 − 3G0P
K
22 ,

+6G1P
K
12 + 15G2P

K
11 ,(1.3)

where all subscripts are now interpreted as derivatives with respect to U1 and U2.
The two index objects also satisfy the important quartic relation

(1.4)

∣∣∣∣∣∣∣∣

G0 3G1 −2PK
11 −2PK

12

3G1 4PK
11 + 15G2 2PK

12 + 10G3 −2PK
22

−2PK
11 2PK

12 + 10G3 4PK
22 + 15G4 2

−2PK
12 −2PK

22 2 0

∣∣∣∣∣∣∣∣
= 0.

This last relation shows that the PK
ij parametrise the Kummer variety and it is

the starting point of the theory in Baker’s treatment.
In treating the generic curve (g6 6= 0, g5 6= 2

3 ) the definitions (1.2), with x and
y replacing X and Y and with the polar form for the generic sextic, are no longer
adequate because they do not give the correct transformation properties for the
PK

ij under the transformations (1.1) of x1 and x2. There are two ways round this
problem.

The classical solution is to force the correct transformation properties by defining
covariant ℘-functions, ℘ij in terms of the PK

ij and the coefficients of the transfor-
mation (1.1) which takes the specific curve, V, to its canonical form, π(V). The
current paper is devoted to the representation theory implicit in this.
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A second solution to the problem is to define the ℘ functions in a different,
covariant fashion right from the start. This approach is pursued in a separate
publication [1].

For some recent applications of ℘ functions for hyperelliptic curves of general
genus in the tradition of Baker’s work, see [4, 6, 9, 10, 11].

2. The SL2 action

In this section we consider the infinitesimal action on the space of curves as-
sociated with (1.1). In the next we construct the induced action on the space of
canonical forms.

The curve V : y2 = g(x) is to be thought of as a hypersurface in the nine
dimensional complex space of variables and parameters x, y, g6, g5, g4, g3, g2, g1, g0.
The family of such hypersurfaces is permuted under the transformations (1.1) but
the covariance of their form is expressed by the three conditions

e(y2 − g(x)) = 0,
h(y2 − g(x)) = −6(y2 − g(x)),
f(y2 − g(x)) = 6x(y2 − g(x)),

where e, h and f are the vector fields

e = − ∂

∂x
+

6∑
p=0

(6− p)gp+1
∂

∂gp
,(2.1)

h = −2x
∂

∂x
+ 3y

∂

∂y
+

6∑
p=0

(2p− 6)gp
∂

∂gp
,(2.2)

f = x2 ∂

∂x
+ 3xy

∂

∂y
+

6∑
p=0

pgp−1
∂

∂gp
,(2.3)

which form a representation of the Lie algebra sl2(C):

(2.4) [h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Holomorphic differentials for the generic curve are

du1 =
dx1

y1
+

dx2

y2
,

du2 =
x1dx1

y1
+

x2dx2

y2
,(2.5)

where the (xi, yi) are analytic points on the curve, and it is easy to see that these
differentials transform simply under (1.1):

du1 7→ δdu1 + γdu2,(2.6)
du2 7→ βdu1 + αdu2.(2.7)

Consequently the derivatives, ∂i = ∂
∂ui

for i = 1, 2 transform as

∂1 7→ α∂1 − β∂2,(2.8)
∂2 7→ −γ∂1 + δ∂2,(2.9)
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and the action of e, f and h extend to first order derivatives thus

e(∂1) = ∂2 e(∂2) = 0(2.10)
f(∂1) = 0 f(∂2) = ∂1(2.11)

h(∂1) = −∂1 h(∂2) = ∂2(2.12)

and to higher order derivatives via the Leibnitz rule, e.g.

e(∂3
1∂2

2) = 3∂2
1∂3

2 .

3. The induced action on canonical forms and the actions on ℘
functions

Suppose now that the curve V is mapped to Ṽ under a map (1.1). These curves
project down to canonical forms π(V) and π(Ṽ) so that there is an induced action
of (1.1) on the canonical forms. The corresponding infinitesimal actions on the
canonical forms will be denoted e∗, f∗ and h∗.

The transformation π can be taken to be [2]

x =
µX

µ
θ X + 1

µ

(3.1)

y =
Y

(µ
θ X + 1

µ )3
(3.2)

where
g6θ

6 + 6g5θ
5 + 15g4θ

4 + 20g3θ
3 + 15g2θ

2 + 6g1θ + g0 = 0
and

2
3µ4

= g5 + 5g4/θ + 10g3/θ2 + 10g2/θ3 + 5g1/θ4 + g0/θ5.

The parameters θ and µ must of course vary with the particular curve under
consideration and therefore are themselves subject to the sl2(C) action of e, f and
h. Application of these operators to the defining relations for θ and µ yields

(3.3) e(θ) = −1, f(θ) = θ2, h(θ) = −2θ,

(3.4) e(µ) = −µ

θ
, f(µ) = 0, h(µ) = −2µ.

The e action is the infinitesimal form of the one parameter (t) subgroup of
transformations (1.1)

x 7→ x− t

and the induced action on the canonical variable X is

X 7→ µ2θ̃(θ − t)X − θθ̃t

µ2µ̃2(t + θ̃ − θ)X + θµ̃2(t + θ̃)
where the tilded quantities appertain to the transformed curve and are therefore
functions of t. In fact, for small t, θ̃ = θ − t + O(t2), µ̃ = µ− µ

θ t + O(t2), and so

X 7→ X − 1
µ2

t + O(t2).

The e action on Y follows by a similar argument and on the Gp by expressing
them in terms of the gp, θ and µ. We obtain

(3.5) e∗ =
1
µ2

E
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where

E = − ∂

∂X
+

3∑
p=0

(6− p)Gp+1
∂

∂Gp
+

4
3

∂

∂G4
.

By precisely similar arguments (or by noting that π effectively factors out the
one parameter subgroups generated by f and h) we find that

f∗ = 0(3.6)

h∗ = 0.(3.7)

If we return now to the definitions of the two index objects, equations (1.2),
we might expect that they should behave according to the rules for second order
derivatives under the e∗ action e∗(PK

22) = 0, e∗(PK
12) = PK

22 and e∗(PK
11) = 2PK

12 .
But instead we find (directly from their definitions as functions of the Xi) that
under the E action,

(3.8) E(PK
22) = −2, E(PK

12) = 2PK
22 , E(PK

11) = PK
12 ,

which isn’t quite correct. The situation is mollified by adding constants to the PK
ij ,

to define new P functions [2], namely:

P22 = PK
22 +

3
2
G4

P12 = PK
12 +

1
2
G3

P11 = PK
11 +

3
2
G2.(3.9)

These functions satisfy the correct relations with respect to the operator E (but
not e∗). Of course, there are no operators F and H.

Baker [2] defines the covariant ℘ functions by insisting that they transform from
the Pij as second derivatives. That is, he uses the maps

∂2
1 7→ α2∂2

1 − 2αβ∂1∂2 + β2∂2
2

∂1∂2 7→ −αγ∂2
1 + 2(αδ + βγ)∂1∂2 − βδ∂2

2

∂2
2 7→ γ2∂2

1 − 2γδ∂1∂2 + δ2∂
2
2(3.10)

with the values α = µ, β = 0, γ = µ
θ and δ = 1

µ borrowed from π, to define

℘11 = µ2P11(3.11)

℘12 = −µ2

θ
P11 + P12(3.12)

℘22 =
µ2

θ2
P11 − 2

θ
P12 +

1
µ2

P22.(3.13)
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These ℘ functions are now genuinely covariant as is easily checked by application
of e and f . For example

e(℘12) = −e

(
µ2

θ

)
P11 − µ2

θ
e∗(P11) + e∗(P12)

=
µ2

θ2
P11 − 1

θ
E(P11) +

1
µ2

E(P12)

=
µ2

θ2
P11 − 2

θ
P12 +

1
µ2

P22

= ℘22.(3.14)

In the same way,

(3.15) e(℘11) = 2℘12, e(℘12) = ℘22, e(℘22) = 0,

and

(3.16) f(℘11) = 0, f(℘12) = ℘11, f(℘22) = 2℘12.

These ℘ij = ℘ji still satisfy the integrability properties: ∂i℘jk = ∂j℘ik.

4. Families of identities as representations.

The ℘ function satisfies many interesting differential relations, of which a par-
ticularly important set is the following [2]:

−1
3
(℘2222 − 6℘2

22) = g2g6 − 4g3g5 + 3g2
4

+g4℘22 − 2g5℘12 + g6℘11,

−1
3
(℘1222 − 6℘22℘12) =

1
2
(g1g6 − 3g2g5 + 2g3g4)

+g3℘22 − 2g4℘12 + g5℘11,

−1
3
(℘1122 − 2℘22℘11 − 4℘2

12) =
1
6
(g0g6 − 9g2g4 + 8g2

3)

+g2℘22 − 2g3℘12 + g4℘11,

−1
3
(℘1112 − 6℘12℘11) =

1
2
(g0g5 − 3g1g4 + 2g2g3)

+g1℘22 − 2g2℘12 + g3℘11,

−1
3
(℘1111 − 6℘2

11) = g0g4 − 4g1g3 + 3g2
2

+g0℘22 − 2g1℘12 + g2℘11.

(4.1)

We shall remark shortly on the connection between these equations and the
Boussinesq and Korteweg-de Vries [5] equations, but for now we point out that
successive application of the e operator takes us from the bottom to the topmost
equation, which it annihilates, and that successive application of the f operator
takes us from the top to the bottom, which it annihilates.
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For example,
1
3
e(℘1112 − 6℘12℘11) =

1
3
(e(℘1112)− 6e(℘12)℘11 − 6℘12e(℘11))

=
1
3
(3℘1122 − 6℘22℘11 − 12℘12℘12)

= ℘1122 − 2℘22℘11 − 4℘12℘12,

1
3
e(g0g5 − 3g1g4 + 2g2g3) =

1
3
(6g1g5 + g0g6 − 15g2g4 − 6g1g5 + 8g3

3 + 6g2g4)

=
1
3
(g0g6 − 9g2g4 + 8g2

3),

and
1
3
e(g1℘22 − 2g2℘12 + g3℘11) =

1
3
(5g2℘22 − 8g3℘12 − 2g2℘22 + 3g4℘11 + 2g3℘12)

= g2℘22 − 2g3℘12 + g4℘11

This is a very simple proof of the covariance of the equations which thus form a
five dimensional irreducible representation of SL2(C).

It further follows that we can rewrite this set of five equations as a single one by
applying the vertex like operators

E = exp(λe), F = λ4 exp
(

1
λ

f

)

to either the lowest or topmost equation respectively. Application of E gives

(4.2) −1
3
℘zzzz + 2℘2

zz = G(λ) + g2(λ)℘zz − 2g1(λ)℘zz̄ + g0(λ)℘z̄z̄

where the subscript z denotes the derivation ∂1 + λ∂2 and the subscript z̄ denotes
∂2. The gp(λ) and G(λ) are given by gp(λ) = E(gp):

g0(λ) = g6λ
6 + 6g5λ

5 + 15g4λ
4 + 20g3λ

3 + 15g2λ
2 + 6g1λ + g0

g1(λ) = g6λ
5 + 5g5λ

4 + 10g4λ
3 + 10g3λ

2 + 5g2λ + g1

g2(λ) = g6λ
4 + 4g5λ

3 + 6g4λ
2 + 4g3λ + g2

g3(λ) = g6λ
3 + 3g5λ

2 + 3g4λ + g3

g4(λ) = g6λ
2 + 2g5λ + g4

g5(λ) = g6λ + g5

g6(λ) = g6

and

G(λ) = g0(λ)g4(λ)− 4g1(λ)g3(λ) + 3g2(λ)2

= E(g0)E(g4)− 4E(g1)E(g3) + 3E(g2)2,

a polynomial, by a number of remarkable cancellations, of degree four only in λ.
We also have the relation (action of e),

(4.3) gp+1(λ) =
1

6− p

∂gp

∂λ
.

More generally, let m denote a general group element in SL2(C) corresponding
to the transformation x 7→ m(x) = αx+β

γx+δ . Then define ∂ = m(∂1) = α∂1− β∂2 and
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∂̄ = m(∂2) = −γ∂1 + δ∂2 and by summing the five equations for ℘ with weights α4,
4α3β, 6α2β2, 4αβ3 and β4 we obtain

−1
3
∂4℘ + 2(∂2℘)2 = Γ0Γ4 − 4Γ1Γ3 + 3Γ2

2 +

Γ0∂̄
2℘− 2Γ1∂∂̄℘ + Γ2∂

2℘(4.4)

where

(−γx + α)6g
(

δx− β

−γx + α

)
= Γ0 + 6Γ1x + 15Γ2x

2 + 20Γ3x
3

+15Γ4x
4 + 6Γ5x

5 + Γ6x
6.(4.5)

Equation (4.4) is a family of equations parametrized by the points in SL2(C).
We shall make use of these forms later.

The important observation then is that all relations between ℘-functions and
between ℘-functions and the gi have to be covariant, that is: they must partition
themselves into sets which are permuted under the actions of e, f and h. Each
such set is spanned by a finite number of relations which form a basis for a finite
dimensional representation of SL2(C).

If we set g6 = 0, g5 = 2
3 , the remaining gi = Gi and ℘ = P we obtain the set of

equations appropriate to the case where one branch point is moved to ∞:

−1
3
(P2222 − 6P 2

22) = −8
3
G3 + 3G2

4

+G4P22 − 4
3
P12,

−1
3
(P1222 − 6P22P12) =

1
2
(−2G2 + 2G3G4)

+G3P22 − 2G4P12 +
2
3
P11,

−1
3
(P1122 − 2P22P11 − 4P 2

12) =
1
6
(−9G2G4 + 8G2

3)

+G2P22 − 2G3P12 + G4P11,

−1
3
(P1112 − 6P12P11) =

1
2
(
2
3
G0 − 3G1G4 + 2G2G3)

+G1P22 − 2G2P12 + G3P11,

−1
3
(P1111 − 6P 2

11) = G0G4 − 4G1G3 + 3G2
2

+G0P22 − 2G1P12 + G2P11.

(4.6)

The residue of the sl2(C) action is evident in that the operator E moves us up
this chain of equations, annihilating the topmost. If one relates these P back to
the PK via the subtraction of the appropriate constants one obtains the Kleinian
form of these equations which is the one usually quoted [4].

The e and f operators may be used to shortcut more tedious calculations. For
example, equality of cross derivatives in the set (4.1) implies identities linear in the
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three index symbols. Thus ∂1℘2222 = ∂2℘1222, gives

2(℘22℘122 − ℘12℘222) = −g3℘222 + 3g4℘122 − 3g5℘112 + g6℘111

(4.7)

and from this, by application of f , we obtain the four dimensional representation,

2(℘22℘122 − ℘12℘222) = −g3℘222 + 3g4℘122 − 3g5℘112 + g6℘111

−2
3
(℘11℘222 − 2℘22℘112 + ℘12℘122) = −g2℘222 + 3g3℘122 − 3g4℘112 + g5℘111

2
3
(℘22℘111 − 2℘11℘122 + ℘12℘112) = −g1℘222 + 3g2℘122 − 3g3℘112 + g4℘111

−2(℘12℘111 − ℘11℘112) = −g0℘222 + 3g1℘122 − 3g2℘112 + g3℘111.

(4.8)

Less efficiently, these identities may be obtained by considering the other cross
derivatives. Further, the corresponding identities for the Kleinian functions are
obtained directly by reduction.

Being a set of four, homogeneous linear identities in four variables (the three
index symbols) the equations (4.8) have to be linearly dependent which implies the
vanishing of the determinant,

(4.9)

∣∣∣∣∣∣∣∣

g6 −3g5 3g4 + 2℘22 −g3 − 2℘12

−3g5 9g4 − 4℘22 −9g3 + 2℘12 3g2 + 2℘11

3g4 + 2℘22 −9g3 + 2℘12 9g2 − 4℘11 −3g1

−g3 − 2℘12 3g2 + 2℘11 −3g1 g0

∣∣∣∣∣∣∣∣
= 0.

This must either be identically true or the expression for the Kummer surface in
the case of generic coefficients of the sextic. In fact it is the latter [2]. Expanding
the determinant leads to a rather complex equation which breaks up into five parts
of degrees 0, 1, 2, 3 and 4 in the ℘ij , each of which is an invariant under the SL2(C)
action. The leading order term is the invariant 16(℘2

12 − ℘22℘11)2.
Again one must reduce by the usual procedure to recover the Kleinian form (1.4).
In order to obtain the classical identities for quadratics in three index symbols,

consider

∂2(℘2
222) = 2℘222℘2222

= 2℘222(6℘2
22 − 3(g2g6 − 4g3g5 + 3g2

4)− 3g4℘22 + 6g5℘12 − 3g6℘11)
= ∂2

(
4℘3

22 − 6(g2g6 − 4g3g5 + 3g2
4)℘22 − 3g4℘

2
22

)
−6(g6℘11 − 2g5℘12)℘222.(4.10)

Elimination of ℘111 between the first two of equations (4.8) yields,

2g5(℘22℘122 − ℘12℘222) +
2
3
g6(℘11℘222 − 2℘22℘112 + ℘12℘122)

= −∂2{(g5g3 − g6g2)℘22 − 3(g5g4 − g3g6)℘12 + 3(g2
5 − g6g4)℘11}

which can be rewritten

2(g6℘11 − 2g5℘12)℘222 = ∂2{(−(g5g3 − g6g2)℘22 + 3(g5g4 − g3g6)℘12

−3(g2
5 − g6g4)℘11 − 2g5℘22℘12 − 1

3
g6(℘2

12 − 4℘11℘22)},
thus allowing the right hand side of (4.10) to be written as a total ∂2 derivative.
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Integrating,

℘2
222 = 4℘3

22 − 3g4℘
2
22 + 6g5℘12℘22 + g6℘

2
12 − 4g6℘11℘22

+9(g2
5 − g4g6)℘11 + 9(g6g3 − g4g5)℘12

+9(3g3g5 − g2g6 − 2g2
4)℘22 + C6.

Here C6 is a constant function of the gi which must be the highest weight for
a seven dimensional representation, {C6, C5, C4, C3, C2, C1, C0} of SL2(C) so that
application of f to the above creates the seven identities

℘2
222 = 4℘3

22 − 3g4℘
2
22 + 6g5℘12℘22 + g6℘

2
12 − 4g6℘11℘22

(4.11)

+ 9(g2
5 − g4g6)℘11 − 9(g4g5 − g6g3)℘12

+ 9(3g3g5 − g2g6 − 2g2
4)℘22 + C6,

6℘122℘222 = 24℘12℘
2
22 + 18g5℘

2
12 − 12g3℘

2
22 + 18g4℘12℘22

(4.12)

− 6g6℘12℘11 − 18g5℘11℘22 + 27(g4g5 − g6g3)℘11

+ 9(g2g6 − 9g2
4 + 8g3g5)℘12 + 9(3g2g5 − g3g4 − 2g1g6)℘22 + C5

9℘2
122 = 48℘2

12℘22 + 12℘11℘
2
22 + 12g3℘12℘22 + 63g4℘

2
12 − 36g4℘11℘22

(4.13)

+ 6℘112℘222 − 3g6℘
2
11 − 18g5℘12℘11 − 18g2℘

2
22

+ 9(g3g5 − 4g2g6 + 3g2
4)℘11 + 9(18g2g5 − 17g3g4 − g1g6)℘12

− 9(3g1g5 + 2g2
3 − 6g2g4 + g0g6)℘22 + C4

18℘122℘112 = 48℘12℘11℘22 + 32℘3
12 − 12g5℘

2
11 + 92g3℘

2
12

(4.14)

+ 2℘111℘222 − 12g4℘12℘11 − 12g2℘12℘22 + 48g3℘11℘22 − 12g1℘
2
22

− 9(3g1g6 − 4g3g4 + g2g5)℘11 + 9(17g2g4 − 18g2
3 − g0g6 + 8g1g5)℘12

− 9(g1g4 − 4g2g3 + 3g0g5)℘22 + C3

6℘122℘111 = 48℘2
12℘11 + 12℘2

11℘22 + 12g3℘12℘11 + 63g2℘
2
12

(4.15)

+ 9℘2
112 − 18g4℘

2
11 − 3g0℘

2
22 − 36g2℘11℘22 − 18g1℘12℘22

− 9(g0g6 + 3g1g5 − 6g2g4 + 2g2
3)℘11 − 9(17g2g3 + g0g5 − 18g4g1)℘12

− 9(4g0g4 − g1g3 − 3g2
2)℘22 + C2

6℘112℘111 = 24℘12℘
2
11 + 18g2℘12℘11 + 18g1℘

2
12 − 12g3℘

2
11

(4.16)

− 6g0℘12℘22 − 18g1℘11℘22 − 9(2g5g0 + g2g3 − 3g4g1)℘11

+ 9(g4g0 − 9g2
2 + 8g3g1)℘12 − 27(g0g3 − g1g2)℘22 + C1

℘2
111 = 4℘3

11 + 6g1℘12℘11 + g0℘
2
12 − 3g2℘

2
11 − 4g0℘11℘22(4.17)

− 9(g4g0 + 2g2
2 − 3g3g1)℘11

− 9(g2g1 − g3g0)℘12 + 9(g2
1 − g0g2)℘22 + C0
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These quadratic relations are, like the expression for the Kummer surface earlier,
valid for the branch points of the curve in general position.

The constant C0 can be identified by going to the canonical form, using the
associated definitions of the Pij and expanding in the independent variables X1

and X2 about (0, 0) (assuming g − 0 6= 0) in the last of the above equations.
Because g5 and g6 do not feature in this equation its form is retained when the
branch point is moved to infinity. The lowest order (constant) terms in P11 etc. are

P11 ≈ −9
4

g2g0 − g2
1

g0

P12 ≈ 1
2
g3

P22 ≈ 3
2
g4

P111 ≈ −1
4

20g3g
2
0 − 45g1g2g0 + 27g3

1

g
3/2
0

,

which, when substituted into the last equation yield

(4.18) C0 =
81
4

(g2
3g0 − 2g3g1g2 + g3

2 + g2
1g4 − g0g2g4).

It is easily checked that f(C0) = 0 and we generate the other Ci by applying e:

C1 = e(C0) =
81
2

(−g1g
2
3 − g1g2g4 + g3g

2
2 + g3g0g4 + g5g

2
1 − g5g2g0)

C2 =
1
2
e(C1) =

81
4

(−4g1g3g4 + 2g1g5g2 + 3g2g
2
3 − 2g2

2g4 − 2g3g5g0 + 3g0g
2
4+

+ g6g
2
1 − g6g2g0)

C3 =
1
3
e(C2) =

81
2

(−2g1g3g5 + g1g
2
4 + g1g6g2 − 3g2g3g4 + g5g

2
2 + 2g3

3 − g3g6g0+

+ g4g5g0)

C4 =
1
4
e(C3) =

81
4

(−2g1g3g6 + 2g1g4g5 − 4g2g3g5 − 2g2g
2
4 + 3g6g

2
2 + 3g2

3g4−
− g4g6g0 + g2

5g0)

C5 =
1
5
e(C4) =

81
2

(−g1g4g6 + g1g
2
5 + g2g3g6 − g2g4g5 − g2

3g5 + g3g
2
4)

C6 =
1
6
e(C5) =

81
4

(−g2g4g6 + g2g
2
5 + g2

3g6 − 2g3g4g5 + g3
4)

Let us remark in passing that the Klein formula [4]

(4.19) PK
11 + (X1 + X2)PK

12 + X1X2P
K
22 =

F (X1, X2)− 2Y1Y2

4(X1 −X2)2
.

(usually written with the symbols ℘ij) is not, of course, respected by the E action
for the reasons already stated. However, if we modify the polar form appropriately
to

(4.20) F̂ (X1, X2) = F (X1, X2) + 2(X1 −X2)2(3G4X1X2 + G3(X1 + X2) + 3G2),

then the modified Klein formula

(4.21) P11 + (X1 + X2)P12 + X1X2P22 =
F̂ (X1, X2)− 2Y1Y2

4(X1 −X2)2
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is annihilated by E. Indeed, more than this, the expression

(4.22) ℘11 + (x1 + x2)℘12 + x1x2℘22 =
F̂ (x1, x2)− 2y1y2

4(x1 − x2)2
,

that is, the variables all being in generic position, and F̂ being formed with the
generic values of the gi, is actually covariant under both e and f . After substitution
for the ℘ij in terms of the Pij the left hand side takes the form

x1x2

µ2X1X2
(P11 + (X1 + X2)P12 + X1X2P22)

and the verification of formula (4.22) reduces to that of the identity

F̂

(
− θx1

µ2(x1 − θ)
,− θx2

µ2(x2 − θ)

)(µ

θ

)6

(x1 − θ)3(x2 − θ)3 = F̂ (x1, x2)

which is easily seen to be true. Formula (4.22) is to be found in Baker [2].

5. The Boussinesq connection and the reduction to KdV

For recent work on the Boussinesq equation see [3, 8], and references therein.
It has been remarked elsewhere [4, 7] that the first of equations (1.3), if differ-

entiated with respect to U2 and expressed in terms of φ = PK
22 becomes the KdV

equation

(5.1) φ222 − 12φφ2 = 15G4φ2 + 4φ1

under the identification of U1 with the time and U2 with the space variable. (The G4

term is removable by a Galilean boost.) But it does not appear to have been noted
before that the system is similarly related to the Boussinesq equation. Specifically,
differentiation of the last of the equations twice with respect to U1 and putting
ψ = PK

11 yields

(5.2) ψ111 − 12ψ2
1 − 12ψψ11 = −3G0ψ22 + 6G1ψ12 + 15G2ψ11.

Again the ψ12 term can be removed with a boost and Boussinesq emerges when U2

is identified with time and U1 with space (the reverse identification to that for the
KdV).

However, this relation goes deeper when it is recognised that the whole λ de-
pendent family (4.2) is of Boussinesq form and, further, that it reduces to the KdV
equation (with the same identification of space/time variables) precisely when the
parameter λ is a root of the sextic g0(λ) = g(λ) = 0. Of course, whilst we have
the Boussinesq equation for any particular choice of λ, the full set of equations
(equivalently the λ-family) are a far stronger constraint.

These remarks also apply to the equation on the whole group (4.4) when α and
β are such that Γ0 = 0. Being an integrable system, equations (4.2) and (4.4) are
the compatibility conditions of pairs of Lax operators. These Lax operators will be
sections of the tangent bundle over the Jacobian of the genus 2 curve.

6. The Lax pair for Baker’s equations.

The Lax operators for the λ-family of Boussinesq equations (4.2) are

L(λ) = ζ∂z̄ + ∂2
z − 2℘zz(6.1)

M(λ) = ∂3
z +

1
2
ζ ′∂2

z +
1
20

(ζζ ′′ + ζ ′2)∂z − 3℘zz∂z − 3
2
℘zzz − ζ ′℘zz +

3
2
ζ℘zz̄
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where ζ2 = g(λ) and prime denotes derivation with respect to λ. For each λ, L(λ)
and M(λ) are commuting operators on the Jacobian variety. They have analytic
expansions about λ = 0 (assumed a regular point) of the forms

(6.2) L(λ) = E(L0) =
∞∑

p=0

λp

p!
Lp,

(6.3) M(λ) = E(M0) =
∞∑

p=0

λp

p!
Mp,

where Lp+1 = e(Lp), Mp+1 = e(Mp) and

L0 = g
1
2
0 ∂2 + ∂2

1 − 2℘11,(6.4)

M0 = ∂3
1 +

3
2
g
− 1

2
0 g1∂

2
1 +

(
3
4
g2 − 3℘11

)
∂1

−3
2
℘111 − 3g

− 1
2

0 g1℘11 +
3
2
g

1
2
0 ℘12.(6.5)

Straightforward application of e yields

L1 = 3g
− 1

2
0 g1∂2 + 2∂1∂2 − 4℘12(6.6)

L2 = (15g−
1
2

0 g2 − 9g
− 3

2
0 g2

1)∂2 + 2∂2
2 − 4℘22(6.7)

Lp = kp∂2 p > 2,(6.8)

where the kp are constant functions of g0, . . . g6 only.
Application of e to M0 yields (more involved) expressions for the Mp.
The commutation conditions also expand in an analytic series in λ:

[L0,M0] = 0
e([L0,M0]) = [L1,M0] + [L0,M1] = 0

e2([L0,M0]) = [L2,M0] + 2[L1,M1] + [L0,M2] = 0
etc.

The first five of these relations generate the Baker equations. All others are
identically zero. We can, of course, summarise these in a conventional matrix Lax
pair

(6.9) [L, M] = 0,

with

L =




L0 L1
1
2L2

1
6L3

1
24L4

0 L0 L1
1
2L2

1
6L3

0 0 L0 L1
1
2L2

0 0 0 L0 L1

0 0 0 0 L0


 ,

and

M =




M0 M1
1
2M2

1
6M3

1
24M4

0 M0 M1
1
2M2

1
6M3

0 0 M0 M1
1
2M2

0 0 0 M0 M1

0 0 0 0 M0


 .
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7. A family of solutions to Boussinesq.

Finally, it follows from our representation theoretic treatment of the Baker equa-
tions that the genus two ℘ function does indeed provide a family of solutions to
the Boussinesq equation. We can describe this family explicitly using the following
argument.

Let ℘ be associated with the curve y2 = g(x) in the classical manner. It will
satisfy the last of equations (4.1) in particular. Applying ∂2

1 and putting u =
−12∂2

1℘ simplifies the coefficients to give

∂4
1u + u∂2

1u + (∂1u)2 + g2∂
2
1u− 2g1∂1∂2u + g0∂

2
2u = 0.

Replacing the derivatives by

∂2 = g
− 1

2
0 ∂T +

g1

g0
∂X(7.1)

∂1 = ∂X(7.2)

and putting

u = w − g0g2 − g2
1

g0

leaves us with the Boussinesq equation for w,

(7.3) wXXXX + wwXX + w2
X + wTT = 0.

Undoing these changes gives the expression for a family of solutions:

(7.4) w(X,T ) =
g0g2 − g2

1

g0
− 12∂2

X℘(X − g
− 3

2
0 g1T, g

1
2
0 T ).

Here ℘(u1, u2) is just the ℘ function associated with the curve with coefficients
g0, . . . , g6, whose arguments are the canonical variables u1 and u2 on the Jacobian
variety. The function w(X,T ) will also satisfy the other four of the equations (4.1)
and is thus not a general solution to Boussinesq.

8. Conclusions and comments

We have shown how the covariance property of the underlying family of algebraic
curves provides a new tool for the study of identities between classical ℘-functions.
In particular we have used a connection with the well-known Boussinesq equation
to derive Lax operators for the Baker equations and to examine their covariance.
We have described a family of solutions to the Boussinesq equation in terms of the
genus two ℘ function.

One important function of this paper has been to modernise the treatment of ℘
functions given in Baker’s book [2].

In a separate publication we present a reformulation of the theory in which this
covariance takes centre stage. Our hope is that these methods will enormously
simplify the treatment of curves of higher genus.

We should all like to thank the Isaac Newton Institute, Cambridge, for its support
during the Integrable Systems Programme (2001) when this work was initiated, and
we would like to express our indebtedness to members of the programme for their
interest and comments on earlier stages of the work.
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