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1 CCMAR and FCT, Universidade do Algarve, Campus de Gambelas, 8000 Faro, Portugal.

2 Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, U.K.

May 4, 2004

Abstract. We study a model in which a Hubbard Hamiltonian is coupled to the dispersive phonons in

a classical nonlinear lattice. Our calculations are restricted to the case where we have only two quasi-

particles of opposite spins, and we investigate the dynamics when the second quasi-particle is added to a

state corresponding to a minimal energy single quasi-particle state. Depending on the parameter values, we

find a number of interesting regimes. In many of these, discrete breathers (DBs) play a prominent role with

a localized lattice mode coupled to the quasiparticles. Simulations with a purely harmonic lattice show

much weaker localization effects. Our results support the possibility that DBs are important in HTSC.

PACS. 71.38.-k – 63.20.Pw – 63.20.Ry

1 Introduction.

In spite of the many studies [1–3,5,4] made since it was

first discovered [6], high temperature superconductivity

(HTSC) remains a challenge. The nature of the carriers

and the mechanism behind pair formation are still unclear.

According to many researchers, HTSC can be explained

by a purely electronic model, such as that described by

the t− J or the Hubbard Hamiltonians, for which charge

and/or spin interactions are paramount. This view is es-

sentially based on the absence of isotope effects seen in

some experiments [7] and the apparent d-symmetry of

the superconducting wavefunction. However, accumulat-

ing experimental evidence exists for electron-lattice effects

in high temperature superconductors [8,10,11], and theo-

ries based on electron-phonon interactions have also been

proposed [2–5]. Here we follow the idea that both elec-

tronic correlations and electron phonon interactions are

important [12] and study a model in which a Hubbard

Hamiltonian is coupled to dispersive phonons. Our main

aim is to explore one extra ingredient, which has generally

been ignored until now, the importance of the anharmonic

character of lattice vibrations. Whilst our ultimate aim is
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to understand HTSC, here we propose a specific mech-

anism for pair formation that involves the interaction of

polarons through a nonlinear lattice mode, which will have

applications in other areas. We study the stability of such

a pair as a function of the electron-electron (or hole-hole)

interaction.

2 The Hubbard-Davydov Hamiltonian.

The Hamiltonian Ĥ we use has three parts:

Ĥ = Ĥqp + Ĥqp-ph +Hph (1)

where Ĥqp is the Hamiltonian for a quasiparticle with spin

1

2
, Ĥqp-ph describes the interaction of the quasiparticle

with the lattice and Hph is the lattice (phonon) Hamilto-

nian.

The Hamiltonian for the quasiparticle is the 1D Hub-

bard Hamiltonian:

Ĥqp = ε
∑

n,σ

(

ĉ†nσ ĉnσ

)

+ γ
∑

n

ĉ†n↑ĉn↑ĉ
†
n↓ĉn↓ (2)

−t
∑

n,σ

(

ĉ†nσ ĉn−1σ + ĉ†nσ ĉn+1σ

)

where the sums are over the sites n, going from 1 to N ,

(N is the total number of lattice sites) and σ refers to the

spin and can be up or down. ĉ†nσ is the creation operator

for a quasiparticle of spin σ at site n. ε is the self-energy

of the quasiparticle, t the transfer term for the quasi-

particle to move between neighbouring sites. We depart

from the usual notation in that the on-site quasiparticle-

quasiparticle coupling is here designated as γ (and not U)

to avoid confusion with the variables {un} used for lattice

displacement (see below). Both negative and positive val-

ues of γ will be considered, corresponding to the attractive

and repulsive Hubbard models, respectively.

As in the Davydov model for energy transfer in pro-

teins [13], Ĥqp-ph, the Hamiltonian for the interaction of

the quasiparticle with the lattice includes the coupling to

acoustic (or Debye) phonons:

Ĥqp-ph = χ
∑

n,σ

[

(un+1 − un−1)
(

ĉ†nσ ĉnσ

)]

(3)

where χ is a parameter which describes the strength of

the quasiparticle-lattice interaction. Many previous publi-

cations have included electron-phonon interactions in the

framework of the model of Holstein [14], in which only

short-range interactions are are considered. As has been

pointed out elsewhere [15], when the electron screening is

poor, such as in cuprates, electron-phonon interactions are

long range, which can be described by acoustic phonons.

The phonon Hamiltonian is as follows:

Hph = Hco
ph +Hos

ph (4)

Hco
ph =

κa2

72

N
∑

n=1

[

(

a

a+ un − un−1

)12

−

2

(

a

a+ un − un−1

)6
]

Hos
ph = κ′

N
∑

n=1

(

1

2
u2

n +
1

4
u4

n

)

+
1

2M

N
∑

n=1

p2
n

where un is the displacement from equilibrium position of

site n, pn is the momentum of site n, a is the equilibrium

distance between sites, κ is the elasticity of the nonlinear

lattice and κ′ is a similar constant for the on-site potential.

Here, the coupling interactions between sites are described

by a Lennard-Jones potential, Hco
ph, a potential commonly
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used to describe interactions between atoms. In a high

temperature cuprate, this potential describes the interac-

tions of the copper and oxygen atoms in one Cu-O layer.

The on-site potential Hos
ph is as used in many breather

studies [16]. It can be considered to represent the effect,

in a mean field approach, of the rest of the crystal on the

one dimensional chain whose states are studied explicitly.

In a cuprate, this models the effect of the neighbouring

layers on the Cu-O layer.

Our Hamiltonian (1-4) includes two sources of nonlin-

ear effects. The first comes from the intrinsic nonlinearity

of the Lennard-Jones potential, Hco
ph and the on-site po-

tential,Hos
ph. The second source of nonlinearity is extrinsic

and comes from the interaction of the quasiparticle with

the lattice (cf. Eq. 3). The former is the source of non-

linearity in the studies of discrete breathers [16] and the

latter is the cause of localization in polaron theory.

We adopt a mixed quantum-classical approach in which

the lattice is treated classically, while the quasiparticle

is treated quantum mechanically. Accordingly, the dis-

placements un and momenta pn are real variables. The

quasiparticle variables are operators, a distinction which

is marked by the hats above the operators. The impor-

tance of quantum effects of the lattice can be assessed by

considering the full quantum model at finite temperature,

which has already been done for the Davydov Hamilto-

nian. It was found that, at 0.7 K, the lattice displacement

correlated with the position of the quantum particle in ex-

act semiclassical Monte Carlo simulations differed by 15

% from the corresponding variable in exact simulations in

the fully quantum system. At 11.2 K, the two approxima-

tions lead to virtually the same value [17]. We would like

to emphasize that the approximation we consider here is

not an adiabatic approximation. In an adiabatic approxi-

mation the kinetic energy of the phonons is neglected with

respect to the kinetic energy of the quantum particle. We

do not do that here, as our dynamical equations, eqs (6)

and (7) below, include the time derivative of the momenta

of the lattice sites. What we do is to consider that the dy-

namics of the lattice can be treated classically. Both the

semiclassical (or quantum/classical, as we prefer to call it

to differentiate from other use in the literature) approach

we apply here and the adiabatic approximation lead to

similar results when we consider the ground states of the

system (because the corresponding solutions have zero ki-

netic energy), but they are different when we deal with

dynamics, as we do in this work.

Ultimately, the need for a full quantum treatment comes

from comparison with experimental results. Isotopic ef-

fects can only be described in a fully quantum framework.

Our main aim here is to explore the importance of anhar-

monicity in the lattice for the dynamics of paired states,

something which is much more complicated to do within

a fully quantum formalism. Thus, as a first approxima-

tion, we restrict ourselves to the mixed quantum-classical

regime and study the behaviour of a pair of quasiparticles,

coupled to a nonlinear lattice.
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With these assumptions, the exact two quasiparticle

wavefunction for the Hamiltonian (1-4) is:

|ψ(t)〉 =
∑

n,m=1,N

φnm({un}, {pn}, t) ĉ
†
n↑ ĉ

†
m↓|0〉 (5)

where φnm is the probability amplitude for a quasiparti-

cle with spin up to be at site n and a quasiparticle with

spin down to be at site m. The probability amplitude is

dependent on the lattice displacements and momenta in

a way that is not specified a priori and is determined

by the equations of motion. Similarly to other systems

[18], the equations of motion for probability amplitudes

φnm are derived by inserting the wavefunction (5) in the

Schrödinger equation for the Hamiltonian (2-4), and the

equations for the displacements and momenta are derived

from the Hamilton equations for the classical functional

E2 = 〈ψ|Ĥ |ψ〉. They are:

ıh̄
dφjl

dt
= −t (φj−1l + φj+1l + φjl−1 + φjl+1) + γφjlδjl+

+ χ (uj+1 − uj−1 + ul+1 − ul−1)φjl (6)

dpj

dt
= −

∂Hph

∂uj

(7)

− χ
(

|ϕ↑
j−1|

2 − |ϕ↑
j+1|

2 + |ϕ↓
j−1|

2 − |ϕ↓
j+1|

2
)

where |ϕ↑
j |

2, the probability for the quasiparticle with spin

up to be in site j and |ϕ↓
j |

2, the probability for the quasi-

particle with spin down to be in the same site. These are

given by:

|ϕ↑
j |

2 = 〈ψ|ĉ†j↑ĉj↑|ψ〉 =

N
∑

l=1

|φjl|
2,

|ϕ↓
j |

2 = 〈ψ|ĉ†j↓ĉj↓|ψ〉 =

N
∑

l=1

|φlj |
2

3 Dynamical states.

We consider the case in which the quasiparticle density is

low and the starting point is that of an isolated quasipar-

ticle interacting with the lattice. We wish to find if the

addition of a second quasiparticle with opposite spin to

that state can lead to pairing of the two quasiparticles,

and how the relative stability of the paired state depends

on the quasiparticle-quasiparticle interaction γ.

We start from the state of a single quasiparticle. The

wavefunction is

|ψ1
σ〉 =

∑

n

φ1
nĉ

†
n|σ|0〉 (8)

Minimum energy states for this one quasiparticle can be

found by numerical minimization of the energy functional

E1 = 〈ψ1|Ĥ |ψ1〉 with respect to the probability amplitude

for a single quasiparticle in site n, φ1
n, and to the displace-

ments un [19]. Two kinds of minimum energy states are

found. For sufficiently large quasiparticle-lattice interac-

tion χ, the quasiparticle states are localized and there is

an associated lattice distortion. We call this the single par-

ticle polaron, or simply polaron. Below a threshold value

for χ, the states are delocalized, as in the usual Bloch

states, and the lattice is undistorted. We have considered

a value of χ and other parameters such that the initial one

quasiparticle polaron state is neither too weak nor too sta-

ble when compared with delocalized, Bloch states for the

same values. While it is important to find the behaviour

of the two quasiparticle states considered here for differ-

ent values of the parameters, our choice ensures that the

results here are not the consequence of extreme values.
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The dynamical states we study are the perturbations

of the single polaron state, induced by the presence of a

second quasiparticle with opposite spin. Because the num-

ber of variables φnm that characterize the wavefunction

(5) increases with the square of the lattice size, in order

to be able to integrate the equations of motion for a suffi-

ciently long time, the size of the lattice was kept relatively

short, i. e. the number of sites is N = 20. The aim is to

investigate the influence of the strength and sign of the

quasiparticle-quasiparticle interaction γ on the dynamics

of the paired quasiparticle states.

The parameters of the simulations in the figures are

the same, except for the quasiparticle-quasiparticle inter-

action γ. In Fig. 1 we set γ/t = −10 in an attractive Hub-

bard model. The addition of a second quasiparticle leads

to a localized state for the pair, with a very slight peak

oscillation, that is hardly visible in the figure. (The prob-

ability for the second quasiparticle is the same as that

shown and is not displayed). The lattice, however, sets

into a breather-like oscillation [16], i.e., a localized exci-

tation with an internal oscillation. Indeed, at the site of

the initial lattice distortion, oscillations are clearly visi-

ble in the lattice displacements and momenta. A striking

observation is that the amount of radiation generated is

very small, and most of the energy of the lattice is asso-

ciated with the breather. Fig. 2, which displays another 6

ps period of the dynamics at a later time, demonstrates

the stability of this solution.

A Hubbard Hamiltonian with a much weaker attrac-

tion, corresponding to a ratio of γ/t = −0.5, is considered
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Fig. 1. Time dependence for (a) the probability for one quasi-

particle to be in site n, (n = 1 · · ·N , N = 20), (b) the lattice

displacement and (c) the momentum of site n. Time is in pi-

coseconds. The parameters are t = 10 × 10−22J, χ = 100pN,

κ = 1N/m, κ′ = 2κ, a = 4.5Å and γ = −100 × 10−22J.
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Fig. 2. Same as Fig. 1, at a later time.

in Fig. 3, where the last 6 picoseconds of a 42 picosec-

ond simulation are displayed. A modulation of the peak

of the probability distribution is now clearly seen, which

has the same frequency as the main modulation of the lat-

tice breather. The modulation of the quasiparticle prob-
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Fig. 3. Same as Fig. 1, but with γ = −5 × 10−22J.

ability is associated with a periodic change of shape in

which a lower peak with a slight tail appears. Even at

this comparatively much weaker interaction, the amount

of radiation is very small and most of the lattice energy is
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Fig. 4. Same as Fig. 1, but with γ = +5 × 10−22J.

in the breather. The frequency of the main modulation of

the breather is as for γ/t = −10.

In Fig. 4 a repulsive Hubbard Hamiltonian is consid-

ered, with γ/t = +0.5. The modulations and the associ-

ated tails of the probability distribution for the quasipar-

ticle are now more pronounced, but their main frequency

is unchanged. Although there is a slight increase in the

radiation in the lattice, the stability of the breather and

of the quasiparticle solution is apparent.

In Fig. 5 the repulsive interaction is increased to γ/t =

+1. The modulations in the probability distribution for

the quasiparticles lead to greater periodic changes of shape,

still with the same frequency as for the other values of γ.

The radiation in the lattice is now more visible, but the

breather remains stable.

In Figures 6 and 7, a large repulsive value, correspond-

ing to γ/t = 5 is taken. This leads to a change in the

probability distribution for the quasiparticles, from a sin-

gle site peak into a two site peak, with periodic oscillations

which make one probability at one site larger than the

other. The lattice variables show that, concurrently with

the appearance of the breather, a considerable amount of

radiation is generated. Also noticeable is the fact that the

frequency of the modulations has changed. Fig. 7 shows

that the new quasiparticle probability distribution is sta-

ble, as well as the lattice breather, even if the noise which

results from successive passes of the radiation through the

periodic boundaries, constitutes a significant part of the

lattice energy.

In Figures 8 and 9, a repulsive interaction correspond-

ing to γ/t = 10 is used. Fig. 8 shows that a drastic

transformation takes place in which the initial distribution

changes into a two peak distribution. One of the peaks is

located where the initial lattice distortion was and the sec-

ond peak is as far away from it as it can be in this lattice.
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Fig. 5. Same as Fig. 1, but with γ = +10 × 10−22J.

Also, while the peak that is located at the original lattice

distortion site remains unmodulated in time, as well as

its associated lattice distortion, the second peak oscillates

with approximately the same frequency as that in Figs.

6 and 7. The momenta in Fig. 8 show clearly that the
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Fig. 6. Same as Fig. 1, but with γ = +50 × 10−22J.

second peak has an associated lattice breather, while the

first peak is associated with a distortion that is essentially

static. After some time, because of the repeated reflection

of the radiation from the boundaries, this picture is not so

clear. Both peaks show oscillations in the displacements
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Fig. 7. Same as Fig. 6, but at a later time.

and the momenta of the lattice are rather noisy. However,

Fig. 9 does illustrate the stability of the two peak solu-

tion, even in the presence of such relatively large amount

of noise.
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Fig. 8. Same as Fig. 1, but with γ = +100 × 10−22J.

4 Dynamical states in the fully harmonic

approximation

The early theory of pair formation via interaction with

phonons assumed that the lattice motion was harmonic. It
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Fig. 9. Same as Fig. 6, but at a later time.

is interesting to see how the dynamics of the two electron

states would be in this case, and this section is devoted to

that question. The first two terms (2), (3) in the Hamil-

tonian we consider in this section are the same as before,

but now the phonon Hamiltonian is given by:

Hharm
ph = Hco-harm

ph +Hos-harm
ph (9)

Hco-harm
ph =

1

2
κ

N
∑

n=1

(un − un−1)
2
,

Hos-harm
ph = κ′

N
∑

n=1

(

1

2
u2

n

)

+
1

2M

N
∑

n=1

p2
n

The phonon Hamiltonian (9) can be obtained from (4)

by considering the limit of small displacements, in which

only the linear terms remain. In this case, the only non-

linear term left for the total Hamiltonian is that which

describes the quasiparticle-lattice interaction. It should

be pointed out that, if we disregard the correlation term

in (2), the equations of motion for this system are those

studied by a number of authors [14,20] for a single single

polaron, and for any number of polarons by Alexandrov

[21].

Fig. 10 shows that when the effective interaction is

such that γ/t = −10, the addition of an extra electron

to the minimum energy single polaron leads to a state in

which both electrons are in the same site with a strong

lattice deformation of breather type associated with their

presence. The time evolution of the momenta, however,

shows that there is no breather formation, only phonons

which travel along the lattice. Because of the periodic

boundary conditions, these phonons eventually come back

and after they have crossed each other many times the

lattice becomes very noisy. The lattice deformation associ-

ated with the two electrons oscillates periodically because

of the interference of these phonons, but does not move.

Also, the state of the two electrons remains localized on

one site all the time.
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Fig. 10. Same as Fig. 1, but with γ = −100 × 10−22J and for

the harmonic lattice 9.

Similar dynamics takes place for γ/t = −0.5, except

that very slight oscillations in the probability distribution

for the electron states also takes place (not shown).
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Fig. 11. Same as Fig. 1, but with γ = +50 × 10−22J and for

the harmonic lattice 9.

When the electron-electron interaction is repulsive and

such that γ/t = +5, the phonon emission leads to fluc-

tuations in the electron probability distribution that are

clearly visible in Fig. 11. The dynamics is similar to that
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of fig. 10, with phonons propagating along the lattice and

causing oscillations in the otherwise constant distortion

induced by the two electrons. Again, the momenta show

that there is no breather formation and all the dynam-

ics of the lattice is due to the phonon propagation and

interference.

For a repulsive interaction for which γ/t = +10, the

two electrons split up and the probability distribution

shows two peaks, both of which have an associated lat-

tice deformation with the breather profile (see Fig. 12).

Phonons are generated from each of these locations and

their interference eventually leads to a noisy lattice. The

two peaks in the probability distribution for the electrons

oscillate in a less regular fashion than in the anharmonic

lattice, but remain stable throughout the simulation. It

should be noticed that for this harmonic approximation

also, the lattice displacements induced by the electrons/holes

are not small. Hence, an accurate representation of the dy-

namics should include the nonlinear terms in the lattice

Hamiltonian, as was done in the previous section.

5 Discussion

Our aim was to investigate the relative stability of a cor-

related pair of quantum quasiparticles with opposite spins

with respect to their uncorrelated states. The starting

point was thus the state of a single quasiparticle polaron

and we studied the dynamic states which arise when a sec-

ond quasiparticle is added to the first state. The Hamilto-

nian used includes several physical ingredients. On the one

hand, it contains two sources of nonlinearity, one intrinsic
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Fig. 12. Same as Fig. 1, but with γ = +100 × 10−22J and for

the harmonic lattice 9.

to the lattice and another which arises from the quasi-

particle lattice interaction. Such nonlinear lattices have

been shown to possess generic solutions known as discrete

breathers (DBs) [16]. The study of systems in which non-
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linear lattices are coupled to one quantum quasiparticle,

on the other hand, is just beginning [22,23].

To our knowledge, this is the first time that the cou-

pling of two quantum quasiparticles to a nonlinear lat-

tice has been considered. Indeed, a second ingredient is

the inclusion of quasiparticle-quasiparticle interactions, in

addition to the quasiparticle-lattice interactions found in

the polaron model. The quasiparticle-quasiparticle inter-

actions can represent Coulomb interactions, and/or spin-

spin interactions, and be either attractive or repulsive. The

dynamical simulations indicate that for these extended

systems, DBs are generic solutions also and can be gen-

erated by the presence of a second quasiparticle. These

lattice breathers can in turn stabilise localized, paired,

quasiparticle states, for a large range of γ values. Windows

of γ were found for which similar solutions are obtained.

Thus, for a ratio of γ/t between −10 and +1 (Figs. 1-5),

DBs are found in the lattice and in the quasiparticle, with

the same main modulation frequencies. For larger values

of γ/t, two different solutions were found (see Figs. 6-9).

In one solution the quasiparticles distribution is split into

equal values in two neighbouring sites and in the second

a two peak distribution, with the peaks as far apart as

possible in the lattice used, is observed.

This Hamiltonian includes the two main physical causes

for quasiparticle pairing that have been considered in HTSC

and allows for interpolation between them, by varying the

strength of the relevant parameters. According to our re-

sults, a greater importance of quasiparticle-lattice inter-

actions in pair formation should arise in systems for which

the dynamics of the lattice is fast enough compared to the

quasiparticle dynamics, so that the lattice relaxes when

the two quasiparticles meet. Conversely, a corresponding

greater importance of quasiparticle-quasiparticle interac-

tions should be associated with systems in which the lat-

tice dynamics is much slower than the quasiparticle dy-

namics.

An implicit assumption in this study is that the non-

linear character of the lattice plays an important role in

HTSC. Although the lattice distortions are weak in con-

ventional superconductors, and thus the lattice dynamics

can be approximately described by a linear system, we

argue that in HTSC these distortions are such that the

lattice enters a nonlinear regime. This may be why the

sound velocity decreases by a few parts per million in con-

ventional superconductors, whereas in a high Tc material

there is an increase which is two or three orders of magni-

tude larger than in the former case. Our simulations with

the harmonic lattice show that the percentage of energy

transferred to travelling phonons is much larger than for

the anharmonic lattice.

The breather-like solutions found in the dynamical sim-

ulations are a signature of the nonlinear dynamics of the

lattice. The possibility that breathers are associated with

HTSC has been suggested elsewhere [24,25]. Our study

indicates that DBs are generic excitations in systems gov-

erned by the Hamiltonian used here. Moreover, within a

certain range of the parameters, the states in which two

quasiparticles are paired and coupled to a DB are ener-

getically more favourable than those of uncorrelated quasi-
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particles. Hence, this study gives weight to the possibility

that DBs are important in HTSC.
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