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We consider travelling periodic and quasi-periodic wave solutions of a set of
coupled nonlinear Schrödinger equations. In fibre optics these equations can be used
to model single mode fibres with strong birefringence, and two-mode optical fibres.
Recently these equations appear as a model describing pulse-pulse interactions in
wavelength-division-multiplexed channels of optical fibre transmission systems. In
some cases this model reduces to the integrable Manakov system (IMS). Two phase
quasi-periodic solutions for the IMS are given in terms of two dimensional Kleinian
functions. The reduction of quasi-periodic solutions to elliptic functions is discussed.
New solutions are found in terms of generalized Hermite polynomials, which are
associated with two-gap Treibich-Verdier potentials.
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1. Introduction

We consider a system of two coupled nonlinear Schrödinger equations

i Ut + Uxx + (κUU∗ + χVV∗)U = 0,
i Vt + Vxx + (χUU∗ + ρVV∗)V = 0,

(1.1)

where κ, χ, ρ are some constants. The integrability of this system was proved by
Manakov (1974) only for the case κ = χ = ρ, which we shall refer as the Integrable
Manakov System (IMS).

Equations (1.1) are important for a number of physical applications when χ is
positive and all remaining constants are set equal to 1. For example, for two-mode
optical fibres, χ = 2 (Crosignani et al. 1982); for propagation of two modes in fibres
with strong birefringence, χ = 2

3 (Menyuk 1987) and in the general case 2
3 ≤ χ ≤ 2

for elliptical eigenmodes. The special value χ = 1 (IMS) corresponds to at least two
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possible physical cases, namely the case of a purely electrostrictive nonlinearity or,
in the elliptical birefringence case, when the angle between the major and minor
axes of the birefringence ellipse is approximately 35o. The experimental observation
of Manakov solitons in crystals has been reported by Kang et al. (1996). Recently
the Manakov model has appeared in a Kerr-type approximation of photorefrac-
tive crystals (Kutusov et al. 1998). The pulse-pulse collision between wavelength-
division-multiplexed channels of optical fibre transmission systems are described by
(1.1) with χ = 2, (Hasewaga and Kodama 1995; Kodama 1997; Kodama et al. 1996;
Mollenauer et al. 1991). Wavelength division-multiplexing is one means of increas-
ing the bandwidth in optical communication systems. This technique is limited by
the finite bandwidth of the Er-doped fibre amplifiers which are now incorporated
into most, if not all, such systems. An alternative to increase the bandwidth – and
one which may well be used in conjunction with wavelength division-multiplexing
– is polarisation division-multiplexing (Evangelides et al. 1992). Here, the polarisa-
tion state of the input pulses is varied from pulse to pulse in a specified way such
that all pulses in a particular state can be switched into a particular channel on exit
from the fibre. Relevant to this are the periodic solutions of the IMS, in which the
polarisation state of the of the initial pulses varies from pulse to pulse in a specified
manner. It is the properties of these solutions that we examine here.

General quasi-periodic solutions in terms of n-phase theta functions for the IMS
are derived by Adams et al. (1993), while a series of special solutions are given in
(Alfinito et al. 1995; Polymilis et al. 1998; Porubov & Parker 1999; Pulov et al.
1998). The authors of this present paper have already discussed quasi-periodic and
periodic solutions associated with Lamé and Treibich-Verdier potentials for a non-
integrable system of coupled nonlinear Schrödinger equations in terms of a special
ansatz (Christiansen et al. 1995). We also mention the method of constructing el-
liptic finite-gap solutions of the stationary KdV and AKNS hierarchy, based on a
theorem due to Picard, proposed by Gesztesy & Ratnaseelan (1998) and Gesztesy
& Weikard (1996, 1998a, 1998b) and the method developed by Smirnov in series of
publications, the review paper (Smirnov 1994) and Smirnov (1997a, 1997b). These
techniques are also useful for finding solutions to the complex Ginsburgh-Landau
equations (Porubov & Velarde 1999), and for periodic waves in multicomponent
photorefractive crystals (Petnikova et al. 1999, Vysloukh et al. 1998).

In the present paper we investigate (1.1) restricted to a system integrable in
terms of ultraelliptic functions, by introducing a special ansatz, which was recently
applied by Porubov and Parker (1999) to analyse special classes of elliptic solutions
of the Manakov system (κ = χ = ρ = 1). More precisely, we seek a solution of (1.1)
in the form

U(x, t) = q1(x) exp
{
ia1t+ iC1

x∫
·

dx q1−2(x)
}
,

V(x, t) = q2(x) exp
{
ia2t+ iC2

x∫
·

dx q2−2(x)
}
,

(1.2)

where the q1,2(x) are real functions and a1, a2, C1, C2 are real constants. Substitut-
ing (1.2) into (1.1) we reduce the system to the equations

d2q1
dx2 + ρq3

1 + χq1q
2
2 − a1q1 − C2

1q1
−3 = 0,

d2q2
dx2 + κq3

2 + χq2q
2
1 − a2q2 − C2

2q2
−3 = 0.

(1.3)
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Coupled nonlinear Manakov system 3

The system (1.3) is a natural Hamiltonian two-particle system with a Hamiltonian
of the form

H =
1
2
p2

1 +
1
2
p2

2 +
1
4

(ρq4
1 + 2χq2

1q
2
2 + κq4

2)

−1
2
a1q

2
1 −

1
2
a2q

2
2 +

1
2
C2

1q1
−2 +

1
2
C2

2q2
−2, (1.4)

where pi(x) = dqi(x)/dx, i = 1, 2.
These equations describe the motion of particles interacting with a quartic po-

tential Aq4
1 + Bq2

1q
2
2 + Cq4

2 and perturbed by an inverse squared potential. Nowa-
days four nontrivial cases of complete integrability are known for the nonperturbed
quartic potential: (i) A : B : C = 1 : 2 : 1, (ii) A : B : C = 1 : 12 : 16, (iii)
A : B : C = 1 : 6 : 1, and (iv) A : B : C = 1 : 6 : 8. Cases (i), (ii) and (iii) are
separable in ellipsoidal, paraboidal and Cartesian coordinates respectively, whilst
case (iv) is separable in the general sense (Ravoson et al. 1994). The case (ii) ap-
pears as one of the entries in the polynomial hierarchy discussed in Eilbeck et al.
(1993). The cases (iii) and (iv) are proved to be canonically equivalent under the
action of a Miura map restricted to the stationary coupled KdV systems associated
with a fourth order Lax operator (Baker et al. 1995). Moreover all the cases (i)-(iv)
allow the deformation of the potential by linear combination of inverse squares and
squares with certain limitations on the coefficients (Eilbeck et al. 1993, Baker et al.
1995). There are also Lax representations known for all these cases which yield hy-
perelliptic algebraic curves in the cases (i) and (ii) and a 4-gonal curve in the cases
(iii) and (iv). Various results concerning cases (i)-(iv) can be found in Hietarinta
(1987) and Perelomov (1991).

Although each system listed yield nontrivial classes of solutions of the system
(1.1), we shall discuss only the case (i) in detail. This brings us back to the IMS,
but the techniques we describe can also be applied to the other cases which are not
described by the IMS. The integrability of case (i), and separability in ellipsoidal co-
ordinates was proved by Wojciechowski (1985) (see also Kostov 1989, Tondo 1995).
We employ this result to integrate the system in terms of ultraelliptic functions
(hyperelliptic functions of a genus two curve) and then reduce hyperelliptic func-
tions to elliptic ones by imposing additional constraints on the parameters of the
system.

The paper is organised as follows. In the first section we construct the Lax rep-
resentation of the system, develop a genus two algebraic curve, which is associated
with the system, and reduce the problem to solution of the Jacobi inversion problem
associated with a genus two algebraic curve. In §2 we develop the integration of
the system in terms of Kleinian hyperelliptic functions, which represent a natural
generalization of Weierstrass elliptic functions to hyperelliptic curves of higher gen-
era; recently this realization of Abelian functions was discussed in (Buchstaber et
al. 1997a, 1997b; Eilbeck et al. 1999). In §2 the curve we use is a genus two curve,
although general hyperelliptic curves have genus g ≥ 2. Often the special case of a
genus two hyperelliptic curve is called an ultraelliptic curve, and we since we restrict
ourselves to the genus two case, use these two terms interchangeably throughout
the paper. We explain in §3 the outline of the Kleinian realization of hyperelliptic
functions and give the principal formulae for the case of a genus two curve. In §4
we develop a reduction of Kleinian hyperelliptic function to elliptic functions in
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terms of Darboux coordinates for the curve admitting additional involution. In this
way a quasiperiodic solution in terms of elliptic functions is obtained. In the last
section we construct a set of elliptic periodic solutions from spectral theory for the
Schrödinger equation with an elliptic potential.

2. Lax representation

The system 1 : 2 : 1 (κ = χ = ρ = 1) is a completely integrable Hamiltonian system

d2q1
dx2 + (q2

1 + q2
2)q1 − a1q1 − C2

1q1
−3 = 0,

d2q2
dx2 + (q2

1 + q2
2)q2 − a2q2 − C2

2q2
−3 = 0

(2.1)

with the Hamiltonian

H =
1
2

2∑
i=1

p2
i +

1
4
(
q2
1 + q2

2

)2 − 1
2
a1q

2
1 −

1
2
a2q

2
2 +

1
2
C2

1

q2
1

+
1
2
C2

2

q2
2

, (2.2)

where the variables (q1, p1; q2, p2) are the canonically conjugated variables with
respect to the standard Poisson bracket, {· ; ·}.

This system has a the Lax representation, as a special case of the Lax represen-
tation given by Kostov (1989). This is the matrix equation

∂L(λ)
∂ζ = [M(λ), L(λ)],

L(λ) =
(

V (λ) U(λ)
W (λ) −V (λ)

)
, M =

(
0 1

Q(λ) 0

)
, (2.3)

which is equivalent to (2.1), where U(λ),W (λ), Q(λ) have the form

U(λ) = −a(λ)
(

1 +
1
2

q2
1

λ− a1
+

1
2

q2
2

λ− a2

)
,

V (λ) = −1
2

d
dζ
U(λ),

W (λ) = a(λ)
(
−λ+

q2
1

2
+
q2
2

2
+

1
2

(
p2

1 +
C2

1

q2
1

)
1

λ− a1
+

+
1
2

(
p2

2 +
C2

2

q2
2

)
1

λ− a2

)
,

Q(λ) = λ− q2
1 − q2

2 ,

and a(λ) = (λ− a1)(λ− a2).
The Lax representation yields a hyperelliptic curve V = (ν, λ),

det
(
L(λ)− 1

2
ν12

)
= 0,

where 12 is the 2× 2 unit matrix. The curve is given explicitly by

ν2 = 4(λ− a1)(λ− a2)(λ3 − λ2(a1 + a2) + λ(a1a2 −H)−G)
−C2

1 (λ− a2)2 − C2
2 (λ− a1)2, (2.4)
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Coupled nonlinear Manakov system 5

where H is the Hamiltonian (2.2), and the second independent integral of motion
G, {H;G} = 0 is given by

G =
1
4

(p1q2 − p2q1)2 +
1
2

(q2
1 + q2

2)(a1a2 −
1
2
a2q

2
1 −

1
2
a1q

2
2)

−1
2
p2

1a2 −
1
2
p2

2a1 −
1
4

(2a2 − q2
2)C2

1

q2
1

− 1
4

(2a1 − q2
1)C2

2

q2
2

. (2.5)

The parameters Ci are linked with the coordinates of the points (ai, ν(ai)) by the
formula

C2
i = − ν(ai)2

(ai − aj)2
, i, j = 1, 2. (2.6)

We write the curve (2.4) in the form

ν2 = 4λ5 + α4λ
4 + α3λ

3 + α2λ
2 + α1λ+ α0, (2.7)

where the moduli of the curve αi are expressible in terms of physical parameters –
level of energy H and constants a1, a2, C1, C2 as follows

α4 = −8(a1 + a2),
α3 = −4H + 4(a1 + a2)2 + 8a1a2,

α2 = 4H(a1 + a2)− 4F − C2
1 − C2

2 − 8a1a2(a1 + a2),
α1 = 4F (a1 + a2)− 4a1a2H + 2C2

1a2 + 2C2
2a1 + 4a2

1a
2
2,

α0 = −4a1a2F − C2
1a

2
2 − C2

2a
2
1.

We define new coordinates µ1, µ2 as zeros of the entry U(λ) in the Lax operator.
Then

q2
1 = 2

(a1 − µ1)(a1 − µ2)
a1 − a2

, q2
2 = 2

(a2 − µ1)(a2 − µ2)
a2 − a1

. (2.8)

The definition of µ1, µ2 in combination with the Lax representation gives the equa-
tions

νi = V (µi) = −1
2
∂

∂x
U(µi), i = 1, 2, (2.9)

which can be transformed into equations of the the form†

u1 =
∫ µ1

a1

du1 +
∫ µ2

a2

du1, (2.10)

u2 =
∫ µ1

a1

du2 +
∫ µ2

a2

du2, (2.11)

where du1,2 denote independent canonical holomorphic differentials

du1 =
dλ
ν
, du2 =

λdλ
ν

. (2.12)

and u1 = a, u2 = 2x+b with the constants a, b defined by the initial conditions. The
integration of the problem is then reduced to the solution of the Jacobi inversion
problem associated with the curve, which consists of the expression of the symmetric
functions of (µ1, µ2, ν1, ν2) as a function of two complex variables (u1, u2).

† In what follows we shall denote the integral bounds by the second coordinate of the curve
V = V (ν, λ), eq. (2.4).
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3. Exact solutions in terms of Kleinian hyperelliptic
functions

In this section we give the trajectories of the system in terms of Kleinian hyper-
elliptic functions (e.g. Baker 1897; Buchstaber et al. 1997a), associated with an
algebraic curve of genus two (2.7) which can be also written in the form

ν2 = 4
4∏
i=0

(λ− λi), (3.1)

where λi 6= λj are branch points. At all real branch points the closed intervals
[λ2i−1, λ2i], i = 0, . . . 4 will be referred to as lacunae (Zakharov et al. 1980; McKean
& van Moerbeke 1975). We equip the curve with a homology basis (a1, a2; b1, b2) ∈
H1(V,Z) and fix the basis in the space of holomorphic differentials as in (2.12). The
associated canonical meromorphic differentials of the second kind drT = (dr1,dr2)
have the form

dr1 =
α3λ+ 2α4λ

2 + 12λ3

4ν
dλ, dr2 =

λ2

ν
dλ. (3.2)

The 2× 2 matrices of their periods are

2ω =
(∮

ak

dul

)
k,l=1,2

, 2ω′ =
(∮

bk

dul

)
k,l=1,2

,

2η =
(∮

ak

drl

)
k,l=1,2

, 2η′ =
(∮

bk

drl

)
k,l=1,2

,

which satisfy the equations

ω′ωT − ωω′T = 0, η′ωT − ηω′T = − iπ
2

12, η′ηT − ηη′T = 0,

which generalize the Legendre relations between complete elliptic integrals to the
case g = 2.

The fundamental σ function in this case is a natural generalization of the Weier-
strass elliptic σ function and is defined as follows

σ(u) =
π√

det(2ω)
ε

4

√∏
1≤i<j≤5(λi − λj)

× exp
{
uT η(2ω)−1u

}
θ[ε]((2ω)−1u|ω′ω−1),

where ε8 = 1, and θ[ε](v|τ) is the θ function with an odd characteristics [ε] =[
ε1 ε2

ε′1 ε′2

]
, 4(ε1ε

′
1 + ε2ε

′
2) = 1 mod 2, which is the characteristics of the vector of

Riemann constants, and the θ function is defined by its Fourier series

θ[ε](v|τ) =
∑
m∈Z2

exp iπ
{

(m+ ε)T τ(m+ ε) + 2(v + ε′)T τ(m+ ε)
}
.

Alternatively, the σ function can be defined by its expansion near u = 0

σ(u) = u1 +
1
24
α2u

3
1 −

1
3
u3

2 + o(u5) (3.3)
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and further terms can be computed with the help of a bilinear differential equation
(Baker 1907).

The σ-function possesses the following periodicity property: put

E(m,m′) = ηm+ η′m′, and Ω(m,m′) = ωm+ ω′m′,

where m,m′ ∈ Zn, then

σ[ε](z + 2Ω(m,m′), ω, ω′) = exp
{

2ET (m,m′)
(
z + Ω(m,m′)

)}
× exp{−πimTm′ − 2πiεTm′}σ[ε](z, ω, ω′).

As a modular function the Kleinian σ-function is invariant under the transformation
of the symplectic group, which represents an important characteristic feature.

We introduce the Kleinian hyperelliptic functions as the logarithmic derivatives

ζi(u) =
∂

∂ui
ln σ(u), ℘ij(u) = − ∂2

∂ui∂uj
ln σ(u), i, j = 1, 2,

with ℘12 = ℘21. The multi-index symbols ℘i,j,k etc. are defined as logarithmic
derivatives with respect to the corresponding variables ui, uj , uk.

The principal result of the theory is the formula of Klein, which reads in the
case of genus two as follows. Let

u =
∫ µ1

∞
du +

∫ µ2

∞
du

be an arbitrary vector in C
2 , and (µ1, λ1), (µ2, λ2) be arbitrary points on the curve.

Then the following formula is valid

2∑
k,l=1

℘kl

(∫ µ

∞
du + u

)
µk−1µl−1

i =
F (µ, µi)− 2ννi

4(µ− µi)2
, i = 1, 2, (3.4)

where

F (µ1, µ2) =
2∑
r=0

µr1µ
r
2[2α2r + α2r+1(µ1 + µ2)]. (3.5)

The analogous formulae for the hyperelliptic ζ-functions are

ζ1

(∫ µ

∞
du + u

)
=

∫ µ

∞
dr1 +

∫ µ1

∞
dr1 +

∫ µ2

∞
dr1 −

1
2
℘222(u)−

ν(µ− ℘22(u))− µ℘122(u)− ℘112(u)
2P(λ,u)

, (3.6)

and

ζ2

(∫ µ

∞
du + u

)
=

∫ µ

∞
dr2 +

∫ µ1

∞
dr2 +

∫ µ2

∞
dr2 − (3.7)

ν − µ℘222(u)− ℘122(u)
2P(λ,u)

, (3.8)
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where

P(λ,u) = λ2 − ℘22(u)λ− ℘12(u). (3.9)

By expanding these equalities at µ =∞ we obtain a complete set of the relations
for the hyperelliptic functions.

The first group of the relations represents the solution of the Jacobi inversion
problem in the form

P(λ,u) = 0, (3.10)

that is, the pair (µ1, µ2) is a pair of roots of (3.10). Thus we get

℘22(u) = µ1 + µ2, ℘12(u) = −µ1µ2. (3.11)

The corresponding νi is expressed as

νi = ℘222(u)µi + ℘122(u), i = 1, 2. (3.12)

The functions ℘22, ℘12 are called basis functions. The function ℘11(u) is expressed
as a symmetric function of µ1, µ2 and ν1, ν2 from (3.4)

℘11(u) =
F (µ1, µ2)− 2ν1ν2

4(µ1 − µ2)2
, (3.13)

where F (µ1, µ2) is given in (3.5).
The next group of relations, which can be derived by an expansion of (3.4), are

the pairwise products of the ℘ijk functions expressed in terms of ℘22, ℘12, ℘11 and
constants αs of the defining equation (3.1). We give here only the basis equations

℘2
222 = 4℘3

22 + 4℘12℘22 + α4℘
2
22 + 4℘11 + α3℘22 + α2, (3.14)

℘222℘122 = 4℘12℘
2
22 + 2℘2

12 − 2℘11℘22 + α4℘12℘22 (3.15)

+
1
2
α3℘12 +

1
2
α1.

The next group of the equations, which is derived as the result of expanding the
equalities (3.4), are the expressions of four index symbols ℘ijkl as quadrics in ℘ij
(again we give the basis functions only)

℘2222 = 6℘2
22 +

1
2
α3 + α4℘22 + 4℘12, (3.16)

℘1222 = 6℘22℘12 + α4℘12 − 2℘11, (3.17)

These equations can be identified with completely integrable partial differential
equations and dynamical systems, which can be solved in terms of Abelian functions
of a hyperelliptic curve of genus two. In particular, these equations represent the
KdV hierarchy with “times” (t1, t2) = (u2, u1) = (x, t),

Xk+1[U] = RXk[U], (3.18)
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Coupled nonlinear Manakov system 9

where R = ∂2
x − U + c− 1

2 Ux∂−1, c = 1
12α4 is the Lenard recursion operator. The

first two equations from the hierarchy are

Ut1 = Ux, Ut2 =
1
2

(Uxxx − 6UxU), (3.19)

the second equation is the KdV equation, which is obtained from (3.16) as the result
of differentiation by x = u2 and setting U = 2℘22 + 1

6α4. The equation (3.16) plays
the role of the stationary equation in the hierarchy and is obtained as the result
of the action of the recursion operator. The relations (3.14) and (3.15) are solved
with respect to α2 and α1 respectively and represent in this context the levels of
integrals of motion.

Let us introduce finally the Baker-Akhiezer function, which in the framework
of the formalism developed is expressible in terms of the Kleinian σ-function as
follows

Ψ(λ,u) =
σ
(∫ λ
∞ du− u

)
σ(u)

exp

{∫ λ

∞
drTu

}
, (3.20)

where λ is arbitrary and u is the Abel image of an arbitrary point (ν1, µ1) ×
(ν2, µ2) ∈ V × V . It is straightforward to show by direct calculation, using the
relations (3.16) and (3.14), that Ψ(λ,u) satisfy the Schrödinger equation{

∂2

∂u2
2 − 2℘22(u)

}
Ψ(λ,u) =

(
λ+

1
4
α4

)
Ψ(λ,u) (3.21)

for all (ν, µ).
Now we are in a position to write the solution of the system in terms of Kleinian

σ-functions and identify the constants in terms of the moduli of the curve. Using
(3.11),(2.8) the solutions of (2.1) have the following form in terms of the Kleinian
functions ℘22(u), ℘12(u)

q2
1(x) = 2

a2
1 − ℘22(u)a1 − ℘12(u)

a1 − a2
,

q2
2(x) = 2

a2
2 − ℘22(u)a2 − ℘12(u)

a2 − a1
, (3.22)

where the vector uT = (a, 2x + b). Finally, the solutions of the IMS reads in this
case

U(x, t) =

√
2
P(a1,u)
a1 − a2

exp

ia1t−
1
2
ν(ai)

x∫
·

dx
P(a1,u)

 ,

(3.23)

V(x, t) =

√
2
P(a2,u)
a2 − a1

exp

ia2t−
1
2
ν(a2)

x∫
·

dx
P(a1,u)

 .

The solutions qi(x) of (2.1) are linked as follows with the Baker-Akhiezer func-
tion. It follows from the definition of the Baker-Akhiezer function and an application
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of the formulae given above to the hyperelliptic ζ-function (3.8), that

∂Ψ(λ;u)
∂u2

=
ν + ∂P(λ;u)/∂u2

2P(λ;u)
Ψ(λ;u).

By integrating this equality under the assumption, that u1 = const., we obtain

Ψ(λ;u) = C
√
P(λ;u) exp

{
1
2
ν

∫ u2

·

du2

P(λ;u)

}
, (3.24)

where C is constant with respect to the variable u2. The substitution of this Baker-
Akhiezer function into the Schrödinger equation (3.21) and comparison with the
dynamical equations of the system 1:2:1 leads to the conclusion that

Ψ(a1, x) = U(x, 0), Ψ(a2, x) = V(x, 0), (3.25)

where U(x, t) and V(x, t) are given in (3.23). This formulae clarify the origin of the
ansatz (1.2).

4. Periodic solutions expressed in terms of elliptic functions
of different moduli

In this section, we consider the reduction by Jacobi (see e.g. Krazer 1903) ) of
hyperelliptic integrals to elliptic ones, when the hyperelliptic curve V has the form

w2 = z(z − 1)(z − α)(z − β)(z − αβ). (4.1)

The curve (4.1) covers two-sheetedly two tori

π± : V = (w, z)→ E± = (η±, ξ±),
η2
± = ξ±(1− ξ±)(1− k2

±ξ±) (4.2)

with Jacobi moduli

k2
± = − (

√
α∓
√
β)2

(1− α)(1− β)
, (4.3)

The covers π± are described by the formulae

η± = −
√

(1− α)(1− β)
z ∓
√
αβ

(z − α)2(z − β)2
w, (4.4)

ξ = ξ± =
(1− α)(1− β)z
(z − α)(z − β)

. (4.5)

The following formula is valid for the reduction of holomorphic hyperelliptic differ-
entials to the elliptic ones:

dξ±
η±

= −
√

(1− α)(1− β)(z ∓
√
αβ)

dz
w
. (4.6)
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Suppose that the spectral curve (2.7) admits the symmetry of (4.1) and apply
the reduction case discussed to the problem. Then the equations of the Jacobi
inversion problem (2.11) can be rewritten in the form

√
(1− β)(1− α)

2∑
i=1

∫ zi

z0

(z −
√
αβ)

dz
w

= 2u+ , (4.7)

√
(1− β)(1− α)

2∑
i=1

∫ zi

x0

(z +
√
αβ)

dz
w

= 2u− . (4.8)

with (νi, µi) = (2wi, zi) and

u± = −
√

(1− α)(1− β)(u2 ∓
√
αβu1). (4.9)

Reducing the hyperelliptic integrals in (4.7,4.8) to elliptic ones according to
(4.4,4.5).∫ √ξ(µ1)

0

dx√
(1− x2)(1− k2

±x
2)

+
∫ √ξ(µ2)

0

dx√
(1− x2)(1− k2

±x
2)

= u± ,

one can further express the symmetric functions of µ1, µ2, ν1, ν2 on V ×V in terms
of elliptic functions of tori E±. To this end we introduce the Darboux coordinates
(see Hudson 1905, p.105)

X1 = sn(u+, k+)sn(u−, k−),
X2 = cn(u+, k+)cn(u−, k−), (4.10)
X3 = dn(u+, k+)dn(u−, k−),

where sn(u±, k±), cn(u±, k±),dn (u±, k±) are standard Jacobi elliptic functions.
We apply further the addition theorem for Jacobi elliptic functions,

sn(u1 + u2, k) =
s2

1 − s2
2

s1c2d2 − s2c1d1
,

cn (u1 + u2, k) =
s1c1d2 − s2c2d1

s1c2d2 − s2c1d1
,

dn(u1 + u2, k) =
s1d1c2 − s2d2s1

s1c2d2 − s2c1d1
,

where we have denoted si = sn(ui, k), ci = cn(ui, k), di = dn(ui, k), i = 1, 2 and use
formulae (3.11,3.13) for the Kleinian hyperelliptic functions. Then straightforward
calculations lead to the formulae

X1 = − (1− α)(1− β)(αβ + ℘12)
(α+ β)(℘12 − αβ) + αβ℘22 + ℘11

, (4.11)

X2 = − (1 + αβ)(αβ − ℘12)− αβ℘22 − ℘11

(α+ β)(℘12 − αβ) + αβ℘22 + ℘11
, (4.12)

X3 = − αβ℘22 − ℘11

(α+ β)(℘12 − αβ) + αβ℘22 + ℘11
.
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12 P. L. Christiansen and others

The formulae (4.12) can be inverted as follows

℘11 = (B − 1)
A(X2 +X3)−B(X3 + 1)

X1 +X2 − 1
, (4.13)

℘12 = (B − 1)
1 +X1 −X2

X1 +X2 − 1
, (4.14)

℘22 =
A(X2 −X3) +B(X3 − 1)

X1 +X2 − 1
, (4.15)

where A = α+ β, B = 1 + αβ.
We can use these results to present a few solutions in terms of elliptic functions

of the initial problem, which are quasi-periodic in x. Using (4.14) and (4.15) for
solutions of the (2.1) in the form (3.22) we have

q2
1(x) =

2
a1 − a2

(
a2

1 −
A(X2 −X3) +B(X3 − 1)

X1 +X2 − 1
a1

−(B − 1)
1 +X1 −X2

X1 +X2 − 1

)
,

q2
2(x) =

2
a2 − a1

(
a2

2 −
A(X2 −X3) +B(X3 − 1)

X1 +X2 − 1
a2

−(B − 1)
1 +X1 −X2

X1 +X2 − 1

)
,

where

u± = −2
√

(1− α)(1− β)(x∓ c) (4.16)

and c is a constant depending on the initial conditions. The only compatibility
condition, which appears as the result of comparing the general curve coming from
the Lax representation with the reduction case considered in this section, is

a1 + a2 =
1
2

(1 + α)(1 + β).

The levels of the integrals of motion H and G, denoted by H and G respectively,
are

H = a2
1 + a2

2 + 4a1a2 − 2αβ − (1 + αβ)(α + β)

G = (a1 + a2)3 − 1
4

(C2
1 + C2

2 ) + [2αβ + (1 + αβ)(α + β)](a1 + a2)

−αβ(1 + α)(1 + β).

We also remark, that the quasi periodic solution derived is associated with the
Jacobi reduction case in which the ultraelliptic integrals are reduced to elliptic
ones by means of a second order substitution. This means in the language of two-
dimensional θ-functions, that the associated period matrix is equivalent to a matrix
with off-diagonal element τ12 = 1

2 . This reduction was considered in various places
(see e.g. Belokolos et al. 1994, Enolskii and Salerno 1996). Solutions of this type
for the nonlinear Schrödinger equation (σ = 0) were recently obtained by Chow
(1995).
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The analogous technique can be used out for the other well-documented case of
reduction, when τ12 = 1/N and the N = 3, 4, . . . . In general this reduction can be
carried out for covers of arbitrary degree within the Weierstrass-Poincaré reduction
theory (see e.g. Belokolos et al. 1994; Krazer 1903).

5. Elliptic periodic solutions

In this section we develop a method (see also Eilbeck and Enolskii 1994; Enolskii
and Kostov 1994; Kostov 1989) which allows us to construct periodic solutions of
(2.1) in a straightforward way based on the application of spectral theory for the
Schrödinger equation with elliptic potentials (Airault et al. 1977; McKean & van
Moerbeke 1975). We start with the formula (3.16) and the equation for the Baker
function Ψ(λ;u).

d2

dx2
Ψ(λ,u)− U(u)Ψ(x,u) =

(
λ+

α4

4

)
Ψ(λ,u), (5.1)

where we identify the potential as

U(u) = 2℘22(u) +
1
6
α4.

We assume, without loss of generality, that the associated curve has the property
α4 = 0. To make this assumption applicable to the initial curve of the system (2.1),
derived from the Lax representation, we make a shift of the spectral parameter,

λ −→ λ+ ∆, ∆ =
2
5
a1 +

2
5
a2. (5.2)

Suppose, that U is a two-gap Lamé or two gap Treibich-Verdier potential, i.e.

U(u) ≡ U(x) = 2
N∑
i=1

℘(x− xi), (5.3)

where ℘(x) is the standard Weierstrass elliptic function with periods 2ω, 2ω′, and
the numbers xi take values from the set {0, ω1 = ω, ω2 = ω + ω′, ω3 = ω′}. It is
known, that the set of such potentials is exhausted by six potentials (Treibich &
Verdier 1990)

U3(x) = 6℘(x), (5.4)
U4(x) = 6℘(x) + 2℘(x+ ωi), i = 1, 2, 3, (5.5)
U5(x) = 6℘(x) + 2℘(x+ ωi) + 2℘(x+ ωj), i 6= j = 1, 2, 3, (5.6)
U6(x) = 6℘(x) + 6℘(x+ ωi), i = 1, 2, 3,

U8(x) = 6℘(x) + 2
3∑
i=1

℘(x+ ωi),

U12(x) = 6℘(x) + 6
3∑
i=1

℘(x+ ωi),
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14 P. L. Christiansen and others

where the subscript indicates the number of 2℘ functions involved and display the
degree of the cover of the associated genus two curve over the elliptic curve. Because
the last three potentials can be obtained from the first three by Gauss transform,
we shall denote the first three as basis potentials. The potential (5.4) is two gap
Lamé potential, which is associated with a three sheeted cover of the elliptic curve;
the potentials (5.5,5.6) are Treibich-Verdier potentials (Treibich & Verdier 1990;
Verdier 1990) associated with four and five sheeted covers correspondingly.

To display the class of periodic solutions of system (2.1) we introduce the gen-
eralized Hermite polynomial F(x, λ) by the formula

F(x, λ) = λ2 − π22(x)λ− π12(x) (5.7)

with π22(x) and π12(x) given as follows

π22(x) =
N∑
j=1

℘(x− xj) +
1
3

5∑
j=1

λj ,

π12(x) = −3
∑
i<j

℘(x− xi)℘(x− xj)−
Ng2

8
− 1

6

∑
i<j

λiλj +
1
6

 5∑
j=1

λ2
j

 ,

where xi are half-periods and N is the degree of the cover (see for example Enolskii
and Kostov 1994). The introduction of this formula is based on the possibility of
computing the symmetric function µ1µ2 in terms of differential polynomial of the
first one with the help of the equation (3.16), which serves in this context as a
“trace formula” (Zakharov et al. 1980).

The solutions of the system (2.1) are then

q2
1(x) = 2

F(x, a1 −∆)
a1 − a2

, q2
2(x) = 2

F(x, a2 −∆)
a2 − a1

. (5.8)

The final formula in terms of Hermite polynomials for the elliptic periodic solutions
of the system (1.1) then reads

U(x, t) =

√
2
F(x, a1 −∆)
a1 − a2

exp

ia1t−
1
2
ν(a1 −∆)

x∫
·

dx
F(x, a1 −∆)

 ,

(5.9)

V(x, t) =

√
2
F(x, a2 −∆)
a2 − a1

exp

ia2t−
1
2
ν(a2 −∆)

x∫
·

dx
F(x, a2 −∆)

 ,

where we have used (5.8) and (2.6).
It is important to remark that if the potential is known, then the associated

algebraic curve of genus two can be described with the help of the Novikov equation
(Novikov 1974). Let us consider the two-gap potential normalized by its expansion
near the singular point

U(x) =
6
x2

+ ax2 + bx4 + cx6 + dx8 +O(x10), (5.10)
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where a, b, c, d are constants. Then the algebraic curve associated with this potential
has the form (Belokolos & Enolskii 1989)

ν2 = λ5 − 5 · 7
2
aλ3 +

32 · 7
2

bλ2

+
(

34 · 7
8

a2 +
33 · 11

4
c

)
λ− 34 · 17

4
ab+

32 · 11 · 13
2

d. (5.11)

We shall consider below examples of genus two curves, which are associated
with the two gap elliptic potentials (5.4), (5.5) and (5.6).

Consider the potential U3 and construct the associated curve (5.11)

ν2 = (λ2 − 3g2)(λ+ 3e1)(λ + 3e2)(λ + 3e3), (5.12)

The Hermite polynomial F3(℘(x), λ) (Whittaker & Watson 1986) associated with
the Lamé potential (5.4), which is already normalized as in (5.10), has the form

F3(℘(x), λ) = λ2 − 3℘(x)λ + 9℘2(x) − 9
4
g2. (5.13)

Then the finite and real solution of the system (2.1) is given by the formula (5.8)
with the Hermite polynomial depending on the argument x + ω′ (the shift in ω′

provides the holomorphicity of the solution). The solution is real under the choice of
the arbitrary constants a1,2 in such way, that the constants a1,2−∆ lie in different
lacunae. According to (2.6) the constants Ci are then given by

C2
i = −4ν2(ai −∆)

(ai − aj)2
, (5.14)

where ∆ is the shift (5.2), ν is the coordinate of the curve (5.12), and the levels of
the integrals H and G have the following form

H = H0 +
21
4
g2,

G = G0 −
27
4
g3 −

21
20
g2 (a1 + a2) ,

where

H0 =
1
25

(a1 + a2)3
, (5.15)

G0 =
1
25

(a1 + a2)3 − 1
4
C2

1 −
1
4
C2

2 .

These results are in complete agreement with solutions obtained in Porubov &
Parker (1999) by introducing an ansatz of the form

qi(x) =
√
Ai℘(x)2 +Bi℘(x) + Ci, i = 1, 2

with the constants Ai, Bi, Ci which are defined from the compatibility condition of
the ansatz with the equations of motion. In what follows we shall consider solutions
of the form

qi(x) =
√
Qi(℘(x)), i = 1, 2,
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where Qi are rational functions of ℘(x).
With this aim, we consider the following Treibich-Verdier potential

U4(x) = 6℘(x) + 2℘(x+ ω1)− 2e1, (5.16)

associated with a four sheeted cover. The potential is normalized according to
(5.10). The associated spectral curve is of the form

ν2 = 4(λ+ 6e1)
4∏
k=1

(λ− λk), (5.17)

λ1,2 = e3 + 2e2 ± 2
√

(5e3 + 7e2)(2e3 + e2), (5.18)

λ3,4 = e2 + 2e3 ± 2
√

(5e2 + 7e3)(2e2 + e3).

The Hermite polynomial associated with this curve is given by the formula

F4(x, λ) = λ2 − (3℘(x) + ℘(x+ ω1)− e1)λ (5.19)
+9℘(x)(℘(x) + ℘(x+ ω)− e1)− 3e1℘(x+ ω1)

+
9
4
g2 − 51e2

1.

The finite real solution of (2.1) results from the substitution of this Hermite poly-
nomial F4(x+ω′, λ) into (5.9), depending on an argument shifted by an imaginary
half period, into (5.8). To fix the reality of the solution we shall fix the parameters
ai−∆ in the permitted zones. The levels of the integralsH and G have the following
form

H = H0 +
7
2
g2 + 105e2

1,

G = G0 +
(

7
10
g2 − 21e2

1

)
(a1 + a2)− 63e1g2 −

171
2
g3 + 126e3

1,

where H0 and G0 are given in (5.15) and the constants Ci are computed by the
formula (5.14) in which ν represents the coordinate of the curve (5.17).

Consider further the Treibich Verdier potential

U5(x) = 6℘(x) + 2℘(x+ ω2) + 2℘(x+ ω3) + 2e1, (5.20)

associated with a five sheeted cover. The potential is normalized according to (5.10).
The associated spectral curve is of the form

ν2 = (λ + 6e2 − 3e3)(λ+ 6e3 − 3e2)× (5.21)
×
[
λ3 + 3e1λ

2 − (29e2
2 − 22e2e3 + 29e2

3)λ+ 159(e3
2 + e3

3)− 51e2e3(e2 + e3)
]

The associated Hermite polynomials are given by the formula

F5(x, λ) = λ2 − (3℘(x) + ℘(x+ ω2)) + ℘(x+ ω3) + e1)λ
+9℘(x)(℘(x) + ℘(x+ ω2) + ℘(x+ ω3)) + 3℘(x+ ω2)℘(x+ ω3) +

+3e1(3℘(x) + ℘(x+ ω2)) + ℘(x+ ω3))− 39
2
g2 + 54e2

1.
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The solution of the system results from the substitution of these expressions into
(5.8) as before, but this solution exhibits blow up (a pole at x = 0).

The levels of the integrals H and G have the following form

H = H0 +
161
4
g2 − 105e2

1,

G = G0 +
(

21e2
1 −

161
20

g2

)
(a1 + a2)− 405

4
e1g2 −

63
2
g3 − 279e3

1,

where H0 and G0 are given by (5.15) and the constants Ci are computed by the
formula (5.14) in which ν represents the coordinate of the curve (5.21).

We remark that, following Airault et al. (1977), all elliptic potentials of the
Schrödinger equations and their isospectral transformation under the action of the
KdV flow have the form

U(x) = 2
N∑
i=1

℘(x− xi(t)), (5.22)

The number N is a positive integer N > 2 (the number of “particles”) and the num-
bers x = (x1(t), . . . , xN (t)) belongs to the locus LN , i.e., the geometrical position
of the points given by the equations

LN =

(x);
∑
i6=j

℘′(xi(t)− xj(t)) = 0, j = 1, . . .N

 . (5.23)

If the evolution of the particles xi over the locus is given by the equations

dxi
dt

= 6
∑
j 6=i

℘(xi(t)− xj(t)),

then the potential (5.22) is an elliptic solution of the KdV equation. Hence the
elliptic potentials which were discussed can serve as input for the isospectral defor-
mation along the locus. Moreover these elliptic potential do not exhaust the whole
variety of elliptic potentials. We can mention here the elliptic potentials of Smirnov
(1989, 1994) for which the shifts xi are not half-periods. Including these potentials
in the study can enlarge the classes of elliptic solutions of the system (1.1)

6. Conclusions

In this paper we have described a family of elliptic solutions of the coupled non-
linear Schrödinger equations, using a Lax pair method and the general method of
reduction of Abelian functions to elliptic functions. Our approach is systematic in
the sense that special solutions (periodic, solitons, etc.) are obtained in a unified
way. We also emphasise, that the solutions described in this paper can be extended
up to the orbit of the symmetries group of the IMS enumerated by Alfinito et al.
(1995).

Although we consider only the family of elliptic solutions associated with the
integrable case 1 : 2 : 1 of quartic potential, the approach developed here can be
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applied to other integrable cases listed in the introduction, and will be published
elsewhere.

In fiber optics applications, these periodic and quasi-periodic waves should be
of interest in optical transmission systems.
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