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Abstract. We provide a treatment of algebro-geometric solutions of the clas-
sical massive Thirring system in the framework of the Weierstrass–Klein theory
of hyperelliptic functions. We show that the equations of this model generate
the characteristic relations of hyperelliptic theory of even hyperelliptic curves,
the same role that the KdV equation plays for odd hyperelliptic curves. We also
consider the soliton limit of the solution obtained and derive the Kuznetsov–
Mikhailov soliton as the limit.

1. Introduction

The Thirring model, as one of the most remarkable solvable field theory models,
has attracted considerable interest since its introduction in 1958, [46]. In (1 + 1)-
dimensions the massive classical Thirring model is described by the equations

−iux + 2v + 2|v|2u = 0,

−ivt + 2u + 2|u|2v = 0. (1.1)

The complete integrability of the system (1.1) in the sense of soliton theory was
first established by Mikhailov [40] in 1976. This started a comprehensive study of
its properties, and an extensive bibliography can be found in, e.g., [27].

The algebro-geometric integration of the model was independently established
in 1978 by Date [23] and Holod and Prikarpatsky [33]; it is remarkable that none
of these papers completed the integration and both left some quadratures in the
exponential. The complete θ-function expression was given in 1984 by Bikbaev [8],
however his formulas contained some inaccuracies. Recently Wisse [51] considered
algebro-geometric solutions of (1.1), but without deriving explicit formulas.

The problem was recently revisited by Enolskii, Gesztesy, and Holden [27], who
derived explicit θ-function solutions in a form close to that given by Bikbaev. The
approach used in [27] is based on the Riccati-type equation associated with the
Thirring model. This technique is described in detail for various integrable equa-
tions in the forthcoming monograph [30]. This book also contains a comprehensive
bibliography on the integration of the Thirring model within the inverse scattering
method, the application of Bäcklund transform, as well as connections with other
integrable equations.

In this paper we continue the investigation of [27] in the framework of the Klein–
Weierstrass theory of hyperelliptic σ-functions. The systematic study of the σ-
function, which may be traced to papers of Klein [35, 36], was an alternative to
the development by Weierstrass [47, 48] (the hyperelliptic generalization of the
Jacobi elliptic functions sn, cn, dn) and the purely θ-function theory approach by
Göpel [31] and Rosenhain [45] for genus two, generalized further by Riemann. The
approach using σ-functions was developed by Burkhardt [21], Wiltheiss [50], Bolza
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[9, 10, 11, 12], Baker [2, 3, 4, 5], and others. Recently this subject was revisited
in series of papers of Buchstaber, Enolskii, and Leykin [14, 15, 16, 17, 18], see also
[26].

It was shown in particular in the last set of papers, that in the case of an odd
hyperelliptic curve, i.e., a curve with a branch point at infinity, the KdV-type hi-
erarchy appears in natural way among the differential relation between Kleinian
℘-functions. These functions are defined as second logarithmic derivatives of hy-
perelliptic σ-functions. Therefore the KdV-hierarchy plays the the role of defining
relations of the theory of hyperelliptic functions, while the Kleinian ℘-functions
appear to be convenient coordinates to describe completely integrable systems.

The aim of this paper is to show that the Thirring model (1.1) represents, in the
same way, the master relations for Abelian functions of even hyperelliptic curves,
i.e., curves without branch points at infinity. Furthermore, the natural coordinates
for these relations are the Kleinian ζ-functions, which are defined as the logarithmic
derivatives of the hyperelliptic σ-function.

The paper is organized as follows. We recall in Section 2 the Kleinian realization
of hyperelliptic Abelian functions. It is based on the algebraic expression for the
symmetric bi-differential with the only pole along the diagonal, as introduced in
[35, 36]. This normalized differential is called the Bergmann kernel in the modern
literature. In this section we also introduce the hyperelliptic σ-function as a θ-
function with exponential multiplier, which provides the invariance of this function
with respect to the symplectic group. Section 3 is devoted to the addition theorem
for hyperelliptic functions, following Klein [36] and Bolza [9]. A more general form
of this theorem is given in Fay [29] and it includes the Fay trisecant relations in a
particular case. In the context of this paper the addition theorem is used to derive
relations between Kleinian ζ-functions and to solve the Jacobi inversion problem
for even hyperelliptic curves. In the Section 4 we give the θ-functional solution of
the Thirring model obtained in [27] by another method and show that the Thirring
equations follows from the relations between hyperelliptic ζ-functions derived in the
previous section. In Section 5 the soliton limit of the solution obtained is derived
and the original Kuznetsov–Mikhailov soliton formula [37] is obtained.

To conclude this introduction we remark that the Klein–Weierstrass theory of
Abelian functions now attracts much interest. Applications of the theory of the
σ-function were given in the theory of complex multiplication [32, 41], blow-up
formulas in Donaldson–Witten theory [24], theory of solitons [15, 38, 22, 25], the
theory of multi-dimensional Schrödinger equations with Abelian potential [13], ad-
dition theorems for Abelian functions in determinant form [42, 43], elasticity theory
[39], Lie algebras associated with σ-functions and versal deformations [19, 20].

2. Hyperelliptic σ-function

In this Section we recall basic definitions related to the Riemann surface of a
hyperelliptic curve. We shall introduce differentials of the first, second and third
kind, Kleinian bi-differentials, as well as θ- and σ-functions.

2.1. Differentials of a hyperelliptic curve. Let the hyperelliptic curve V of
genus g be given by

V = {P = (x, y) | y2 = R(x)}, R(x) =
2g+1∑
k=0

λkxk = λ2g+1

2g+1∏
k=0

(x− Ek). (2.1)

We compactify V by adding two distinct points, P∞± = (∞,±∞), at infinity. The
canonical homology basis for V is denoted by {a1, . . . , ag; b1, . . . , bg}, see Fig. 1.

The Abelian differentials associated with V , which are differentials of the first,
second and third kind, are described by the following classical theorem.
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Figure 1. Basis of cycles of the hyperelliptic curve V of genus g
with branching points E0, . . . , E2g+1.

Theorem 2.1 (see, e.g., [2]). Let V be a hyperelliptic curve of genus g and fix the
set of canonical holomorphic differentials, duT = (du1, . . . ,dug) in the form

duk(P ) =
xk−1

y
dx, k = 1, . . . , g, P = (x, y). (2.2)

Choose the associated set of differentials of the second kind, drT = (dr1, . . . ,drg)
in the form

dri(P ) =
dx

4y

2g+1−i∑
k=i

(k + 1− i)λk+1+ix
k, i = 1, . . . , n. (2.3)

Then the two-differential dΩ(P,Q), given by the formula

dΩ(P,Q) = dz
dx

2y

∂

∂z

y + w

x− z
+

g∑
i=1

dri(Q)dui(P ) (2.4)

=
2yw + F (x, z)

(x− z)2
dx

2y

dz

2w
, P = (x, y), Q = (z, w), (2.5)

where

F (x, z) = 2λ2g+2x
g+1zg+1 +

g∑
i=0

xizi(2λ2i + λ2i+1(x + z)) (2.6)

is symmetric, dΩ(P,Q) = dΩ(Q,P ) and has a unique pole of second order along the
diagonal. The differential dΩ(P,Q) gives Klein’s commutative integral of the third
kind

K(P, P ′;Q,Q′) =

P ′∫
P

Q′∫
Q

2yw + F (x, z)
4(x− z)2yw

dxdz. (2.7)

The set of periods of the differentials (2.2), (2.3)

2ω =
(∮

ak

dul

)
k,l=1,...,g

, 2ω′ =
(∮

bk

dul

)
k,l=1,...,g

,

−2η =
(∮

ak

drl

)
k,l=1,...,g

, −2η′ =
(∮

bk

drl

)
k,l=1,...,g

,

(where ω, ω′, η, η′ are g × g-matrices, ω is necessarily non-degenerate) and the
cycles ai, bi, i = 1, . . . , g constitute the canonical dissection of the Riemann surface
of V . The matrices satisfy the conditions

ω′ωT − ωω′T = 0, η′ωT − ηω′T = − iπ

2
1g, η′ηT − ηη′T = 0. (2.8)
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We define the Jacobi variety Jac(V ) of V by

Jac(V ) = Cg/(2ω ⊕ 2ω′). (2.9)

The Abel map maps the symmetric power symmg+nV , n ∈ N, onto Jac(V ) by the
formula

wk =
g+n∑
j=1

Pj∫
Q0

duk, n ≥ 0,

where Q0 ∈ V is arbitrary and P1, . . . , Pg+n is a non-special divisor of degree g + n.

2.2. Hyperelliptic θ and σ-functions. Next we construct the 22g Kleinian σ-
functions with characteristics [ε] of g arguments w = (w1, . . . , wg)T ∈ symmg+nV
by

σ[ε](u) = C[ε] exp
{
uη(2ω)−1u

}
θ[ε]((2ω)−1u−KQ0), (2.10)

Here C[ε] is a constant, KQ0 is the vector of Riemann constants with base point
Q0, θ[ε](v) is the standard θ-function of the curve V with characteristic

[ε] =
[

ε′T

εT

]
=

[
ε′1 . . . ε′g
ε1 . . . εg

]
∈ R2g

and the τ -matrix is given as τ = ω′ω−1, viz.,

θ[ε](v|τ) =
∑

m∈Zg

exp
{
πi

(
(m + ε′)T τ(m + ε′) + 2(v + ε)T (m + ε′)

)}
.

The θ-function has the following transformation properties at the shift on a period:

θ [ε] (v + p + τq|τ)

= exp
(−ıπpT τp− 2ıpT v + 2ıπ(pT ε′ − qT ε

)
θ [ε] (v|τ), (2.11)

where p, q ∈ Zg.
In what follows we choose the base point Q0 of the Abel map at the branching

point
Q0 = (0, 0).

We shall consider only half-integer characteristics, εj , ε′j equal to 0 or 1/2. There
exist 4g such transcendental characteristics, and they are in one-to-one correspon-
dence with the 4g algebraic characteristics

φ[ε] =
g+1−2m∏

k=1

(x− Eik
), ψ[ε] =

g+1+2m∏
k=1

(x− Ejk
) (2.12)

for integers 0 ≤ m ≤ [
g+1
2

]
and depend on the canonical dissection of the Riemann

surface. We introduce the aforementioned correspondence between partitions (2.12)
and characteristics by the formula

ε + τε′ =
g+1−2m∑

k=1

(Eik
,0)∫

Q0

du + KQ0 .

The characteristics are odd or even whenever m is odd or even. Even characteristics
with m = 0 and odd characteristics with m = 1 are called non-singular ; the char-
acteristics with m > 1 are singular . The integer m shows the order of vanishing of
the θ- or σ-function and according to the Clifford theorem is less than or equal to
the positive integer

[
g+1
2

]
(see, e.g., [28]).

Choose the canonical of cycles in such a way that the algebraic characteristic,
which we will call the fundamental characteristic is [0], that is, (see Fig. 1)

φ[0] =
g+1∏
k=0

(x− E2k), ψ[0] =
g+1∏
k=1

(x− E2k−1).
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The above choice of fundamental characteristics defines the vector of Riemann con-
stants as (see [28, p. 305])

KQ0 =
g∑

k=0

(E2k,0)∫
Q0

du. (2.13)

The Kleinian σ-function, which is associated with the fundamental characteristic,
is called the fundamental σ-function.

The value of the constant C[ε] in (2.10) is not needed for what follows, but it
provides important invariant properties of the Kleinian σ-function — the fundamen-
tal σ-function is invariant under the action of the symplectic group Sp(2g, Z). For
completeness we shall give the full definition of the fundamental Kleinian σ-function.

Definition 2.2. The hyperelliptic fundamental σ-function is defined by the formula

σ(u) =
√

πg

det(2ω)
ε

4

√∏
1≤i<j≤2g+2(Ei − Ej)

exp
(
uT η(2ω)−1u

)
θ((2ω)−1u|τ),

(2.14)
where ε4 = 1, and

u =
g∑

j=1

Pj∫
(E2j ,0)

du. (2.15)

Note that equivalently the Kleinian σ-function can be defined as a power series
in uk, k = 1, . . . , g + n with coefficients given recursively, see [10, 11, 12].

The Kleinian ζ- and ℘-functions are defined as the logarithmic derivatives of the
fundamental σ-function

ζi(u) =
∂ ln σ(u)

∂ui
, i = 1, . . . , g,

℘ij(u) = −∂2 ln σ(u)
∂ui∂uj

, ℘ijk(u) = − ∂3 ln σ(u)
∂ui∂ui∂uk

etc., i, j, k = 1, . . . , g.

The functions ζi(u) and ℘ij(u) possess the following periodicity properties

ζi(u + 2Ω(m,m′)) = ζi(u) + 2Ei(m,m′), i = 1, . . . , n,

℘ij(u + 2Ω(m,m′)) = ℘ij(u), i, j = 1, . . . , n,

where Ei(m,m′) is the ith component of the vector E(m,m′) = ηm + η′m′ and
Ω(m,m′) = ωm + ω′m′.

3. The ζ-formula of Bolza

In this Section we describe the very general addition formula for hyperelliptic
σ-functions due to Klein and Bolza. We introduce the Schottky-Klein prime form
and derive two equivalent expressions for it. As an application of the addition
formula for σ-functions, we derive addition formulae for hyperelliptic ζ-functions.
The solution of the Jacobi inversion problem for even hyperelliptic curves will be
obtained as a consequence of the addition formulae for ζ-functions. We shall also
derive a special relation between ζ-functions which will be used later to solve the
Thirring model.

3.1. The main addition formula. The Kleinian σ-function, which is associated
with the algebraic characteristic [ε] given by polynomials φ[ε](x), ψ[ε](x) of degrees
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2g +1−2m and 2g +1+2m, respectively, is defined, following Klein [36] and Bolza
[9, 10, 11, 12], by

σ[ε]

g+n∑
k=1

Pk∫
Qk

du

 =
C[ε]D[ε]

∏
1≤i,k≤g+n E(xi, ξk)∏

1≤i,k≤g+n

(xi − ξk)
∏

1≤i<k≤g+n

E(xi, xk)
∏

1≤i<k≤g+n

E(ξi, ξk)
.

(3.1)
In this formula Pk = (xk, yk), Qk = (ξk, νk), n ≥ 0, and C[ε] is the previously
mentioned constant, E(x, ξ) is the Schottky–Klein prime form,

E(x, ξ) = (x− ξ) exp
(

1
2
K(P,Q, P̄ , Q̄)

)
, (3.2)

where K(P,Q, P̄ , Q̄) is the commutative Kleinian integral of the third kind (2.7)
and where P̄ = (x,−y) whenever P = (x, y) (similarly for Q). D[ε] denotes the
2(g + n)× 2(g + n) determinant

D[ε] =

∣∣∣∣∣ Dφ[ε](x) Dψ[ε](x)
−Dφ[ε](ξ) Dψ[ε](ξ)

∣∣∣∣∣ , (3.3)

where

Dφ[ε](x) =


√

φ(x1) x1

√
φ(x1) . . . xg+n+m−1

1

√
φ(x1)

...
... . . .

...√
φ(xg+n) xg+n

√
φ(xg+n) . . . xg+n+m−1

g+n

√
φ(xg+n)

 ,

x = (x1, . . . , xg+n).

The Schottky–Klein prime form E(x, z), defined by (3.2), is a multivalued function
with the following properties. E(x, z) = 0 if and only if (x, y) = (z, w) and

lim
x→z

E(x, z)
x− z

= 1.

Furthermore, E(x, z) = −E(z, x). For fixed x the multiplier along the ai and bi

cycles are ηT
i (u + ωi) and η′i

T (u + ω′i), respectively, where ωi, ω′i, ηi, η′i are the
ith columns of the corresponding matrices.

We briefly recall the principal ideas in the derivation of (3.1) in the case of
a hyperelliptic curve (see, e.g., [2] for more details in a more general case). Let
P1, . . . , Pg+n, Q1, . . . , Qg+n, n ≥ 0, are such divisors of degree g + n

σ

g+n∑
k=1

Pk∫
Qk

du

 6≡ 0. (3.4)

This σ-function can be represented as a function on the symmetric product symmgV
of V as follows.

Let us consider this function as a function of variable P1. The θ-function does
not vanish identically, and according to the Riemann theorem we can write

θ

g+n∑
k=1

Pk∫
Qk

du

 = θ

 P1∫
Q0

du−
g∑

k=1

P̃k∫
Q0

du−KQ0

 ,

where P̃1, . . . , P̃g are some points and KQ0 is the vector of Riemann constants
(2.13). The last equality yields the congruence

g+n∑
k=2

Pk∫
Qk

du +
g∑

k=1

P̃k∫
(E2k,0)

du = 0.
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Abel’s theorem implies that there exists a meromorphic function ∆(x), which has
zeros P2, . . . , Pg+n, P̃1, . . . , P̃g and poles Q2, . . . , Qg+n, (E2, 0), . . . , (E2g, 0). More-
over, according to the Riemann–Roch theorem, such a function is uniquely deter-
mined.

It is straightforward to check that this definition permits the representation of
the σ-function (3.4) in the form

σ[ε](w) = C[ε]∆[ε]

∏
i,j=1,...,n

E(xi, zi)∏
1≤i<j≤n

E(xi, xj)E(zi, zj)
, (3.5)

where ∆[ε] is a meromorphic function on symmg+nV and C[ε] the constant depend-
ing on the characteristic and moduli of the curve.

3.2. The Schottky-Klein prime form. To complete the definition it remains to
construct the Schottky–Klein prime form E(x − z) explicitly. This can be done as
follows, see [2]. Notice that

E(x, z) = lim
x→x′
z→z′

√
−(x− x′)(z − z′) exp

(
1
2
K(P, P ′, Q,Q′)

)
. (3.6)

The right-hand side of (3.6) can be computed explicitly. To do that we denote zeros
and poles of the rational function

φ(x′) =
x′ − x

x′ − z

of x′ on the two-sheeted Riemann surface as (x, y), (x, y1) and (z, w), (z, w1), re-
spectively.

Abel’s theorem states that

K((x′, y′), (x, y), (z′, w′), (z1, w1))

= K((x′, y′), (x, y), (z′, w′), (z, w)) + ln
(

(x′ − x)(z′ − z)
(x′ − z)(z′ − x)

)

= ln


(x′ − x)(z′ − z)θ

(
(x′,y′)∫
(z,w)

dv + ωn + ω′n′
)

θ

(
(z′,w′)∫
(x,y)

dv + ωn + ω′n′
)

(x′ − z)(z′ − x)θ

(
(x,y)∫

(x′,y′)
dv + ωn + ω′n′

)
θ

(
(z,w)∫

(z′,w′)
dv + ωn + ω′n′

)


,

(3.7)

where ωn + ω′n′ is a nonsingular odd half-period. Suppose, that (x′, y′), (z′, w′)
are not branching points. Then the right-hand side of (3.7) can be written as

ln
1

−(x− z)2

θ

(
P∫
Q

dv + ωn + ω′n′
)

θ

(
P∫
Q

dv − ωn− ω′n′
)

√∑g
i=1

∂θ(ωn+ω′n′)
∂ui

dvi(x)
dx

√∑g
i=1

∂θ(ωn+ω′n′)
∂ui

dvi(z)
dz

.

Taking into account that

θ

 P∫
Q

dv − ωn− ω′n′

 = exp

iπnT n′ + 2iπn′T
P∫

Q

dv

 θ

 P∫
Q

dv + ωn + ω′n′


= − exp

(
2iπn′T

∫ P

Q

dv

)
θ

 P∫
Q

dv + ωn + ω′n′

 ,
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we obtain two equivalent representations

E(x, z) =

θ

(
P∫
Q

dv − ωn− ω′n′
)

exp

(
iπn′T

P∫
Q

dv

)
√∑g

i=1
∂θ(ωn+ω′n′)

∂ui

dvi(x)
dx

√∑g
i=1

∂θ(ωn+ω′n′)
∂ui

dvi(z)
dz

(3.8)

= (x− z) exp
(

1
2
K(P, P̄ ,Q, Q̄)

)
, (3.9)

where in the representation (3.8) the quantity ωn + ω′n′ is a nonsingular half-
period, and in the representation (3.9) the points P = (x, y) and P̄ = (x,−y), and
Q = (z, w) and Q̄ = (z,−w) belong to different sheets of the Riemann surface V .

Note that the first representation of the Schottky–Klein prime form (3.8) was de-
veloped by Fay [29], who, based on this, derived the so-called trisecant Fay formulas.
In what follows we shall use the second representation (3.9) which was mentioned in
[29], but was little used in modern literature until the recent series of publications
[14, 15, 16, 17, 18] and also [38, 44].

3.3. The ζ-formula. The following result can be deduced from the Klein formula
for the hyperelliptic σ-function.
Theorem 3.1 (Bolza [9]). Let [ε] be an arbitrary algebraic characteristic and P1 =
(x1, y1), . . . , Pg+n = (xg+n, yg+n), Q1 = (ξ1, ν1), . . . , Qg+n = (ξg+n, νg+n), n ≥ 0,
be distinct points on V . Let

w =
g+n∑
k=1

∫ Pk

Qk

du, r =
g+n∑
k=1

∫ Pk

Qk

dr.

Then for arbitrary i = 1, . . . , g + n we have

yi
∂ lnσ[ε]

∂xi
=

g∑
k=1

xk−1
i

∫ Pk

Pi

drk + Σi[ε](P,Q), (3.10)

where

Σi[ε](P,Q) = yi
∂ lnD[ε]

∂xi
− 1

2

g+n∑
k=1

yi − νk

xi − ξk
− 1

2

∑
k=1,...,g+n

k 6=i

yi + yk

xi − xk
.

The Kleinian ζ[ε]-functions are then given by

−ζj

u +
g+n∑

k=g+1

∫ Pk

Qk

du

 =
g+n∑
k=1

∫ Pk

Qk

drj + Rn
j (P,Q), (3.11)

where the functions Rn = (Rn
1 , . . . ,Rn

g )T are given by

R = V −1Σ[ε]

where V is the Vandermonde matrix of order g, viz.,

V =


1 x1 . . . xg−1

1

1 x2 . . . xg−1
2

...
... . . .

...
1 xg . . . xg−1

g


and Σ[ε] = (Σ[ε]1, . . . ,Σ[ε]g)T .

Proof. By logarithmic differentiation of (3.1) we get

∂ lnσ[ε]
∂xi

=
∂ lnD[ε]

∂xi
−

∑
k

1
xi − ξk
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+
g+n∑
k=1

∂ lnE(xi, ξk)
∂xi

−
∑

k=1,...,g+n
k 6=i

∂ lnE(xi, ξk)
∂xi

. (3.12)

To proceed we prove that

∂ lnE(xi, ξk)
∂xi

=
yi + yk

2(xi − xk)yi
+

g+n∑
j=1

xj−1
i

yi

∫ Pj

Pi

drk. (3.13)

In fact,
∂ lnE(xi, ξk)

∂xi
=

1
xi − xk

− 1
4

R′(xi)
R(xi)

+
1
2

∂

∂xi
K(Pi, P̄i, Qi, Q̄i)

and since x̄i = xi, ȳi = −yi,

∂

∂xi
K(Pi, P̄i, Qi, Q̄i) = 2

∫ Pi

Pk

yiy − F (xi, x)
2(xi − x)2yiy

dx

=
1
2

y − yi

(x− xi)yi

∣∣xi

xk
+

g+n∑
k=1

xk−1
i

yi

∫ Pk

Pi

drk,

where we used (2.4),(2.5). Since

1
2

y − yi

(x− xi)yi

∣∣
x=xi

=
1
2

R′(xi)
R(xi)

,

we get (3.10). The formula (3.11) is derived from (3.10) after transformation of the
left-hand side to the form

g∑
j=1

ζj [ε](w)xj−1
i

and solving the first g equations with respect to the ζj . ¤

The formula (3.11) is of great generality. We shall restrict it to the case of the
fundamental σ-function, i.e., to the case of zero transcendental characteristic and
choose the lower limits as

ξk = E2k−1 at k ≤ n and ξk = E2g+1 at k > n, (3.14)

so that

w = u +
g+n∑

i=g+1

Pi∫
Q0

du, u =
g∑

i=1

Pi∫
(E2k−1,0)

du.

Under these assumptions D[ε] is reduced to

∆0 = const
g+n∏
i=1

φ(xi)
∏

1≤i<k≤g+n

(xi − xk)

and
∂ ln ∆0

∂xi
=

1
2

φ′0(xi)
φ0(xi)

+
∑

k=1,...,g+n
k 6=i

1
xi − xk

.

The formula (3.10) is then reduced to the form

yi
∂ ln σ

∂xi
=

1
2

∑
k=1,...,g+n

k 6=i

yi − yk

xi − xk
+

g∑
l=1

xl−1
i

g+n∑
j=1

∫ Pj

(E2j+1,0)

drl. (3.15)

Let us solve the first g equations (3.15) with respect to ζj(w). The functions Rn
j

can be expressed in closed form in terms of special symmetric functions, which we
shall define below.
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Definition 3.2. (i) The umbral derivative [44] Ds(p(z)) of a polynomial

p(z) =
g∑

k=0

pkzk

is given by

Dsp(z) =
(

p(z)
zs

)
+

=
g∑

k=s

pkzk−s,

where ( · )+ means the purely polynomial part.
(ii) Let I be the set of integers I = {g + 1, g + 2, . . . , g + n}. For each subset
{i1, . . . , im} ⊂ I, and m ≤ N define the polynomial

Ri1,...,im
(z) =

∏g+n
l=1 (z − xl)∏m
k=1(z − xik

)
. (3.16)

and construct, using the polynomial Ri1,...,im
(z), the rational function

Si1,...,im

j (z) =
Dj(R′i1,...,im

(z))−Dj+1(Ri1,...,im
(z))

R′i1,...,im
(z)

, (3.17)

where Dj is the umbral derivative of order j.
Proposition 3.3. Let [ε] be the fundamental characteristic with the lower bounds
fixed as in (3.14). Then

Rn
j =

1
2

g∑
k=1

yk

(∑
i∈I

S
I\{i}
j (xk)− (n− 1)SI

j (xk)

)
+

1
2

∑
i∈I

yiS
I\{i}
j (xi). (3.18)

The function Rn
j (x, y; ξ, η) can be given in various forms. In particular, for the

case N = 1, we have
Proposition 3.4. The following formula is valid

R1
j (z, w;u) =

1
2
Zj(z, w;u)− 1

2
Zj(u).

In this formula Zj(z, w;u) is a special logarithmic derivative of the polynomial
P(z;u),

Zj(z, w;u) =
(wDj + ∂j)P(z;u)

2P(z;u)
, (3.19)

where Dj is the umbral derivative of order j and ∂j is the standard derivative with
respect to the variable uj. The function Zj(u) can be given as 1

Zj(u) = −1
2

g∑
k,l=1

xl
k

∂xk

∂uj+l
, (3.20)

where {P1, . . . , Pg} is the Abelian preimage of the point u ∈ Jac(V ).
In particular, the following expressions are valid for Zj(u)

Zg(u) = 0,

Zg−1(u) = Pgg(u), (3.21)

Zg−2(u) = Pg(u)Pgg(u) + 2Pg−1,g(u).

The formulas given above represent the addition theorem of the kind “point+divisor”
for the Kleinian ζ-function. In the case g = 1 the formula (3.11) represents the ad-
dition theorem for the Weierstrass ζ-function,

ζ(u + v)− ζ(u)− ζ(v) =
1
2

[
℘′(u)− ℘′(v)
℘(u)− ℘(v)

]
.

1We note that the expression for the functions Zj(u) given in the monograph [2] on page 321

is correct only at the values j = g and j = g − 1 and is wrong for j < g − 1.
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on the elliptic curve y2 = f(x) = 4x3 − g2x− g3.

3.4. Solution of the Jacobi inversion problem. The ζ-formula allows us to
express symmetrical functions of the divisor P1, . . . , Pg in terms of the hyperelliptic
Kleinian functions and to solve the Jacobi inversion problem.

Introduce the elementary symmetric functions er with the help of the generating
function

E(t) =
∑
r≥0

ert
r =

∏
i≥0

(1 + xit). (3.22)

Thus

e1 =
g∑

k=1

xk, e2 =
∑

1≤k<i≤n

xixk, . . . , eg =
g∏

k=1

xk.

Replacing xi by 1/xi we find

Ẽ(t) =
∑
r≥0

ẽrt
r =

∏
i≥0

(
1 +

t

xi

)
. (3.23)

In this case

ẽ1 =
g∑

k=1

1
xk

, ẽ2 =
∑

1≤k<i≤n

1
xixk

, . . . , ẽg =
g∏

k=1

1
xk

.

Theorem 3.5. Let V be the even curve of genus g, λ2g+2 6= 0. Then the Abel
preimage of the point u ∈ Jac(V ) is given by the set {P1, . . . , Pg} ∈ symmgV ,
where {x1, . . . , xg} are the zeros of the polynomial

P(x;u) = xg − xg−1Pg(u)− xn−2Pg−1(u)− · · · −P1(u), (3.24)

where

Pi(u) =
1√

λ2g+2

{
ζi

(
u +

∫ P∞,+

Q0

du

)
− ζi

(
u +

∫ P∞,−

Q0

du

)}
+ cj , (3.25)

with the base point of the Abel map being chosen as a branch point. The constants
cj are principal parts of the poles of order g − j + 1 in the expansion

1√
λ2g+2

√√√√2g+2∑
k=0

λk

ξk
=

1
ξg+1

+
c1

ξg
+

c2

ξg−1
+ · · ·+ cg

ξ
.

In particular,

cg =
1
2

λ2g+1

λ2g+2
,

cg−1 =
1
2

λ2g

λ2g+2
− 1

8
λ2

2g+1

λ2
2g+2

,

cn−2 =
1
2

λ2g−1

λ2g+2
− 1

4
λ2g+1λ2g

λ2
2g+2

+
1
16

λ3
2g+1

λ3
2g+2

, etc.

The coordinates {y1, . . . , yg} are then given by

yk = −∂P(x;u)
∂ug

∣∣∣
x=xk

. (3.26)

Proof. Compute

lim
z→∞+

ζi

u +

(z,w)∫
Q0

du

− lim
z→∞−

ζi

u +

(z,w)∫
Q0

du


with the aid of the ζ-formula (3.11).
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We find from the equations of the Abel map that
g∑

i=1

xk−1
i

yi

∂xi

∂uj
= δjk,

∂xk

∂ug
=

yk∏
i6=k(xk − xi)

.

On the other hand we have
∂P

∂ug

∣∣∣
x=xk

= −∂xk

∂ug

∏
i6=k

(xi − xk),

and we obtain (3.26). ¤

Analogously one can express other differences of ζ-functions,

ẽg−j+1 =
(−1)j+1

√
λ0

ζj

u +

P0,+∫
Q0

du

− ζj

u−
P0,+∫
Q0

du

− 2

P0,+∫
Q0

drg−j+1

and also

ζg−j+1

u +

P0,+∫
Q0

du

− ζg−j+1

u +

P∞,+∫
Q)

du


= −2

P∞,+∫
Q0

drg−j+1 +
(−1)j

2

(
ei

√
λ2g+2 + (−1)g ẽn−i+1

√
λ0

)

+
(−1)j

2

g∑
i=1

yie
(i)
j−1

xiP′(xi)
+

1
2
cg−j+1,

where P =
∏g

k=1(x− xi) and e
(l)
k are elementary symmetric functions of order k of

g − 1 elements {x1, . . . , xl−1, xl+1, . . . , xg}.
Some these formulas were derived by Abenda and Fedorov [1].

3.5. Special relations for ζ-functions. Let

∆0 =

P0,+∫
Q0

du, ∆∞ =

P∞,+∫
Q0

du, ∆ =

P∞,+∫
P0,+

du = ∆0 −∆∞, (3.27)

where P0± = (0,±√
R(0)) = (0, y0±), and introduce

∂W∞f(u) =
∞∑

i=1

W∞,j
∂f

∂ui
, ∂W 0f(u) =

∞∑
i=1

W0,j
∂f

∂ui
, (3.28)

where W∞,i and W0,i are the coefficients of in the expansion of the ith normalized
holomorphic differential dvi the vicinity of ∞ and 0, respectively. We shall derive
the following relations.
Lemma 3.6. The following relations are valid

θ[υ](2∆0|τ)∂W∞θ[υ](0|τ)
θ[υ](∆0 + ∆∞|τ)θ[υ](∆0 −∆∞|τ)

θ (u + ∆∞|τ) θ (u−∆∞|τ)
θ (u + ∆0|τ) θ (u−∆0|τ)

= ∂W∞ ln
{

θ[υ] (∆0 + ∆∞|τ)
θ[υ] (∆∞ −∆0|τ)

θ (u−∆0|τ)
θ (u + ∆0|τ)

}
(3.29)

and

θ[υ](∆0 + ∆∞|τ)∂W∞θ[υ](0|τ)
θ[υ](2∆∞|τ)θ[υ](∆0 −∆∞|τ)

θ (u + ∆∞|τ) θ (u− 2∆∞ + ∆0|τ)
θ (u + ∆0|τ) θ (u−∆∞|τ)
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= ∂W∞ ln
{

θ[υ] (∆∞ + ∆0|τ)
θ[υ] (2∆∞|τ)

θ (u−∆∞|τ)
θ (u + ∆0|τ)

}
. (3.30)

Proof. Represent the argument u as the Abelian image of the nonspecial divisor
P1 + . . . + Pg − (0, E1)− . . .− (0, Eg) and consider the right- and left-hand sides of
the equalities (3.29) and (3.30) as functions of variable P1 ∈ V . To prove (3.29) and
(3.30) we must first show that the right- and left-hand sides satisfy the following
conditions: (i) they have the same periodicity property when the variable P1 goes
round each ai and bi-cycle, i = 1, . . . , g; (ii) they have the same poles; (iii) they
have the same residues at the poles.

Property (i) is proved by the fact that in the both cases the right- and left-hand
sides are Abelian function of the variable u, which follows from the transformation
properties in shift of periods of the θ-function (2.11).

The poles of the right- and left-hand sides of the equality (3.29), according to
the Riemann theorem on zeros of θ-function, are the following

2P̄2, . . . , 2P̄g, P0,+, P0,−,

where P̄ denotes the point conjugated with P = (y, x): P̄ = (−y, x).
Analogously in the case of (3.30) they are

2P̄2, . . . , 2P̄g, P0,−, P∞,+.

Property (iii) is proved by considering the constants in front of the u-dependent
part chosen.

When conditions (i)–(iii) are satisfied that the right hand side and left hand sides
of (3.30) and (3.30) can differ by a constants. The last are computed by substituting
the special values of u.

¤

We shall use these formulas below in the analysis of the Thirring model.

4. θ-function solutions of the Thirring model

In this Section we formulate the θ-function solution of the Thirring equation (1.1)
by following [27]. We then show that the solution is valid because of ζ-relations
derived in the preceeding section.

Let Υ be an odd non-singular half-period. Then

θ(z + Υ) = − exp{−2iπυT (z +
1
2
υτ)}θ[υ](z), (4.1)

where [υ] is the characteristic of the vector Υ.
Assume the curve V to be nonsingular (i.e., Em 6= Em′ for m 6= m′, m,m′ =

0, . . . , 2g +1) and g ∈ N. Define a normal differential of the third kind, with simple
poles at P0,− and P∞,− with residues +1 and −1, vanishing a-periods, and being
otherwise holomorphic on V . It can be written as

dωP0,−P∞,− =
y + y0,−

2z

dz

y
+

∏g
j=1(z − Λj)dz

2y
, P0,− = (0, y0,−), (4.2)

where {Λj}j=1,...,n are uniquely determined by the normalization∫
aj

dωP0,−,P∞,− = 0, j = 1, . . . , g. (4.3)

The explicit formula (4.2) then implies (using the local coordinate ξ = z near
P0,±)

dωP0,−,P∞,−(P ) =
ξ→0

{
ξ−1

0

}
dξ ±

( ∞∑
q=0

(q + 1)ω0
q+1ξ

q

)
dξ as P → P0,∓, (4.4)
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and similarly (using the local coordinate ξ = 1/z near P∞,−),

dωP0,−,P∞,−(P ) =
ξ→0

{−ξ−1

0

}
dξ ±

( ∞∑
q=0

(q + 1)ω∞q+1ξ
q

)
dξ as P → P0,∓. (4.5)

In particular,∫ P

Q0

dωP0,−,P∞,− =
ξ→0

{
ln(ξ)

0

}
+ ω0,∓

0 ± ω0
1ξ ± ω0

2ξ2 + O(ξ3) as P → P0,−, (4.6)∫ P

Q0

dωP0,−,P∞,0 =
ξ→0

{− ln(ξ)
0

}
+ ω

∞∓
0 ± ω∞1 ξ ± ω∞2 ξ2 + O(ξ3) as P → P∞,∓.

(4.7)

Here Q0 is an appropriate base point of the Abel map and we use the same path of
integration from Q0 to P in all Abelian integrals in this section.

A comparison of (4.4), (4.5) with (4.2) then yields

ω0
1 =

1
4

2g+1∑
m=0

1
Em

− (−1)g

2y0,+

g∏
j=1

Λj , (4.8)

ω∞1 = −1
4

2g+1∑
m=0

Em +
1
2

g∑
j=1

Λj . (4.9)

Next, we intend to go a step further and derive alternative expressions for the
expansion coefficients ω0,±

0 , ω0
1 , ω

∞±
0 , and ω∞1 in (4.6) and (4.7).

Lemma 4.1. Let ∆0 and ∆∞ be as in (3.27) and ∂W∞ and ∂W 0 as in (3.28). Let
[υ] be a nonsingular odd characteristic. Then the expansion of the normalized third
kind integral

∫ P

Q0
dωP0,−,P∞− in the vicinity of the points P0± and P∞± is given, up

to a common additive constant, as follows∫ P

Q0

ωP0,−,P∞− (P )

= ln
θ[υ] (2∆0|τ)

θ[υ] (∆0 + ∆∞|τ)
+

1
y0,+

∂W 0 ln
θ[υ] (2∆0|τ)

θ[υ] (∆0 + ∆∞|τ)
ξ + O(ξ)

as P → P0,+, z = ξ, (4.10)∫ P

Q0

ωP0,−,P∞− (P )

= ln ξ + ln
{

∂W 0θ[υ](0)
y0,+θ[υ](∆0 −∆∞|τ)

}

+

(
1
4

2g+1∑
k=0

1
Ek

− 1
y0,+

∂W 0 ln θ[υ](∆0 −∆∞|τ
)

ξ + O(ξ2)

as P → P0,−, z = ξ, (4.11)∫ P

Q0

ωP0,−,P∞− (P )

=
θ[υ] (∆∞ + ∆0|τ)

θ[υ] (2∆∞)
− ∂W∞ ln

θ[υ](∆∞ + ∆0|τ)
θ[υ](2∆∞|τ)

ξ + O(ξ2),

as P → P∞,+, z = 1/ξ (4.12)∫ P

Q0

ωP0,−,P∞− (P )

= − ln ξ − ln
∂W∞θ[υ](0|τ)

θ[υ](∆0 −∆∞|τ)
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−
(

1
4

2g+1∑
k=0

Ek − ∂W∞ ln θ[υ](∆0 −∆∞|τ
)

ξ + O(ξ2),

as P → P∞,−, z = 1/ξ. (4.13)

Proof. The differential (4.2) is uniquely defined by its poles and the normalization
condition (4.3). Equivalently this differential can be given in the form

dωP0,−,P∞,−(P ) = d ln
θ[υ]

(∫ P

Q0
du− ∫ P0,−

Q0
du|τ

)
θ[υ]

(∫ P

Q0
du− ∫ P∞,−

Q0
du|τ

) .

The integration of this differential with the previously described expansion at the
corresponding points give the above expressions (4.10)–(4.13). ¤

We remark that the properties ω
0±
k = −ω

0∓
k and ω

∞±
k = −ω

∞∓
k , k = 1, 2, . . . ,

which follows from the explicit realization of the differential of the third kind in the
form (4.2), lead to a set of identities (special addition theorems), the first pair (for
k = 1) being

∂W0 ln
θ[υ](2∆0|τ)

θ[υ](∆0 + ∆∞|τ)θ[υ](∆0 −∆∞|τ)
= −1

4
y0,+

2g+1∑
k=0

1
Ek

, (4.14)

∂W∞ ln
θ[υ](2∆∞|τ)

θ[υ](∆∞ + ∆0|τ)θ[υ](∆∞ −∆0|τ)
=

1
4

2g+1∑
k=0

Ek. (4.15)

Taking into account these equivalences as well as the expansions (4.10)–(4.13), we
fix the following expressions for the coefficients of the expansion of the differential
of the third kind

ω0,+
0 = ln

θ[υ] (2∆0|τ) θ[υ] (∆∞|τ)
θ[υ] (∆0 + ∆∞|τ) θ[υ](∆0)

, (4.16)

ω0,−
0 = ln

∂W 0θ[υ](0|τ)θ[υ] (∆∞|τ)
gg+2θ[υ](∆0 −∆∞|τ)θ[υ] (∆0|τ)

, (4.17)

ω∞,+
0 = ln

θ[υ] (∆∞ + ∆0|τ) θ[υ] (∆∞|τ)
θ[υ] (2∆∞) θ[υ] (∆0|τ)

, (4.18)

ω∞,−
0 = ln

θ[υ](∆0 −∆∞|τ)θ[υ] (∆∞|τ)
∂W∞θ[υ](0|τ)θ[υ] (∆0|τ)

, (4.19)

ω0
1 = −1

4

2g+1∑
k=0

1
Ek

+
1

y0,+
∂W 0 ln θ[υ](∆0 −∆∞|τ), (4.20)

ω∞1 =
1
4

2g+1∑
k=0

Ek − ∂W∞ ln θ[υ](∆0 −∆∞|τ), (4.21)

where ω0
1 = ω0,+

1 = −ω0,−
1 and ω∞1 = ω∞,+

1 = −ω∞,−
1 .

The θ-function solutions of the Thirring model are given as follows. Let ∆0 and
∆∞ be as in (3.27) and ∂W∞ and ∂W 0 as in (3.28). Denote the linear winding
vector as

L(x, t) = 2i (W∞x + W 0t) .

The θ-function solution of the Thirring model derived in [27] has the form

u(x, t) = −C−1
0 e−ω0,+

0
θ (L(x, t)−∆0|τ)
θ (L(x, t)−∆∞|τ)

e−2i(ω∞1 x−ω0
1t), (4.22)

u∗(x, t) = C−1
0 eω0,−

0
θ (L(x, t) + 2∆0 −∆∞|τ)

θ (L(x, t) + ∆0|τ)
e2i(ω∞1 x−ω0

1t), (4.23)
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v(x, t) = −C−1
0 e−ω

∞−
0

θ (L(x, t) + ∆∞|τ)
θ (L(x, t) + ∆0|τ)

e−2i(ω∞1 x−ω0
1t), (4.24)

v∗(x, t) = C−1
0 eω

∞+
0

θ (L(x, t)− 2∆∞ + ∆0|τ)
θ (L(x, t)−∆∞|τ)

e2i(ω∞1 x−ω0
1t). (4.25)

Direct substitution of the θ-function formulas (4.22)–(4.25) into the first Thirring
equation yields

− 1
4

2g+1∑
k=0

Ek − ∂W∞ ln
{

θ[υ](2∆∞|τ)
θ[υ](∆0 + ∆∞|τ)

θ (L(x, t)−∆∞|τ)
θ (L(x, t)−∆0|τ)

}
+

θ[υ](2∆0|τ)∂W∞θ[υ](0|τ)
θ[υ](∆0 + ∆∞|τ)θ[υ](∆0 −∆∞|τ)

θ (L(x, t) + ∆∞|τ) θ (L(x, t)−∆∞|τ)
θ (L(x, t) + ∆0|τ) θ (L(x, t)−∆0|τ)

−θ[υ](∆0 + ∆∞)∂W∞θ[υ](0|τ)
θ[υ](2∆∞|τ)θ[υ](∆0 −∆∞)

θ (L(x, t) + ∆∞|τ) θ (L(x, t)− 2∆∞ + ∆0|τ)
θ (L(x, t) + ∆0|τ) θ (L(x, t)−∆∞|τ)

= 0.

(4.26)

We use the formulas (3.29) and (3.29) of Lemma 3.6. The right-hand side of the
equality has three terms. The first one can be written in the form

− ∂W∞ ln θ[υ](∆0 + ∆∞|τ)− ∂W∞ ln θ[υ](2∆∞|τ)

− ∂W∞ ln θ(L−∆0|τ) + ∂W∞ ln θ(L−∆∞|τ)

whilst the remaining two are

∂W∞ ln θ(L−∆0|τ) + ∂W∞ ln θ(L + ∆0|τ)

+ ∂W∞ ln θ[υ](∆0 + ∆∞|τ)− ∂W∞ ln θ[υ](∆∞ −∆0|τ)

and

− ∂W∞ ln θ(L−∆∞|τ) + ∂W∞ ln θ(L + ∆0|τ)

+ ∂W∞ ln θ[υ](∆∞ −∆0|τ)− ∂W∞ ln θ[υ](2∆∞|τ),

respectively. Their sum vanishes because of the equality (4.15).
The substitution of the θ-function formulas (4.22)–(4.25) in the second equation

in the Thirring equations is reduced in the same way to the equivalence (4.14).

5. Elliptic and soliton solutions of the Thirring model

The soliton solution of the Thirring equations (1.1) was derived in [37] in the
framework of the inverse scattering method. In our notation this solution reads

u(x, t) =
sinφ√

r

exp
{
2i(rx + 1

r t + θ0)
}

cosh
(
2 sin φ (r(x− x0)− 1

r t) + iφ
2

) , (5.1)

v(x, t) = − sin φ
√

r
exp

{
2i(rx + 1

r t + θ0)
}

cosh
(
2 sin φ (r(x− x0)− 1

r t)− iφ
2

) , (5.2)

where x0, θ0 are arbitrary and r is a parameter; the validity of these formulas can
be also checked by direct substitution into the equations (1.1)

Elliptic solutions of the Thirring model were discussed by Holod and Prikarpatski
[33] and also Kamchatnov, Steudel, and Zabolotski [34]2. In both papers the elliptic
solutions were obtained as the result of straightforward inversions of the elliptic
integrals but the general θ-function expressions for the fields u(x, t), v(x, t) (see
below (5.4), (5.6) and (5.29), (5.30) for a special case) were not clarified. Here we
shall derive elliptic solutions by specializing the general formulas (4.22)–(4.25) to

2The authors are grateful to N. Kostov for pointing out this paper.
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the case of an elliptic curve and obtain the Kuznetsov–Mikhailov soliton solution
as a limiting case of the elliptic function.

5.1. Elliptic solutions. Consider the even elliptic curve3

K1 : y2 = (z − E0)(z − E1)(z − E2)(z − E3), (5.3)

where E0, . . . , E3 are arbitrary complex numbers. Let us restrict the formulas
(4.22)–(4.25) to the curve (5.3). The vector of Riemann constants in the case
where the half period is 1

2 + 1
2τ has the characteristic[

1
2
1
2

]
.

The elliptic solution then has the form

u(x, t) = −C−1
0 e−ω0,+

0
ϑ1

(
L(x, t)−∆0|τ

)
ϑ1

(
L(x, t)−∆∞|τ

)eiπ(∆0−∆∞)e−2i(ω∞1 x−ω0
1t), (5.4)

u∗(x, t) = C−1
0 eω0,+

0
ϑ1

(
L(x, t) + 2∆0 −∆∞|τ

)
ϑ1

(
L(x, t)−∆0|τ

) e−iπ(∆0−∆∞)e2i(ω∞1 x−ω0
1t), (5.5)

v(x, t) = −C−1
0 e−ω∞,−

0
ϑ1

(
L(x, t) + ∆∞|τ

)
ϑ1

(
L(x, t) + ∆0|τ

) eiπ(∆0−∆∞)e−2i(ω∞1 x−ω0
1t), (5.6)

v∗(x, t) = C−1
0 eω∞,−

0
ϑ1

(
L(x, t)− 2∆∞ + ∆0|τ

)
ϑ1

(
L(x, t)−∆∞|τ

) e−iπ(∆0−∆∞)e2i(ω∞1 x−ω0
1t). (5.7)

In these formulas C0 is a constant which we shall fix later. The parameters ω0,+
0 ,

ω∞,−
0 , ω0

1 , ω∞1 are given by the formulas

ω0,+
0 = ln

ϑ1(2∆0|τ)ϑ1(∆∞|τ)
ϑ1(∆0 + ∆∞|τ)ϑ1(∆0|τ)

, (5.8)

ω∞,−
0 = ln

ϑ1(∆0 −∆∞|τ)ϑ1(∆∞|τ)
Wϑ′1(0|τ)ϑ1(∆0|τ)

, (5.9)

ω0
1 = −1

4

3∑
k=0

1
Ek

+
W

y0,+

ϑ′1(∆0 −∆∞|τ)
ϑ1(∆0 −∆∞|τ)

(5.10)

= − W

y0,+

{
ϑ′1(∆0 + ∆∞|τ)
ϑ1(∆0 + ∆∞|τ)

− ϑ′1(2∆0|τ)
ϑ1(2∆0|τ)

}
, (5.11)

ω∞1 =
1
4

3∑
k=0

Ek + W
ϑ′1(∆∞ −∆0|τ)
ϑ1(∆∞ −∆0|τ)

(5.12)

= W

{
ϑ′1(∆∞ + ∆0|τ)
ϑ1(∆∞ + ∆0|τ)

− ϑ′1(2∆∞|τ)
ϑ1(2∆∞|τ)

}
. (5.13)

The constants ∆0 and ∆∞ are given by

∆0 =
∫ P0,+

(E0,0)

dv, ∆∞ =
∫ P∞,+

(E0,0)

dv, (5.14)

where dv is the normalized holomorphic differential Wdz/y and W is the normal-
izing constant given by the equation

W

∮
a

dz

y
= 1.

3We shall follow to the standard notation of the theory of elliptic functions fixed in [6].
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Introduce the linear function of x, t

L(x, t) ≡
µ̂(x,t)∫

(E0,0)

dz

y
= 2i W

(
x +

1
y0,+

t

)
, (5.15)

where y0,+ =
√

E0E1E2E3 and µ̂(x, t) = (µ(x, t), y(µ(x, t))) with y(µ)2 = R(µ).
This form of L follows from the equations

∂µ

∂x
= 2iy(µ),

∂µ

∂t
= − 2i

r2
y(µ). (5.16)

It was already shown (see the end of Section 4) that the Thirring model represents
a hidden form of the addition theorem for the Weierstrass ζ-function. In fact, the
direct substitution of the solution into the first of the equations (1.1) leads to the
equality

−ω∞1 + W
ϑ′1(L−∆0)
ϑ1(L−∆0)

−W
ϑ′1(L−∆∞)
ϑ1(L−∆∞)

+ eω0,+
0 −ω∞,−

0
ϑ1(L + ∆∞)ϑ1(L−∆∞)
ϑ1(L + ∆0)ϑ1(L−∆0)

+ eω∞,+
0 −ω∞,−

0
ϑ1(L + ∆∞)ϑ1(L− 2∆∞ + ∆0)

ϑ1(L + ∆0)ϑ1(L−∆∞)
= 0. (5.17)

The first three terms, after the substitution of the expression ω∞1 and using standard
expressions for the Weierstrass ζ-functions, take the form

−1
4

3∑
k=0

Ek + 2Wω{ζ(2ω(∆0 −∆∞)) + ζ(2ω(L−∆0))− ζ(2ω(L−∆∞))}.

The fourth term is an elliptic function and can be expressed in terms of the Weier-
strass ζ-function as follows

eω0,+
0 −ω∞,−

0
ϑ1(L + ∆∞|τ)ϑ1(L−∆∞|τ)
ϑ1(L + ∆0|τ)ϑ1(L−∆0)|τ

= 2Wω{ζ(2ω(L+∆0))− ζ(2ω(L−∆0))− ζ(2ω(∆∞+∆0))+ ζ(2ω(∆∞−∆0))}.
Let us prove this equality. The left-hand side has the form

Wϑ′1(0|τ)ϑ1(2∆0|τ)
ϑ1(∆0 + ∆∞|τ)ϑ1(∆0 −∆∞|τ)

ϑ1(L + ∆∞|τ)ϑ1(L−∆∞)|τ
ϑ1(L + ∆0|τ)ϑ1(L−∆0|τ)

.

This function is doubly periodic with periods 1 and τ and has two first order poles
at the points ±∆0 with residues ±W , and first order zeros at the points ±∆∞.
Therefore it can be represented in the form

ζ(2ω(L + ∆0))− ζ(2ω(L−∆0)) + C,

where the constant C must be chosen to provide zeros at the points ±∆∞. Because
of the parity properties of the ζ-function, one value of the constant C serves for
both points ∆∞.

Analogously we can present the last term in the form

eω∞,+
0 −ω∞,−

0
ϑ1(L + ∆∞|τ)ϑ1(L− 2∆∞ + ∆0|τ)

ϑ1(L + ∆0|τ)ϑ1(L−∆∞|τ)
= 2Wω{ζ(2ω(L−∆∞))− ζ(2ω(L + ∆0)) + ζ(4ω∆0)− ζ(2ω(∆∞ −∆0)}.

To prove this equality we shall write the left-hand side of the equality

Wϑ′1(0|τ)ϑ1(∆0 + ∆∞|τ)
ϑ1(2∆∞|τ)ϑ1(∆0 −∆∞|τ)

ϑ1(L− 2∆∞ + ∆0|τ)ϑ1(L−∆0|τ)
ϑ1(L + ∆0|τ)ϑ1(L−∆∞|τ)

.



HYPERELLIPTIC ζ-FUNCTION 19

This function has first order zeros at the points −∆∞, ∆0 and first order poles at
the points ∆∞, −∆0 with residues W and W correspondingly and can be therefore
represented in the form

2Wω{−ζ(2ω(L−∆∞)) + ζ(2ω(L + ∆0)) + C},
where the constant C is chosen to provide the vanishing properties of this function.
The sum of all these expressions reduces to the equality (4.15), which was already
proved.

5.2. Further restriction of the elliptic curve. Let us specify further the elliptic
solution and give it in terms of standard elliptic functions. Suppose that the points
E0, . . . , E3 are placed symmetrically on the circle of the radius r, i.e.,

E0 = reiθ, E1 = re−iθ, E2 = reiφ, E3 = re−iφ, (5.18)

where θ, φ is real and 0 ≤ θ < φ ≤ π.
The substitution

ξ = i cot
φ

2
r − z

r + z
(5.19)

transforms the curve (5.3) to the Legendre form

K̃1 = {(ν, ξ) | ν2 = (1− ξ2)(1− k̃2ξ2)}, k̃ = tan
φ

2
cot

θ

2
, (5.20)

with the holomorphic differential

W
dz

y
= − 1

4K̃

dξ

ν
,

where k̃ is the Jacobian module, and the normalizing constant is given by

W = − ir

2K̃
cos

φ

2
sin

θ

2
. (5.21)

To find the substitution (5.19), following [49, §22.71–72], we write the holomor-
phic differential in the form

dz

y
=

dz√
[cos2 θ

2 (z − r)2 + sin2 θ
2 (z + r)2][cos2 φ

2 (z − r)2 + sin2 φ
2 (z + r)2]

.

To make further computations more explicit we shall display the chosen dissection
of the Riemann surface of the curve (5.3) in Fig. 2 and the map of the basis cycles
under the map (5.19) in Fig. 3.

∞+
0+

E
3

E
1

E
0

E
2

a

b

r

φθ

Figure 2. Basis of cycles of the elliptic complex curve with
branching points (5.18).
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1/k−1/k 0−1 1

a

b

Figure 3. Basis of cycles after the transformation (5.19).

The Jacobian parameter τ̃ is computed as

τ̃ =
∫

b

ω = − 1

2K̃

− 1
k̃∫

−1

dξ

ν

= − 1

2K̃


0∫

−1

dξ

ν
+

− 1
k̃∫

0

dξ

ν

 = − 1

2K̃


1∫

0

dξ

ν
−

1
k̃∫

0

dξ

ν


= − 1

2K̃

{
K̃ − 1

k̃
K̃

(
1
k̃

)}
=

iK̃ ′

2K̃
=

1
2
τ

and therefore the transformation of the second order (the Gauss transformation, [6])
links the elliptic functions of the curves (5.3) and (5.20). The moduli are connected
as follows

k =
2k̃1/2

1 + k̃
, k′ =

√
1− k̃

1 + k̃
, K = (1 + k̃)K̃, K ′ =

1
2
(1 + k̃)K̃ ′.

In what follows we shall use the standard formulas of the Gauss map.
One can compute∫ P0±

Q0

ω = ±
(

1
4
− f

)
,

∫ P∞±

Q0

ω = ±
(

1
4

+ f

)
,

where f = F (i cot φ
2 ; k̃)/4K̃, and F ( · ; k̃) is the incomplete elliptic integral of the

first kind. More precisely ξ(0) = i cot φ
2 , while ξ(∞) = −i cot φ

2 . Then

P0,+∫
Q0

ω = − 1

4K̃

i cot φ
2∫

1

dξ

ν

= − 1

4K̃

−K +

i cot φ
2∫

0

dξ

ν

 =
1
4
− f.

Analogously,

P∞,+∫
Q0

ω = − 1

4K̃

−i cot φ
2∫

1

dξ

ν
= − 1

4K̃

−K +

−i cot φ
2∫

0

dξ

ν


=

1
4
− 1

4K̃
F (−i cot

φ

2
; k̃) =

1
4

+ f

Let us show that (5.11), (5.13) are proved by the addition theorem for elliptic
functions.
Proposition 5.1. The equalities (5.11), (5.13) are proved by the addition theorem
for elliptic functions.
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Proof. Consider (5.11) and write it in the form

2ωW{ζ(4ω∆0)− ζ(2ω(∆0 + ∆∞))− ζ(2ω(∆0 −∆∞)) =
r

2
(cos θ + cos φ)},

where ζ is the Weierstrass ζ-function with quasi-periods 2ω, 2ω′ 4 and parameters

e1 = −r2

6
− r2

6
cos(φ + θ) +

r2

3
cos(φ− θ),

e2 =
r2

3
− r2

6
cos(φ + θ)− r2

6
cos(φ− θ),

e3 = −r2

6
+

r2

6
cos(φ + θ)− r2

3
cos(φ− θ).

The substitution of (5.21) and w = K/
√

e1 − e3 and an application of the Weier-
strass addition theorem for ζ-functions leads to the equality

i(1 + k̃)√
e1 − e3

℘′(2ω(∆0 + ∆∞))− ℘′(2ω(∆0 −∆∞))
℘(2ω(∆0 + ∆∞))− ℘(2ω(∆0 −∆∞))

cos(θ) + cos(φ)
cos φ

2 sin θ
2

. (5.22)

Because ∆0 + ∆∞ = 1
2 , ∆0−∆∞ = −2f the left-hand side of the equality (5.22) is

transformed as follows

LHS =
i(1 + k̃)√
e1 − e3

℘′(4ωf)
e1 − ℘(4ωf)

= 2i(1 + k̃)

√
(℘(4ωf)− e2) (℘(4ωf)− e3)

(℘(4ωf)− e1) (e1 − e3)

= 2i(1 + k̃)
dn[Z; k]

cn[Z; k]sn[Z; k]
,

where the argument and module of the Jacobian elliptic functions, [Z; k] read

[Z; k] =

[
(1 + k̃)4K̃f ;

2k̃
1
2

1 + k̃

]
.

The application of the Gauss transform reduces this expression to the form

2i
1− k̃2sn4[4K̃f ; k̃]

sn[4K̃f ; k̃]cn[4K̃f ; k̃]dn[4K̃f ; k̃]
.

By substituting

sn[4K̃f ; k̃] = icot
φ

2
, cn[4K̃f ; k̃] =

1
sin φ

2

, dn[4K̃f ; k̃] =
1

sin θ
2

,

we obtain the right-hand side of the equality (5.22). ¤

Because of the formulas (5.4), (5.6), the following equality is valid
1
r2

µ =
u

v
. (5.23)

It is straightforward to show that

L(x, t) =
1

K̃
(rx− 1

r
t− x0) cos

θ

2
sin

φ

2
, (5.24)

and

µ = r
i cot φ

2 − sn(4K̃L(x, t); k̃)

i cot φ
2 + sn(4K̃L(x, t); k̃)

, (5.25)

where (5.19) was used.

4In this context ω and ω′ are the Weierstrass parameters.
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Let us consider (5.23). First of all we want to prove the equality

e−ω0,+
0 +ω∞,−

0 =
1
r
. (5.26)

We have:

ϑ1(2f |τ)
ϑ2(2f |τ)

= k′
sn

[
K

K̃
F (icotφ

2 ; k̃); k
]

cn
[

K

K̃
F (i cot φ

2 ; k̃); k
]

=

√
1− k̃

1 + k̃

sn
[
(1 + k̃)F (i cot φ

2 ; k̃); 2k̃1/2

1+k̃

]
cn

[
(1 + k̃)F (i cot φ

2 ; k̃); 2k̃1/2

1+k̃

]
= k̃′

sn
[
F (i cot φ

2 ; k̃); k̃
]

cn
[
F (i cot φ

2 ; k̃); k̃
]
dn

[
F (i cot φ

2 ; k̃); k̃
] = ik̃′ sin

θ

2
cos

φ

2
,

ϑ′1(0|τ)W
ϑ2(0|τ)

=
πrϑ3(0|τ)ϑ4(0|τ) sin θ

2 cos φ
2

i2K̃
= irk̃′ sin

θ

2
cos

φ

2
.

The expressions (5.8), (5.9), in combination with the above formulas, prove (5.26).
Because of the equality

ϑ1(y + z|τ)ϑ1(y − z|τ) = ϑ3(2y|2τ)ϑ2(2z|2τ)− ϑ2(2y|2τ)ϑ3(2z|2τ)

the ratio ψ1/ψ2 is equal to

1
r

ϑ3(2L(x, t)|2τ)ϑ2(2f − 1
2 |2τ)− ϑ2(2L(x, t)|2τ)ϑ3(2f − 1

2 |2τ)
ϑ3(2L(x, t)|2τ)ϑ2(2f + 1

2 |2τ)− ϑ2(2L(x, t)|2τ)ϑ3(2f + 1
2 |2τ)

.

Let L(x, t) = L̃(x, t) + 1
4 . Then the above expression can be transformed to the

form

ψ1

ψ2
= −1

r

ϑ4(2L̃(x, t)|2τ)ϑ1(2f |2τ) + ϑ1(2L̃(x, t)|2τ)ϑ4(2f |2τ)

ϑ4(2L̃(x, t)|2τ)ϑ1(2f |2τ)− ϑ1(2L̃(x, t)|2τ)ϑ4(2f |2τ)
(5.27)

=
1
r

sn(4K̃f ; k̃) + sn(4K̃L̃(x, t); k̃)

sn(4K̃f ; k̃)− sn(4K̃L̃(x, t); k̃)
, (5.28)

which coincides with (5.25).
Taking into the account the expressions for the above constants, we write finally

the elliptic solution of the Thirring model associated with the branch points (5.18)
of the curve in the following form

u(x, t) =
2√
r

sin
θ

2
cos

φ

2
exp(−2i(ω∞1 x− ω0

1t))
ϑ1

(
L(x, t)− 1

4 + f |τ)
ϑ1

(
L(x, t)− 1

4 − f |τ) , (5.29)

v(x, t) = 2
√

r sin
θ

2
cos

φ

2
exp(−2i(ω∞1 x− ω0

1t))
ϑ1

(
L(x, t) + 1

4 + f |τ)
ϑ1

(
L(x, t) + 1

4 − f |τ) , (5.30)

where ω∞1 , ω0
1 are given in (5.13), (5.11).

5.3. The soliton limit. Now we are in the position to discuss the soliton limit,

θ → φ, k → 1, K →∞, K ′ =
1
2
iπ. (5.31)

In this limit the expression (5.28) is reduced to the form

u

v
=

1
r

cosh
[
2 sin φ (rx− 1

r t− x0)− i
2φ

]
cosh

[
sin φ (rx− 1

r t− x0) + i
2φ

] , (5.32)

which is also in accordance with the Kuznetsov–Mikhailov formula (5.2).
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Furthermore, to compute the exponentials we find

ω∞1 −→ 2r cos φ, ω0
1 −→ −2

r
cos φ. (5.33)

Let us derive the first of these formulas. To do that we must compute the
asymptotic of the θ-function part of the formula (5.13). We have

W
ϑ′1(∆∞ −∆0)
ϑ1(∆∞ −∆0)

= 2ωW
{

ζ(2ω(∆∞ −∆0))− η

ω
2ω(∆∞ −∆0)

}
= 2ωW

{
ζ(u)− η

ω
u
}

,

where

u = 4fω =
1 + k̃√
e1 − e3

F (i cot
φ

2
).

In the soliton limit

u −→ i
π − φ√
e1 − e3

ζ(u)− η

ω
u −→ √

e1 − e3 tanhu,

where the formula E = (e1ω+η)/
√

e1 − e3 was used to compute the second asymp-
totic. Taking into account that

2ωW =
ir(1 + k̃) cos φ

2 sin θ
2√

e1 − e3
,

we obtain the required result.
Direct computation of this limit of the θ-ratios on the basis of known asymptotic

θ-function formulas is difficult because in this limit the θ-function diverges (τ → 0)
while the arguments of both θ-functions tend to ± 1

4 . To overcome this problem we
shall use the explicit expression for the differentials of the third kind

dωP0∓ ,P∞∓ = dω̃P0∓ ,P∞∓ ∓
λ1dz

2y
.

First we remark that comparing (4.8), (4.9) and (5.11), (5.13), one is led to the
conclusion that

Λ1 = W
ϑ′1(∆0 −∆∞|τ)
ϑ1(∆∞ −∆0|τ)

.

In the soliton limit we have
Λ1 −→ 2r cos(φ).

The non-normalized part of the differential of the third kind can be written as
follows

dω̃P0∓ ,P∞∓ =
y + y0,∓

2z

dz

y
± zdz

2y
(5.34)

=
i cot(φ

2 )

ξ2 + cot2(φ
2 )

1± 1
i cos φ

2 sin θ
2

ξ√
(1− ξ2)(1− k̃2ξ)

dξ. (5.35)

The second line in this formula results from the substitution of (5.19). The differ-
entials are normalized which follows from the comparison of (4.8), (4.9) and (5.11),
(5.13).

It is straightforward to show by substituting ξ = tanh(M), k̃ = 1, that in the
soliton limit

dωP0∓ ,P∞∓ −→ cosh2(M) tanh(M± i
φ

2
)dξ = tanh(M± i

φ

2
)dM.
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Evidently

dµ ln
ϑ1

(
L(x, t)∓ 1

4 + f |τ)
ϑ1

(
L(x, t)∓ 1

4 − f |τ) = ±dµ ln
ϑ1

(∫ µ

E0
ω ±∆0|τ

)
ϑ1

(∫ µ

E0
ω ±∆∞|τ

) = dωP0∓ ,P∞∓ .

But the logarithmic derivative of the hyperbolic function in the Kuznetsov–Mikhailov
formula reads

dM ln
1

cosh(M± iφ
2 )

= tanh(M± i
φ

2
)dM.

This last equality completes the proof of (5.1) and (5.2) from (5.29) and (5.30).
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