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QUASI-PERIODIC AND PERIODIC SOLUTIONS FOR
VECTOR NONLINEAR SCHRÖDINGER EQUATIONS

J. C. EILBECK, V. Z. ENOLSKII, AND N. A. KOSTOV

Abstract. We consider quasi-periodic and periodic (cnoidal) wave
solutions of a set of n-component vector nonlinear Schrödinger
equations (VNLSE). In a biased photorefractive crystal with a
drift mechanism of nonlinear response and Kerr-type nonlinear-
ity, n component nonlinear Schrödinger equations can be used to
model self-trapped mutually incoherent wave packets. These equa-
tions also model pulse-pulse interactions in wavelength-division-
multiplexed channels of optical fibre transmission systems. Quasi-
periodic wave solutions for the VNLSE in terms of n-dimensional
Kleinian functions are presented. Periodic solutions in terms of
Hermite polynomials and generalized Hermite polynomials for n-
component nonlinear Schrödinger equations are found.

1. Introduction

We consider the system of coupled nonlinear Schrödinger equations

i
∂

∂t
Qj + s

∂2

∂x2
Qj + σ

(
n∑
k=1

|Qk|2
)

Qj = 0, j = 1, . . . , n, (1.1)

where s = ±1, σ = ±1. These equations are important for a number
of physical applications. For example, for photorefractive media with a
drift mechanism of nonlinear response, a good approximation describ-
ing the propagation of n self-trapped mutually incoherent wave packets
is the set of equations for a Kerr-type nonlinearity [29]

i
∂

∂z′
Q̃j +

1

2

∂2

∂x′2
Q̃j + αδηQ̃j = 0, j = 1, . . . , n, (1.2)

where Q̃j denotes the jth component of the beam, α is a coefficient
representing the strength of nonlinearity, z′ and x′ are the coordinate
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along the direction of propagation and transverse coordinate respec-
tively. The change in refractive index profile η created by all the inco-
herent components in the light beam is defined by

δη =
n∑
k=1

|Q̃k|2. (1.3)

Inserting (1.3) in (1.2) and renormalising the variables as Q̃j = Qj/
√

2α,
z′ = 2t, x′ = x we obtain the vector nonlinear Schrödinger equation
(1.1). Stability, localization, and soliton asymptotics of multicompo-
nent photorefractive cnoidal waves are discussed in [35]. New solutions
in explicit form are presented here for the case n = 3. The pulse-pulse
collision between wavelength-division-multiplexed channels of optical
fibre transmission systems are described with equations of VNLSE type
(1.1) [33, 24].

Quasi-periodic solutions in terms of N-phase theta functions for the
Manakov system [30], which is the system (1.1) with n = 2, are derived
in [1], while a series of special solutions are given in [3, 36, 37, 38]. The
authors have already discussed quasi-periodic and periodic solutions
associated with Lamé and Treibich-Verdier potentials for the Manakov
system in the framework of a special ansatz [12]. General quasi-periodic
solutions in terms of N-phase theta functions of the VNLSE are derived
in [10, 28] and for matrix nonlinear Schrödinger equations in [46]. We
also mention the method of constructing elliptic finite-gap solutions
of the stationary KdV and AKNS hierarchy, based on a theorem due
to Picard, proposed in [19, 21, 20], as well the method developed by
Smirnov in a series of publications: the review paper [40] and [41, 42].

In the present paper, we investigate (1.1) by introducing a special
ansatz to analyse hyperelliptic and elliptic solutions of the VNLSE.

The paper is organised as follows. In the Section 2 we construct
the Lax representation of the finite dimensional system obtained after
substitution of the ansatz and develop a hyperelliptic curve, which are
associated with the system. In Section 3 we present the integration
of the system in terms of Kleinian hyperelliptic functions, which give
quasi-periodic solutions. Recently this realization of Abelian functions
was discussed in [7, 8, 15, 9]. In Section 4 we show how these quasi-
period solutions reduce in special cases to give periodic solutions of
(1.1) in terms of elliptic functions. We explain also in Section 4 the
reduction of Kleinian hyperelliptic functions to Hermite and generalized
Hermite polynomials.

We seek solution of (1.1) in the following form (e.g. Porubov & Parker
[37])
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Qj = qj(ζ) eiΘj , j = 1, . . . n, (1.4)

where ζ = x − ct, Θj = Θj(ζ, t), with qj , Θj real. Substituting (1.4)
into (1.1) and separating real and imaginary parts by supposing that
the functions Θj , j = 1, . . . n behave as

Θj =
1

2
scx + (aj −

1

4
sc2)t− s Cj

∫ ζ

0

dζ ′

qj(ζ ′)2
+ Θj0,

we obtain the system (σ = s = ±1) [47, 26, 43, 27]

d2

dz2
qj +

(
n∑
k=1

σ

s
q2
k −

aj
s

)
qj −

C2
j

q3
j

= 0, k, j = 1, . . . n, (1.5)

where Cj , j = 1, . . . n are free parameters and Θj0 are constants. These
equations describe the integrable case of motion of a particle in a quar-
tic potential perturbed with inverse squared potential, which is sepa-
rable in ellipsoidal coordinates [47].

2. Lax representation

The system (1.5), with s = 1, σ = 1 is a completely integrable Hamil-
tonian system with the Hamiltonian

H =
1

2

n∑
i=1

p2
i +

1

4

(
n∑
i=1

q2
i

)2

− 1

2

n∑
i=1

aiq
2
i +

1

2

n∑
i=1

C2
i

q2
i

, (2.1)

where the variables (qi, pi), i = 1, . . . n, pi(ζ) = dqi(ζ)/dζ , are the
canonically conjugated variables with respect to the standard Poisson
bracket, {· ; ·}.

This system has the Lax representation [27]

dL(λ)

dζ
= [M(λ), L(λ)],

L(λ) =

(
V (λ) U(λ)
W (λ) −V (λ)

)
, M =

(
0 1

Q(λ) 0

)
, (2.2)
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which is equivalent to (1.5), where U(λ), W (λ), Q(λ) have the form

U(ζ, λ) = −a(λ)

(
1 +

1

2

n∑
i=1

q2
i

(λ− ai)

)
, V (ζ, λ) = −1

2

dU(ζ, λ)

dζ

W (ζ, λ) = a(λ)

(
−λ +

1

2

n∑
i=1

q2
i +

1

2

n∑
i=1

1

λ− ai

(
p2
i +

C2
i

q2
i

))
,

Q(ζ, λ) = λ−
n∑
i=1

q2
i . (2.3)

The Lax representation yields the hyperelliptic curve K = (ν, λ)

det(L(λ)− 1

2
ν12) = 0, (2.4)

where 12 is the 2×2 unit matrix. The moduli of the curve (2.4) generate
the integrals of motion H, F (i) = Hi + Ii, i = 1, . . . , n,

ν2 = V 2(ζ, λ) + U(ζ, λ)W (ζ, λ). (2.5)

The curve (2.5) can be written in canonical form as

ν2 = 4
2n∏
j=0

(λ− λj), (2.6)

where λj 6= λk are branching points.
From (2.5) and explicit expressions for U(ζ, λ), V (ζ, λ), W (ζ, λ) we

obtain

ν2 = a(λ)2

(
λ−

n∑
i=1

Hi

λ− ai
− 1

4

n∑
i=1

J2
i

(λ− ai)2
+

n∑
i=1

Ii
λ− ai

)
, (2.7)

where

Ii =
1

4

∑
k 6=i

1

ai − ak

(
(qipk − qkpi)

2 − C2
i qk
q2
i

− C2
kqi
q2
k

)
,

Hi =
1

2
p2
i −

1

2
aiq

2
i +

1

4
q2
i

(
n∑
k=1

q2
k

)
+

1

2

C2
i

q2
i

,

Ji = 2Ci, a(λ) =
n∏
i=1

(λ− ai),

and
∑n

i=1 Hi is the Hamiltonian. The parameters Ci are linked with
the coordinates of the points (ai, ν(ai)) by the formula

C2
i = − ν(ai)

2∏
k 6=i(ai − ak)

, (2.8)
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where i = 1, . . . n. Let us define new coordinates µi, i = 1, . . . n as zeros
of the entry U(λ) in the Lax operator. Then

q2
i = 2

∏n
j=1(ai − µj)∏n
k 6=i(ai − ak)

, (2.9)

where i = 1, . . . n. The definition of µi, i = 1, . . . n in combination with
the Lax representation leads to the equations

νi = V (µi) = −1

2

d

dζ
U(µi), i = 1, . . . , n, (2.10)

which can be transformed to equations of the form1

ui =
n∑
k=1

∫ µk

λk

dui, (2.11)

where dui, i = 1, . . . , n denote independent canonical holomorphic dif-
ferentials

dui = λi−1 dλ

ν
, (2.12)

and uk = dk, un = 2ζ + b with the constants dk, b, k = 1, . . . , n − 1
defined by the initial conditions. The integration of the problem then
reduces to the solution of the Jacobi inversion problem associated
with the curve, which consist of the expression of the symmetric func-
tions of (µi, νi, i = 1, . . . , n) as function of n complex variables (ui, i =
1, . . . , n).

3. Exact solutions in terms of Kleinian hyperelliptic

functions

In this section we give the trajectories of the system under consid-
eration in terms of Kleinian hyperelliptic functions (see, e.g. [4, 8]),
associated with the algebraic curve (2.6) of genus n can be also written
in the form

ν2 = 4
2n∏
j=0

(λ− λj) = 4λ2n+1 +
2n∑
j=0

αjλ
j. (3.1)

At all real branching points λj 6= λk the closed intervals [λ2i−1, λ2i], i =
1, . . . n will be referred further as lacunae [48, 31]. Let us equip the
curve with a homology basis (ai; bi, i = 1, . . . , n) ∈ H1(K,Z) and fix

1In what follows we shall denote the integral bounds by the second coordinate
of the curve K = K(ν, λ) (2.7).
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the basis in the space of holomorphic differentials. The canonical mero-
morphic differentials of the second kind drT = (dri, i = 1, . . . , n), as-
sociated with (2.12), have the form

drj =

2n+1−j∑
k=j

(k + 1− j)αk+1+j
λkdλ

4ν
, j = 1, . . . , n. (3.2)

The n× n matrices of their periods are

2ω =

(∮
ak

dul

)
k,l=1,... ,n

, 2ω′ =

(∮
bk

dul

)
k,l=1,... ,n

,

2η =

(
−
∮
ak

drl

)
k,l=1,... ,n

, 2η′ =

(
−
∮
bk

drl

)
k,l=1,... ,n

.

Define the Abel map Kg → C
g/(2ω⊕2ω′) = Jac(K) of symmetrized

product of K to the Jacobi variety whose coordinates uT = (u1, . . . , ug)
are given by the formula (2.11).

The fundamental σ function in this case is a natural generalization
of the Weierstrass elliptic σ function and is defined as follows

σ(u) =

√
πn√

det(2ω)

ε

4

√∏
0≤i<j≤2n(λi − λj)

× exp
{
uTη(2ω)−1u

}
θ[ε]((2ω)−1u|ω′ω−1),

where ε8 = 1 ,τ = ω′ω−1 and θ[ε](v|τ) is the θ-function,

θ[ε](v|τ) =
∑
m∈Zn

exp iπ
{
(m+ ε)T τ(m+ ε) + 2(v + ε′)T (m+ ε)

}
,

with the half integer characteristic

[ε] =

[
ε1 . . . εn
ε′1 . . . ε′n

]
, ∀εi, εj =

1

2
or 0.

The characteristic [ε] is choosen in such the way, that it is the charac-
teristic of the point e at which the θ-function θ[0](e) vanishes to the
order

[
n+1

2

]
. According to the vanishing Riemann theorem and Clifford

theorem the Jacobi variety Jac(K) of the hyperelliptic curve of genus
n always has such the point(see e.g. [17])

The 2n× 2n period matrix,

(
ω ω′

η η′

)
satisfies the generalized Le-

gendre relation(
ω ω′

η η′

)(
0 −1g
1g 0

)(
ω ω′

η η′

)T (
0 −1g
1g 0

)
= −iπ

2
. (3.3)
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This relation (3.3) allows us to define a multidimensional σ-function,
which has the following properties

• The σ-function possesses the following periodicity property: if

E(m,m′) = ηm+ η′m′, and Ω(m,m′) = ωm+ ω′m′,

where m,m′ ∈ Zn, then

σ[ε](z + 2Ω(m,m′), ω, ω′) = exp
{
2ET (m,m′)

(
z + Ω(m,m′)

)}
× exp{−πimTm′ − 2πiεTm′}σ[ε](z, ω, ω′).

• As a modular function, the Kleinian σ-function is invariant under
the transformation of the symplectic group, which represents an
important characteristic feature.

We introduce the following notation. Kleinian ζ and ℘–functions
are defined as logarithmic derivatives of the fundamental σ–function

ζi(u) =
∂ ln σ(u)

∂ui
, i = 1, . . . , n;

℘ij(u) = −∂2 ln σ(u)

∂ui∂uj
, ℘ijk(u) = −∂3 ln σ(u)

∂ui∂ui∂uk
, . . . ,

i, j, k, . . . = 1, . . . , n.

The functions ζi(u) and ℘ij(u) have the following periodicity
properties

ζi(u+ 2Ω(m,m′)) = ζi(u) + 2Ei(m,m′), i = 1, . . . , n,

℘ij(u+ 2Ω(m,m′)) = ℘ij(u), i, j = 1, . . . , n,

where Ei(m,m′) is the i-th component of the vector E(m,m′) =
ηm+ η′m′ and Ω(m,m′) = ωm+ ω′m′.

Alternatively the σ function can be defined by its expansion near
u = 0. In particular, for small genera we have

σ(u) = u1 + o(u3) for n = 1 and 2,

σ(u) = u1u3 − u2
2 + o(u4) for n = 3 and 4,

σ(u) = −u3
3 + 2u2u3u4 − u1u

2
4 − u2

2u5 + u1u3u5 + o(u5) for n = 5 and 6.

and further terms can be computed with the help of a bilinear differ-
ential equation [5].

The principal result of the theory is the formula of Klein, which reads
in the case of genus n as follows

n∑
k,l=1

℘kl

(∫ µ

∞
du−

n∑
m=1

∫ µm

am

du

)
µk−1µl−1

i
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=
F (µ, µi) + 2ννi

4(µ− µi)2
, i = 1, . . . n, (3.4)

where

F (µ1, µ2) =
n∑
r=0

µr1µ
r
2[2α2r + α2r+1(µ1 + µ2)]. (3.5)

By expanding these equalities in the neighbourhood of infinity we ob-
tain the complete set of the relations for the hyperelliptic functions.

The first group of relations represents the solution of the Jacobi
inversion problem in the form

λn − ℘nn(u)λn−1 − ℘n,n−1(u)λn−2 − . . .− ℘n1(u) = 0. (3.6)

Let us introduce a polynomial F(u, λ) in λ of degree n

F = λn − ℘n,n(u)λn−1 − ℘n,n−1(u)λn−2 − . . .− ℘n,1(u). (3.7)

which are solutions of the following nonlinear equation

2

(
d2

du2
n

F
)
F −

(
d

dun
F
)2

− 4(λ + U)F2 + ν2 = 0, (3.8)

where U = 2℘nn + 1
4
α2n. It is possible to show that the following

equations are valid

℘nnni = (6℘nn + α2n)℘ni + 6℘n,i−1 − 2℘n−1,i +
1

2
δniα2n−1, (3.9)

for i = 1, . . . n. These equations can be identified with the KdV hier-
archy with “time variables” (t1, t2, . . . ) = (un, un−1, . . . ) = (x, t, . . . ),

Xk+1[U] = RXk[U], (3.10)

where R = ∂2
x−U+c− 1

2
Ux∂

−1, and c = α2n/12 is the Lenard recursion
operator. The first two equations from the hierarchy are

Ut1 = Ux, Ut2 =
1

2
(Uxxx − 6UxU), (3.11)

the second equation is the KdV equation, which is obtained from (3.9)
with i = n as the result of differentiation by x = un and setting U =
2℘nn + 1

6
α2n. The next group of equations are obtained from (3.7,3.8)
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and for simplicity we present results only for genus n = 3

℘2
333 = 4℘3

33 + α6℘
2
33 + 4℘23℘33 + α5℘33 + 4℘22 − 4℘13 + α4,

℘2
233 = 4℘2

23℘33 + α6℘
2
23 − 4℘22℘23 + 8℘13℘23 + 4℘11 + α2,

℘2
133 = 4℘2

13℘33 + α6℘
2
13 − 4℘12℘13 + α0,

℘233℘333 = 4℘2
33℘23 + α6℘23℘33 − 2℘22℘33,

+ 4℘13℘33 − 2℘2
23 +

1

2
α5℘23 + 2℘12 +

1

2
α3,

℘133℘233 = 4℘13℘23℘33 + α6℘13℘23 − 2℘12℘23 − 2℘13℘22 + 4℘2
13 +

1

2
α1,

℘133℘333 = 4℘13℘
2
33 + α6℘13℘33 − 2℘12℘33 + 2℘13℘23 +

1

2
α5℘13 − 2℘11.

Let us introduce finally the Baker-Akhiezer function, which in the
framework of the formalism developed is expressible in terms of the
Kleinian σ-function as follows

Ψ(λ,u) =
σ
(∫ λ
∞ du− u

)
σ(u)

exp

{∫ λ

∞
drTu

}
, (3.12)

where λ is arbitrary and u is the Abel image of an arbitrary point
(ν1, µ1)× . . .× (νn, µn). It is straightforward to show by direct calcula-
tion, using the relations for three and four-index Kleinian ℘–functions,
that Ψ(λ,u) satisfy the Schrödinger equation(

d2

dun
2 − 2℘nn(u)

)
Ψ(λ,u) =

(
λ +

1

4
α2n

)
Ψ(λ,u) (3.13)

for all (ν, µ).
Now we are in a position to write the solution of the of the sys-

tem in terms of Kleinian σ-functions and identify the constants in
terms of the moduli of the curve. Using (3.7,2.9), the solutions of
(1.5) have the following form in terms of Kleinian functions ℘nm(u),
℘n(m−1)(u),. . . , ℘n1(u)), m = n, . . . 1

q2
i = 2

ani − ℘n,n(u)an−1
i − ℘n,n−1(u)an−2

i − . . .− ℘n,1(u)∏
k 6=i(ai − ak)

,

where the vector uT = (dj, 2ζ + b), j = 1, . . . , n − 1. Finally, the
solutions of the VNLSE (1.1) reads in this case

Qi(x, t) =

√
2
F(u, ai)∏n
k 6=i(ai − ak)

exp(Θi), (3.14)
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where

Θj =

1

2
icx + i(aj −

1

4
c2) t− 1

2
ν(aj)

ζ∫
0

dζ ′

F(u, aj)

 , (3.15)

j = 1, . . . , n, and we have made use of (3.14) and (1.4).

4. Elliptic periodic solutions

In this section we develop a method (see also [26, 16, 14, 11]) which
allows us to construct periodic solutions of (1.5) in a straightforward
way, based on the application of the spectral theory for the Schrödinger
equation with elliptic potentials [2, 31]. We start with the formula (2.9)
and with the equation for the Baker function Ψ(λ;u).

d2

dx2
Ψ(λ,u)− UΨ(x,u) = (λ +

α2n

4
)Ψ(λ,u), (4.1)

where we identify the potential

U = 2℘nn +
1

6
α2n.

We assume, without loss of generality, that the associated curve has the
property α2n = 0. To make this assumption applicable to the initial
curve of the system (1.5) derived from the Lax representation, we shift
the spectral parameter

λ −→ λ + ∆, ∆ =
2

2n + 1

n∑
i=1

ai. (4.2)

Suppose, that U is a three, four gap Lamé or three, four gap Treibich-
Verdier potential, which means that

U(x) = 2
N∑
i=1

℘(x− xi), (4.3)

where ℘(x) is the standard Weierstrass elliptic function with periods
2ω, 2ω′ and xi takes values from the set {0, ω1 = ω, ω2 = ω + ω′, ω3 =
ω′} It is known, that the set of such potentials is exhausted by the
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following potentials for genus n = 3, 4 [44, 40, 21]

U(x) = 12℘(x), (4.4)

U(x) = 12℘(x) + 2℘(x + ωi), i = 1, 2, 3, (4.5)

U(x) = 6℘(x) + 6℘(x + ωi) + 2℘(x + ωj), i 6= j = 1, 2, 3, (4.6)

U(x) = 12℘(x) + 6℘(x + ωi), i = 1, 2, 3, (4.7)

U(x) = 12℘(x) + 2
3∑
i=1

℘(x + ωi), (4.8)

U(x) = 12℘(x) + 6
2∑
i=1

℘(x + ωi) + 2℘(x + ω3), (4.9)

U(x) = 20℘(x), (4.10)

U(x) = 12℘(x) + 6
3∑
i=1

℘(x + ωi), (4.11)

The potential (4.4), (4.10) is three, four gap Lamé potential respec-
tively; the potentials (4.5,4.7,4.8,4.6,4.11,4.9) are Treibich-Verdier po-
tentials [44, 39, 40].

To display the class of periodic solutions of system (1.5) we introduce
the generalized Hermite polynomial F(x, λ) by the formula

F(x, λ) = λn − πn,n(x)λn−1 − πn,n−1(x)λn−2 − . . .− πn,1(x). (4.12)

In the particular case of the Lamé potential

U(x) = n(n + 1)℘(x), (4.13)

the generalized Hermite polynomial coincide with the standard Hermite
polynomial [45]

F(x, ℘) =
n∑
r=0

cr(λ)(℘(x)− e2)
n−r, (4.14)

where the coefficients cr are solutions of the following recurrence rela-
tion

4r(n− r +
1

2
)(2n− r + 1)cr

= (n− r + 1)[12e2(n− r)(n− r + 2)− 4e2(n
2 + n− 3)− 4λ]cr−1

−2(n− r + 1)(n− r + 2)(2n− 2r + 3)(e1 − e2)(e2 − e3)cr−2.

This recurrent formula is satisfied if we set for r > n + 2

cn+1 = cn+2 . . . = 0, and normalize c0 = 1.

The associated Lamé curve is defined by (2.6), where the λj are solu-
tions of recurrence relations given in [18], cf. [45]. The original approach
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presented in [18] is useful because the Lamé curve appears in factorised
form.

The solutions of the system (1.5) are then given as

q2
i (ζ) = 2

F(ζ, ai −∆)∏n
k 6=i(ai − ak)

, i = 1, . . . , n. (4.15)

The final formula for the solutions of the system (1.1) then reads

Qi(x, t) =

√
2
F(ζ, ai −∆)∏n
k 6=i(ai − ak)

exp(Θi), (4.16)

where

Θj =

1

2
icx + i(aj −

1

4
c2)t− 1

2
ν(aj −∆)

ζ∫
0

dζ ′

F(ζ ′, aj −∆)

 ,

and i = 1, . . . , n and we have made use of (4.15) and (1.4).
We shall consider below examples of genus three, four curves, which

are associated with the three, four gap elliptic potentials (4.4), (4.10)
and (4.5,4.7,4.8,4.6,4.11,4.9).

Consider the potential (4.4) and construct the associated curve [23]

ν2 = 4λ
3∏
i=1

(λ2 − 6eiλ + 45e2
i − 15g2). (4.17)

The Hermite polynomial F(℘(x), λ) associated with the Lamé po-
tential (4.4) has the form

F(℘(x), λ) = λ3 − 6℘(x)λ2 − 3 · 5(g2 − 3℘2)λ−
32 · 52

4
(4℘3 − g2℘− g3). (4.18)

Then the finite and real solution of the system (1.5) is given by (4.16)
with the Hermite polynomial depending on the argument x + ω′ (the
shift in ω′ provides the holomorphity of the solution). The solution is
real under the choice of the arbitrary constants ai, i = 1, . . . , n in such
a way, that the constants ai −∆, i = 1, . . . , n lie in different lacunae.
According to (1.4) the constants Ci are then given as

C2
i = − ν(ai −∆)2∏

k 6=i(ai − ak)
,

where i = 1, . . . , n and ∆ is the shift (4.2) and ν is the coordinate of
the curve (4.17).
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The Hermite polynomial F(℘(x), λ) associated with the Lamé po-
tentials can be written in a different form, useful for applications:

F(℘(x), λ) =
n∑
k=0

Ak(λ)℘(x)n−k. (4.19)

For example for the genus n = 4 Lamé potential (4.10) we have

A0 = 11025, A1 = −1575λ, A2 = 135λ2 − 6615

2
g2

A3 = −10λ3 +
1855

4
λg2 − 2450g3

A4 = λ4 − 113

2
λ2g2 +

3969

16
g2

2 +
1925

4
λg3.

For the general Lamé potential the associated curve is defined by

ν2(λ) = −4λA2
n − AnAn−1g2 + (A2

n−1 − 4An−2An)g3 (4.20)

= 4
2n∏
j=0

(λ− λj).

For the genus four Lamé potential (4.10) we have

ν2 =

(
3∏
l=1

(λ2 + 10elλ− 7(5e2
l + g2))

)
(λ3 − 52λg2 + 560g3).

To display the class of periodic solutions of the system (1.5) for genus
n = 3 we express the generalized Hermite polynomial F(x, λ) by the
formula

F(x, λ) = λ3 − π33(x)λ2 − π23(x)λ− π13(x) (4.21)

with π33(x), π23(x) and π13(x) given as follows

π33(x) =
N∑
j=1

℘(x− xj) +
1

3

6∑
j=0

Zj ,

π12(x) = −3
∑
i<j

℘(x− xi)℘(x− xj)−
Ng2

8

−1

6

∑
i<j

λiλj +
1

6

(
6∑
j=0

λ2
j

)

π13(x) =
5

2
π3

33 −
5

4
π33;xxπ33 +

1

8
π33α5 −

5

8
π2

33;x +
1

16
π33;xxxx −

1

8
α4,

where xi are half-periods, N is the degree of the cover, Zj, j = 0, . . . 6
are potential shifts (see for example [16]). Without loss of generality we
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assume that α6 =
∑6

j=0 λj = 0. For conciseness we denote ℘ = ℘(x),
℘(x + ω1) = ℘1. Then for the Treibich-Verdier potential (4.5) we find

π33 = 6℘ + ℘1 − e1

π23 = −45℘2 − 18℘℘1 + 18℘e1 + 3℘1e1 +

+
7

4
g2 + 156e2

1

π13 = 225℘3 + 225℘2℘1 − 90℘℘1e1 −
15

2
℘x℘1;x −

−225℘2e1 +
105

4
℘g2 +

5

4
℘1g2 − 900℘e2

1 −

−150℘1e
2
1 +

6237

2
e2 + 155e3

1 −
2079

2
g2 −

7

4
g2e1 −

451

8
g3,

and the associated Treibich-Verdier curve has the form [40]

ν2 = 4(λ− 5(e1 − e2))(λ− 5(e1 − e3))

(λ2 + 12λe1 − 20(e1 − e2)(e1 − e3))

(λ3 + 3e1λ
2 + (−141e2

1 − 4g2) + 45e1(e1 − 4e2)(5e1 + 4e2).

The full list of generalized Hermite polynomials for other Treibich-
Verdier potentials will be published elsewhere.

5. Conclusions

In this paper we have described a family of elliptic solutions for the
vector nonlinear Schrödinger equations using a Lax pair method and
the general method of reduction of Abelian functions to elliptic func-
tions. Our approach is systematic in the sense that special solutions
(periodic, soliton, etc.) are obtained in a unified way.

In fibre optics applications, periodic and quasi-periodic waves are of
interest in optical transmission systems.
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[5] H. F. Baker. Multiply Periodic Functions. Cambridge Univ. Press, Cambridge,
1907.

[6] E. D. Belokolos and V. Z. Enolskii. Isospectral deformations of elliptic poten-
tials. Russian Math. Surveys, 44(5):155–156, 1989.

[7] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin. Kleinian functions, hy-
perelliptic Jacobians and applications. In S. P. Novikov and I. M. Krichever,
editors, Reviews in Mathematics and Mathematical Physics, volume 10:2,
pages 1–125, Gordon and Breach: London, 1997.

[8] V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin. Recursive family of
polynomials generated by Sylvester’s identity and addition theorem for hy-
perelliptic Kleinian functions. Funkt. Analiz. Pril, 31(4):19–32, 1997.

[9] V. M. Buchstaber and V. Z. Enolskii and D. V. Leykin. Rational analogues
of the abelian functions. Funkt. Analiz. Pril, 33(2):1–15, 1999.

[10] I. V. Cherednik. Differential equations of the Baker-Akhiezer functions of
algebraic curves. Funct. Anal. Appl., 12:195-203, 1978.

[11] P. L. Christiansen, J. C. Eilbeck, V. Z. Enolskii, and N. A. Kostov. Quasi
periodic solutions of coupled nonlinear Schrödinger equations. Proc. R. Soc.
Lond. A, 451:685–700, 1995.

[12] P. L. Christiansen, J. C. Eilbeck, V. Z. Enolskii, and N. A. Kostov. Quasi-
periodic and periodic solutions for coupled nonlinear Schrödinger equations
of Manakov type. Proc. R. Soc. Lond. A, in press, 2000.

[13] B. Crosignani, A. Cutolo, and P. di Porto. Coupled-mode theory of nonlinear
propagation in multimode and single-mode fibres: envelope solitons and self-
confinement. J. Opt. Soc. Am., 72:1136–1141, 1982.

[14] J. C Eilbeck and V. Z. Enolskii. Elliptic Baker–Akhiezer functions and an
application to an integrable dynamical system. J. Math. Phys., 35(3):1192–
1201, 1994.

[15] J. C Eilbeck, V. Z. Enolskii, and D. V. Leykin. On the Kleinian construction
of Abelian functions of canonical algebraic curve. In Proceedings of the Con-
ference SIDE III: Symmetries of Integrable Differences Equations , Saubadia,
May 1998, CRM Proceedings and Lecture Notes, pages 121-138, 2000.

[16] V. Z. Enolskii and N. A. Kostov. On the geometry of elliptic solitons. Acta
Applicandae Math., 36:57–86, 1994.

[17] H. M. Farkas and I. Kra. Riemann Surfaces, Springer, New York, 1980
[18] F. Gesztesy and R. Weikard. Lamé potentials and the stationary (m)KdV
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