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1. INTRODUCTION

The discovery of classica and quantum completely integrable systems
led to anincreaseininterest in the theory of Abelian functionsin theoretical
physics and applied mathematics. This areawas considered traditionally as
afield of pure mathematics. Thisnew trend makesit necessary to reconsider
classical resultsin the areafrom the point of view of modern applications.

In this paper we consider an arbitrary algebraic curveV of genus g and
construct the field of meromorphic functions on its Jacobi variety Jac(V) in
terms of Kleinian g-functions,

2
@) = _auian

where the vector u € Jac(V) and ¢ isthe Kleinian o-function. The effective
construction of the o-function plays the principal role in our approach. It
is defined on the universal space of Jacobians, which is the fibration with
the base given by the space of moduli, M(V) of the curveV of dimension
d < 3g— 3 and afibre generated by Jacobi variety Jac(V). The Kleinian ¢
function represents a natural generalization of the Welerstrass elliptic func-
tion to the case of an arbitrary algebraic curve, and has the following prop-
erties:
e The o-function is automorphic with respect to the action of the sym-
plectic group Sp(29,7Z) .
e The o-function is an entire function on the universal space and is ex-
panded in a power series whose entries are monomials

o Ogn B1 Bd
Uyt -+ - Ug 7\(1 A

whereu € Jac(V), A€ M(V), a. € (Z4)9,B € (Z4)9, (Z+) = OUN.

|n(5(U), i,j:1,..-,g,
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e The addition formulafor the o function inherits the form of the addi-
tion theorem for the Welerstrass ¢ function and is written as

v _ polynomial in g j.

This construction began with Welerstrass[22, 23] and Klein [13] and was
well documented in [1, 2]; recently B.M.Buchstaber and two of the authors
reviewed the hyperdlliptic case[4, 5, 6].

The principal result of [4, 5] isthe discovery of a(g+2) x (g+ 2) matrix
H of arank <4 whose entriesare g functionsand the moduli of the curveV
and which dictatesall thetheory: the 4 x 4 minors givethe embedding of the
Kummer variety Kum(V) in the projective space, 3 x 3 minors describe in
the same way the Jacobi variety Jac(V ), and the associated KdV hierarchy
is constructed in terms of 2 x 2 minors of the matrix H. The hyperelliptic
Kleinian functions were also developed in [16, 10] for a description of the
lattice KdV system.

The present paper isaimed at devel oping the analogous matrix realization
of the Kleinian construction of Abelian functions for an arbitrary algebraic
curve, including the case of a singular curve. The paper is based on the
recent results of [7], where the construction of the Kleinian ¢ functions was
given for a non-hyperelliptic curve, and contains a set of explicit formulae
to realize the approach of [7].

The paper starts from an example of a hyperelliptic curve of genus two
for which we give the basic formulae of the theory and their application to
completely integrable systems. We concentrate further on the construction
of the principle objects — Kleinian ¢ functions for a wide class of alge-
braic curves (the so called canonical curves). With this purpose we derive
the canonical abelian differentials using the Weierstrass gap theorem as the
main working tool. We obtain as the result the Kleinian formula (3.28),
which is a generating one for deriving the complete set relations between
g functions and their derivatives. The principle result of the paper is the
explicit solution of the Jacobi inversion problem, which is an alternative to
that given by M.No6ther [17]. We consider as a main example the case of a
non singular trigonal curve, for which we give the complete set of formu-
lae, analogous to those given in [1, 2] for hyperelliptic curve. The paper
is completed by a short discussion on the application of our approach to
completely integrable equations and of the further perspectives of the de-
velopment of the theory.
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2. KLEINIAN FUNCTIONS OF THE GENUS TWO HYPERELLIPTIC CURVE

In this section we consider the smplest example - the Kleinian functions
of an algebraic curve of genus two, and demonstrate how these functions
work in completely integrable systems.

We consider the Riemann surface of acurveV (x,y) of genusg = 2,

(2.1) V2 = AC+ A 4 A+ AoxX® + Mx+ Ao
5
= 4[J(x-a), a#aeC
k=1

equipped with ahomology basis (a1, az; b1, b2) € H1(V,Z).

Introduce the canonical basis in the space of holomorphic differentials
du™ = (dug,dup) € 3*(V,C) asfollows

dx xadx
dup=—, dup=—.
Ty TPy

Theassociated canonical meromorphic differential s of the second kind dr T
(drq,dr2) havethe form

2 2
_ A3X+ 2hgx2 + 123 ix. oy — X
4y y

(" Ek ) =
k,l 1.2

20 = (% du|) , 20 =
ak kl=12
21] = (‘7{ dn) , 21]/: (]{ dn)
ak kl=1,2 bk k=12

satisfy the equations,

(2.2) dry

o' —ow =0, No' -—no' = —%Clp_, " -’ =0,
which generalizes the Legendre relations between complete elliptic inte-
gralstothecaseg= 2.

The fundamental ¢ functionin this caseis anatura generalization of the
Weierstrass elliptic ¢ function and is defined as follows

o(u)

_ T €
v/ det(20) C/H1§i<j§5(ai —aj)
x exp{u'n(2w) tu} 8[e)((20) tuw'® 1),
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where 8 = 1 and 8[g](v|t) isthe 6 function with an odd characteristic [¢] =
€1 &2
g & |

Ole](vit) = Y expin{(m+e)Tt(m+e)+2(v+e) t(m+e)}

meZ?2
We denote
92 92
pll(u) - _a—Uiln G(U), SOIZ(U) = _aulauzln G(“)a
82
§22(U) = _8—u§|n o(u)

The multi-index symbols g j k etc. are defined as logarithmic derivatives
by the variable uj, uj, ux on the corresponding indicesi, j,k etc.
The equations of the Jacobi inversion problem,

X1 X2
a a

X1 X2
ar a

are equivalent to an algebraic equation
(2.3) P(x,u) = X* — 22 (U)X — g212(U) = 0,
that is, the pair (x1,X2) isthe pair of roots of (2.3). So we have

(2.4) §222(U) = X1 + X2, 212(U) = —X1X.
The corresponding y; is expressed as
(2.5) Yi = 222(U)% + @122(U), i=12.

Thereis the following expression for the function 11 (u) in terms of xq, x2
and Y1, Y2:

(2.6) o (u) = F(X1,%2) — 2y1y2

4(X1 — X2)2

where

2
(2.7) F(x1,%2) = D XpXo[2har + Aar1 (X1 +X2)].
r=0

All the possible pairwise products of the ;jx functions are expressed as
followsin terms of 222, 212, §211 and constants As of the defining equation
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(2.1). We give here only basis equations
9520 = 411 + N3z + 403 + 40126922 + MagBo + Mo
222260122 = %7»1 + 208, — 20116022+ %7&38012

+ 4126955 + hag2922,

205 = Mo — 4114912 + MagPhn + 4920475

All such expressions may be rewritten in the form of an extended cubic
relation asfollows. For arbitrary |,k € C* thefollowing formulaisvalid [2]

1 H |
T T, L
(2.8 "' k= 4det(kT O)’
wherern’ = (9222, — §9221, §9211, — $9111) and H isthe 4 x 4 matrix:
Ao %7\.1 —26011 —2¢2
H— M Mtdpn 33201 202
—2p1 A3+2012 ha+4px 2
—2(12  —2 2 0

The vector rt satisfies the equation Hr = 0, and so the functions g7, 12
and g1 arerelated by the equation

(2.9 detH = 0.
The equation (2.9) defines the quartic Kummer surface K in C° [12].
The @k functions are expressed as follows
1
(2.10) §92022 = 6@%2 + 57\'3 + Nago22 + 4012,
(211) 92201 = 60226212 + hag12 — 26011,

1
(212) 92011 = 200006011 + A5r + 57»38012-
1
(213) 92111 = 6126011 + o120 — 57&18022 — o,

1 1
(214 pun =601 — Hopz + MPra + Ao — Shoka+ ghaks.

These equations can be identified with completely integrable partial dif-
ferential equations and dynamical systems, which are solved in terms of
Abelian functions of hyperelliptic curve of genustwo.

To demonstrate this statement we consider the stationary Vesel ov-Novikov
equation,

(215) WX - Uy7 Vy - UX,
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where o, B # 0 are constants. Then the following proposition isvalid

Proposition 2.1. The stationary flow of the Vieselov-Novikov equation is
satisfied if we set

uxy) = 202(xy),

1
(2.16) V(Xy) = 2¢12(xYy)+ 3 (M— g) :
1 o
wxy) = 2@n(xy)+ 3 <7¥2 - B) -
Proof. A straightforward substitution of (2.16) into (2.15) and use of the
relations (2.11), (2.13) and Hr = 0. O

Because the Kleinian functions o9, 12, 211 are the coordinates of the
Kummer surface, the stationary Veselov-Novikov equation, being associ-
ated with ahyperelliptic curve of genustwo, describesthe Kummer surface.
Thelink between the stationary Vesel ov-Novikov equation and the Kummer
surface was recently discussed by Ferapontov [11].

It can be also shown, that the equations (2.10)-(2.14) describe hierar-
chiesof KdV and”sine-Gordon” equations associated with the hyperelliptic
curve of genus two.

In what follows we develop the Kleinian construction of Abelian func-
tionsfor a certain class of non-hyperelliptic algebraic curves.

3. KLEINIAN CONSTRUCTION OF ABELIAN FUNCTIONS

3.1. Thecurve. LetV bean algebraic curve given by an irreducible equa-
tion

1) fxy) =0, f(xy)=ax)y - kz a0y,
=1

where ay(x) are polynomialsin x and ap(x) and ax(x), k= 1...,n have no
common factors. The curveis called singular if ag(X) # 1 and nonsingular
otherwise. In other words, a singular curve is the curve which has points

(Y= o0, X F 00 .

Definition 3.1. The order N of an arbitrary rational function ¢(x,y) on the

curveV isthe number N of common solutions (x1,y1), ..., (Xn,Yn) Of the
equations
(3.2) f(xy)=0, &(xy)=0.

We shall call the positive integers (n,s) orders of the curve V because,
clearly xisafunction of order n and y isafunction of order s.

The definitions given above permit us to formulate the Weierstrass gap
theorem, which serves as a principal working tool in what follows.
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Theorem 3.1 (Welerstrass L tickensatz). For V there exists a number g of
positive integers ny, ... Ny (“ gap sequence”) such that for each number n;
the equations

(33) f(xy)=0, w(xy)=0, ordvy(xy)=n
have no solutions and
e all exceptional integers (“ gaps’) belong to theinterval [1,2g — 1]
O<ni<n<...<ng<2g.

e if the numbers n; and n; — are permitted (“ non-gaps” ) then the num-
bers pnj +agnj, where p,q € N are also non-gaps.

Thefollowing corollaries are valid

Corollary 3.1.1. Consider the gap sequencewith the number of gapsg. Let
n be the lowest fromthe non— gaps. Denoteby s, i =1,...n— 1thelowest
non-gaps such that s(mod n) =i < n. Then the following equality is valid

n-1_«

o0 {HE

i=1
Corollary 3.1.2. Suppose that the condition of Corollary 3.1.1 are satis-
fied. Let s= min{sy,...,s_1}. Then the following equality is valid
(3.5) w_gzﬁ’ where o> 0.

The Weierstrass gap theorem introduced two important positive integers
g and & which are the principal geometrical invariants of the curve.

Definition 3.2. The nonnegative integer o is the number of multiple points
of the curve, which can not exceed (n—1)(s— 1) /2. The number of gaps g,
which is the difference between the maximal number of multiple points of
acurve of orders (n,s) and number & of multiple points, which it actualy
has, is called the genus ! of the curve.

To describe the number & analytically we compute the discriminant (iny)
Dy(x) of the curve (3.1),
n—1

(36) Dy(x) = [T d" (X)r(x),

i=1
wheree € N > 2. Zerosof di(x) i =1,...,n—1, where
dj
di(x)=[[(x-x«j), 8 €N, x;eC
j=1

Yn classical literature — Geschlecht or deficiency
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are multiple points, whence zeros of the polynomial r(x) are the branching
points of the curve. Let uswrite the number

n—1
(3.7 0= z di(ei—1)€Zy,
i=1

where we denote Z, = N@ 0, as number of multiple points. The curve is
called non-degenerate if 6 = 0 and degenerate otherwise.

Introduce on V the structure of one-dimensional compact complex man-
ifold — the Riemann surface of algebraic curve by introducing a local
parametrization of the point (y,x) = (y(&),x(§)) in the vicinity of a point
(a,b), where& isthelocal coordinate:

((a+&,b+&) if (ab) isanregular point,

(a+&,b+&M if (a,b) isanbranching point,

(é—ls,g—ln) if (a=oo,b=0c) isbranching
point at infinity,

(a+&Mb+§&) if (ab) isanmultiplepoint

L of multiplicity m.

We will employ further the same notation for the plane curve and the Rie-
mann surface —V. Combining notions introduced so far, we come up with

Definition 3.3. The algebraic curveV of orders (n,s) is called nonsingular
non-degenerate canonical iff ag(x) =1, 6 = 0 and (n,s) are co-prime.

It is clearly that the Weierstrass gap sequence of the nonsingular non-
degenerate canonical curveV of orders (n,s) is generated by two coprime
integersn and s. Alternatively, the Welerstrass gap sequence of a nonsingu-
lar degenerate canonical curveV of orders (n,s) isgenerated by theintegers
nands;=s,...,s,wherel<k<n-—1

The canonical algebraic curve has a branching point at infinity, where
thecoordinatesxandyaregivenasx:g—ln:oo, yzg—lszoo, 2 <
n < s, where & isthe local coordinate. The polynomia f(x,y) defining the
canonical curve can be written in the form

f(x,y) = y" —x*+termsof lower order.

Let usfix in the form of aproposition the important property of the nonsin-
gular curve

Proposition 3.2. The order of a monomial xPy?, P,Q € N on nonsingular
non-degenerate curve of orders (n,s) equals

(3.8) ordy X*y° = nP+sQ
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Example 3.1. Consider al canonical curves of genus g = 4 and construct
the associated Welerstrass gap sequences.

e Nonsingular canonical hyperelliptic curve
67 1757 3727 5765 77 87 97 e

The sequenceis generated by the orders 2 and 9.
e Nonsingular canonical trigonal curve

67 1727§747?67778397' o

The sequenceis generated by the orders 3 and 5.
e Sngular canonical trigonal curve

671727§74557677787"'

The sequenceis generated by the orders 3, 7 and 8.
e Singular canonical four-sheeted covering

0,1,2,3,4,5,6,7,8,9, -
The sequenceis generated by the orders 4, 5 and 6.

3.2. Thedifferentialsand integrals. All the construction is based on the
explicit realization of the fundamental second order 2—differential.

Definition 3.4. The 2—differential dQ2(y,x;w,z) onV xV is called a fun-
damental second order 2-differential if it is symmetric dQ(x,y;z,w) =
dQ(z w;x,y) and has the only pole of the second order along the diagonal,
X = zin thevicinity of which it can be given as

dichn
7o O,

where £, m — are loca coordinates of the points x and z respectively. We
shall look for arealization of dQ(y,x;w,z) in the form [1]

F(y,x; w, z)dxdz
(X_ Z)ny(X, y) fW<Za W) ,
where F (y,x;w, z) isapolynomial of its variables.

(39) dQ(y, X w,2) =

(3.10) Ay, X;w,2) =

Holomorphic differentials can be represented locally at every point
(X,Y) € V in the form du = h(§)dg, where h — is the holomorphic func-
tionand § —isthelocal parameter in the vicinity of the point (X,Y). For the
algebraic curve of genus g there exist exactly g independent holomorphic
differentials, which can be written in the form

 xPyQidx

(3.11) du; = 00

, i=1....9,
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whereordy xPyQ i =1, ... gareexactly gfirst non-gapsof the Weierstrass
gap sequence. Introduce the g-vector

(3.12) U =(..,.Uj,...) = (Uy,...,Ug),
whose components U; j = xPyQ are ordered by increasing order of the
monomials:

U1 =Uppo=1LU=Urp0=X,...

Definition 3.5. Let P(x) be a polynomial in x of order ordyP(x) = n and
F(X) polynomials of ordersk, such that the equality

PO -P@) _ % 4
Tz SRR

is valid. Then DKP(z) = F(x) is the umbral derivative of order k of the
polynomial P(z).

Definition 3.6. Therationa function ¥'(x,y) on the nonsingular curveV is
called an entirerational function, if W(X,y) — o iff X — . Entire rational
functions generate a ring, which we denote by O(V).

Let
VYT = (Lwa(%Y); -, Wn-1(XY))
be abasisin O(V), where

(313) maw=<%%gﬂ»,izamm—L

where D{j —isthe umbral derivativeiny of order k, and f(x,y) isthe poly-
nomial defining the curve.

Then it follows from the definition of the umbral derivative and the exis-
tence of such functions

(314) ¢(X7 y)T = (q)O(Xa y)aq)l(x,y)a cee aq)n—l(xay))a
that

(3.15) Wooy)To0cY) = 1 = T0ey)

Y-y

The functions ¢; have, clearly, the form

oi(xy) =di(x)y""1, i=0,...,n—1
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The property (3.15) allows us to construct A canonical differential of
the third kind with unique poles of the first order in the points (xg,y1) and
(X2,y2) asfollows[1]

Codx [ylxa,y) oY) wixe,y2)To(xy)
(3.16) dIly, x,(X) = ,00y) { va— X %o .

To construct explicitly the fundamental second order 2-differential dQ(x, y; z, w)
we consider onV x V the 2—differential

dx 9 y'(zw)o(xy)
dz =
fy(x,y) 0z X—2

It follows from the definition of the umbral derivatives, that this differential
has a pole of the second order along the diagonal, whereit is represented in
theform (3.9). But being holomorphicin (x,y) away from the diagonal, this
differential has nevertheless polesin the variables (z, w) at z= . Restore
the symmetry by setting

dx 0 y'(zW)(xy)
Z J—
fy(x,y) 0z X—2

dxdz
3.17 + RT(zw)U(X, ,
( ) ( ) ( y) fY(X7 y) fW(Za W)
where the g—vector U(x,y) is defined by the holomorphic differentials and
the g-vector RT = (Ry,...,Rgq) isfound from the equality

of(zw) 9 yT(zw)o(xy) 9f(xy) 9 y' (xy)o(zw)
ow 0z X—2 dy oX z—X
(318) = :R'T (X, y)U(z, W) o uT (Xa y):R(Za W)

The canonical differentials of the second kind dr™ = (dr4, ... ,drg) associ-
ated with the holomor phic differentials (3.11) are then given by the formula

dQ(x,y;zw) = d

:Ri (X7 y) dx ;

3.19 di=—-""—, i=1..,9,
(3.19) = E,0y) g
where the correspondence

Ri(xy) < Ui(xy), i=1,...,9

of the polynomials R(x,y); with monomials U;(X,y) being ordered accord-
ing to the Weierstrass gap sequence as was pointed in (3.12) is supposed.

The Weierstrass gap sequence gives complete information about the curve.
Consider the Weierstrass gap sequence and prescribe by the lowest non-gap
entries (n, s), n < sorders ordyx = n and ordyy = s. Write the curve in the
form (3.1).
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Define the functions (3.13). dp = 1, and d1(X), ... ,dn—1(X) polynomials
in x, such that ordyyi(x,y) = s, i =1,...,n— 1 are the lowest non-gaps,
and that s(mod n) < i < n. According to Theorem , the functions

WO(Xay) = 17W1(X7y)7 ce 7Wﬂ—1(xay)

giveabasisin O(V). Thereforefor every pairi,k=0,... ,n—1thefollow-
ing equalitiesarevalid

(3.20) Wi (%, Y)Wk(%,y) = Zoc X)yj(X,Y),

where oci(lp (x) are polynomialsin x. By eguating powers of y in equations
(3.20) one can find the form of the polynomials Ay entering the equation of
the curve (3.1) and also the property, which the polynomials dj(x) possess

(3.21) di_1(X)di;1(x) divisbleby d?(x)
Asresult we come to the following resullt:

Proposition 3.3. ThecurveV of orders (n,s) is given by the formula

n—1 n—1
(3.22) ag(X)y" — l; ax(X) l‘g dNin_k(x)ykﬂ _
—0 1=

where a(x) are polynomials of orders ordyak(x) < s, and the polynomials
di(x) are defined by the equation

(3.23) (;Tiﬂz%&i)“(x), i=1.n—1.

where the polynomials d; posses the property (3.21).

Thisconstruction can beinverted: the Wel erstrass gap sequenceis uniquely
defined by the curve and can be algorithmically constructed by the curve.

3.3. Kleinian Formula. Let (a,b) be a basis of cyclesin Hi(V,Z) with
the intersection matrix ajoax =0and bjoby =0 ajoby = —bgoaj = 1.
g x g matrices of their periodsa b—periods,

.....

are non-degenerate and the matrix T = o' w1 is symmetric and has positive
imaginary part. Under the action of the transformation (2w)~* the vector
du = (duy,...,dug)T becomes the vector of normalised holomorphic dif-
ferentials dv = (dvi, ... ,dvg)T, namely the vector H1(V,C) satisfying the
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conditions fak dvk = Ok, k,1 =1...,g. Introduce also the period matrices of
the canonical differentials of the second kind

(3.24) (2n,2n') ( ?{drl}{ %dr‘})., 1.

Denote by Jac(V) the Jacobian of the curveV, whichisthefactor C9/T,
where " = 20 @ 20 isthelattice, generated by the periods of the holomor-
phic differentials.

Divisorson Riemann surfaces are given by formal sums of analytic points
D =Y"m(y;, %), and degD = Y'm. The effective divisor is such that
m; > OVi. Let D be adivisor of degree 0, D = X — Z, with X and Z the
effective divisors deg X = deg Z = n given by X = {(y1,X1),---,(Yn,Xn) }
and Z = {(w1,21),...,(Wn,Zn)} € (V)", where (V)" is the n—th symmetric
power of V.

The Abel map A : (V)" — Jac(V) puts into correspondence the divisor
D, with fixed Z, and the point u € Jac(V), according to the rule

X n Xk
(3.25) u:/ du, or uiZZ/ du, i=1....9
Z k=1 %

The Jacobi inversion problem is formulated as the problem of inversion of
the Abel map.
The standard 6 function 6(v|t) is defined by its Fourier series,

(3.26) o(vit)= Y expmi{m'tm+2v'm}.

meZ9

The 6 function possesses the following periodicity propertiesvk € 1,... ,0:
O(Ve,...,k+1,...,vg|T) =0(V|1),
G(Vl + Taky -+ s Vk + Tkks - - - > Vg T Tgk|T) = eﬁimkk*znivke(Vh).

Letw' = (wy,...,Wg) € Jac(V) be some fixed vector. The function,

(/ dv— w|r) xe\v,

is called the Riemann 6 function. The Riemann 6 function ©(x) is either
identically O, or it hasexactly g zerosxy, ... ,Xg € V, for whichthe Riemann
vanishing theorem says that

g Xi
Z/ dv =w+ Ky,
k=1"%0

where KIO = (Ky,...,Kg) isthe vector of Riemann constants with respect
to the base point xo.
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Definition 3.7. The fundamental Abelian ¢ function is defined by the for-
mula

(3.27) o(2) = C/%Mdg(gm)exp{%fnwlu} B(u— Ky oo 1),

Ky, IS the vector of Riemann constants with the base point X, the func-
tion D(V) = Dx(Dyf(x,y))) is the discriminant of the defining equation
f(x,y) = 0 of the curveV.

The fundamental ¢ function is invariant with respect to the action of
the symplectic group Sp(2g,Z) and therefore inherits the corresponding
property of the ¢ function of the Weierstrass theory of elliptic functions.

Kleinian g functions are defined as logarithmic derivatives of the funda-
mental ¢ function

! 92In o (u) ?Ino(u)
T N TETE T
i,j,k,---: 1) g

The g functions have the following periodicity properties

@ (u+2Q(mm)) =@ (u),l ={i,j}{i,j,k},... i,j,k=1,....0,

where Q(m,n') = om+ o'n.
For the remaining results, the principal role is played by the following
theorem

Theorem 3.4 (Klein). Let (y(xo),Xo), (Y,X) be arbitrary distinct points on
V and let {(y1,X1),..-,(Yg: Xg)} bearbitrary sets of distinct points € (V9.
Then the following relation isvalid for everyr =1,... .9

g X g
Y. @i (/ao du—é/ﬁjdu) Wi (%, Y)Uj (%, Yr )

ij=1

F(Xay; eryr)
(X=%)?

where monomials U; (X, y) are defined by the holomorphic differentials and

F(X,Y; z,w) isthe polynomial entering into the definition of the fundamental
2-differential (3.9).

(3.28)

Y

Proof. The proof is based on the application of the Riemann vanishing the-
orem to compute the integral over the boundary of the fundamental domain
0A,

X
f/dQ(x,y;z,w)dlog@(x),
0AJzZ
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where ©(x) is the Riemann 6 function and dQ(x,y; z,w) is the fundamental
2-differential. O

The Kleinian formula (3.28) gives an additional theorem of a “ point +
divisor” kind. Inthe case of g = 1 it is exactly the addition theorem for the
Weierstrass g function (function ¢11(u) in our notation).

Expanding the formula (3.28) at x = 1/&" = < we obtain from the con-
dition of vanishing of the principal part of the poles the complete set of
relations between g functions and their derivatives. In particular, the first
n— 1 equations are polynomial in X,y (written instead x,,y;, r = 1,...,0)
with coefficients depending on Kleinian g functions. Their derivativesrep-
resent an over-determined system of algebraic equations whose zeros give
the solution of Jacobi inversion problem. This statement will be exemplified
further by the considering of the trigonal curve.

We summarise the results of this section in the form of a proposition

Proposition 3.5. Consider a nonsingular (ag = 1) non-degenerate (d; =
1,...,dn—1 = 1) canonical algebraic curve of orders (n,s) and genus g.
Construct the associated Weierstrass gap sequence with g gaps. Then
e the g independent canonical holomorphic differentials (3.11) are de-
fined by monomials U; ; = x7yQi whose orders nP, + sQ; are exactly
the first g non-gaps in the Weierstrass gap sequence.
e Theassociated differential s of the second kind are given by (3.19) with

the polynomials
-1 optl Contl "
Rijxy) = > O RijXy+y D Rk x
I=0Ok=0l,_|_1 k=i+1
n—1 on+1 "
(3.29) + Y Y Ry,
1Z]+1 k=0

where oy = ordyay (X), k=0,...,n, R j kI = ﬂ?ii’j,kJ —‘,)N‘ik’u,j and

n—1-10%n-1-j—p

630 Fa=x() > Y x(nies)c(rh)

p=0 g=0
and
C(:’}f's() = (D27 %ia 4 B
. (_1)50,i30,j(n_i_j)(r—s—l), if k=0
(—1)%K[k(I +r—25s—2)+j(r—s—1)], if k>0’

where §;  is the Kronecker symbol and y(}) = 1if | > k and 0 other-
wise.
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Proof. The proof of the first part of the theorem is based on the corollary
3.1.1. The formula (3.29) is derived by direct transformations of the right
hand side of the condition (3.18) to the form of the right hand side. O

The formula (3.29) generalizes the formula given by Abel and Weierstrass
for the polynomial R; in the case of a hyperelliptic curve (4.2). In the next
sections we consider as examples hyperelliptic and trigonal curves.

4, HYPERELLIPTIC CURVE

The hyperelliptic curveV of genus g, given by the formula

2
(4.2) f(xy) =y~ p(x), Pp(x)=4x9"14 Zg AiX,

i=0

is the canonical hyperelliptic curve of order (2,2g+ 1). Suppose, that the
curveis nonsingular, i.e. the discriminant Dy( f(x,y)) = p(x) has no multi-
ple zeros.

The sets of canonical holomorphic differentials and associated second
kind differentials have the form [1]

-1 20+1—i
(42)  dw = X dX, drizd—x Y (Kt 1= herapixS,
y S

wherei =1,...,g. Thedifferential of the third kind with first order poles
at the points Xy » is defined as

X y+yr Yty

(4.3) dITy, x,(X) = % (x—xl X%

The 2—differential of the second kind d<Q(x,y;z,w) with the unique pole
along the diagonal is given by (3.10) with the polynomial

g
(4.4) FXy,zw) = 2yw+ > XZ(o+ (X+2)Aaxs1)-
k=0
The Abel pre-imageof the point u € Jac(V) isgivenby theset {(y1,X1),...,(Yg:Xg)} €
(V)9, where {xq,...,Xg} arethe zeros of the Bolza equation [3, 1]
(4.5) X3 — x4 6(U) =X 2@gg-1(U) — ... — g1 (U) = O,
and {y1,...,yq} aregiven by

dP(x;u)

(4.6) Yk = — g e
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5. TRIGONAL CURVE

Consider the trigonal curve. Set dg = 1, then we have

y—ai(X)
X, = 1, X ;
Wo(X,Y) 2 vi(Xy) = (%)
oy —ax)y—ax(x)
(5 1) Y2 (X7 y) - d2 (X) .
Write the equations

v o= oc(lil)wl + oc(l? + oc(lzf Vs

Y1yo = a(l:%)\lfl + OL:(LZZ) + O(.:(ng) Y3

V5 = 0‘(22) Y1+ Oﬂg_z) + “g_; VY3

By equating powers of y and eliminating oci(ﬁkj) we arrive at the equation of
the curve
d3(x)

(5.2) y* — (X)y* — p(x)d2(X)y — q(x) 1(x):O’

where dy is divisible by df. We restrict ourselves to the case of the nonsin-
gular curved; = do = 1 of theform

(5.3) f(xy) = 0, f(xy)=y>—pXxy—aX),

g%

(5.4) p(x) = Z PXs, x9+1+2qu

with the coefficients pj, gj, € C , the fraction %1 being non-reducible, and
the discriminant Dy(f(x,y)) = 2702(x) — 4p3(x) is assumed to be without
multiple zeros.

Further we shall distinguish two casess= 3K +1 and s= 3K + 2, which
we shall denote in what follows as (1) and (I1) respectively. For example,
the curves of lowest genera of order (3,4) and (3,5) correspondingly yield
the following Weierstrass gap sequences, in which we over-line the non-gap
numbers

01,2,3,4,5,6,7,... cae(3,4),
01,2,3,45,6,7,8,0,... case(35).

The holomorphic differentials are given by the formula (3.11) with the
monomials

Ui =0,....[2], wai=0.. [Z],
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where s, i = 1,2 are the lowest non-gaps such that 5(mod 3) =i < 3 (see
corollary 3.1.1). The associated second kind differentials are given by the
formula (3.19) with the polynomials R (x,y) given by (3.29). In particular,

—xK for (1)
Rgxy) = {—xKy for (1)’
—2yxK for (1)
(5.5) Rg-1(X,Y) {_2X2K+1_p2K+1xKy for (11)

To define the fundamental 2-differential we introduce the following poly-
nomials
2K+¢e

P(x2) = Y, (Pa+Xpas1)XZ,
0

q (Ix+(3=1)z) 271

M=

Q(x,z) =
|

I
o

s—K-2 |
+ 2 a2 (B)x+ (3 B(1)2) 22!

I=—1
wheree = 0 for thecase (1) and € = 1 for the case (I 1) and in the summand
the positive integers B(1) = K — 3['51] — 1. Note, that the polynomials,
P(x,2), Q(x,z) have the property

Pxx)=px),  QAxx) =3q(x).

The 2—differential of the second kind dQ(x, y; z,w) with the unique pole
along the diagonal is given by (3.10) with the polynomial F (x,y; z,w) being
defined by the formula

Foxyizw) = 3y"wW 4 2w(P(x,2) + P(2, X)) —Wp(X) —Y°P(2)
+ wQ(x,2) +yQ(z,x) — P(x,2)P(zx).

Denote j(u) = i j (U) — §i,j+1,j+1(u). Then the solution of the Jacobi

inversion problem reduces to the solution of algebraic equations

K-1 CoK-1 _
WY TkizitegZ + D, (Tir1g+ Pnk42it19)Z = Ry,
i=0 i=0

K-1 ) K-1 _
2 (Tti+1,g—1+ Zg?tK-|-2i-|—1,g—1)ZI + W 2 TCK+2i-|—2,g—1Z| = Rg-1,
i=0 i=0

where Rg and Ry—1 are monomialsgivenin (5.5). Each pair of equationsis
reduced after elimination of w to an algebraic equation of degree g, whose
coefficients expressed in terms of the functions m; j(u) give the solution
of the Jacobi inversion problem. These equations generalizes the Bolza
equation (4.5) to the case of trigonal curve.



KLEINIAN CONSTRUCTION OF ABELIAN FUNCTIONS 19

In particular the first and the last symmetric functions are

1 3 1
S = E@ggg - E@g—l,g for (1) and + §p2K+1SOg,g for (11)

€
v = 35 [(91,08K+2.g-1 — 21, 9-16K+29) T (P1098K+2.9 — $1,98K+2.0.0)] »
where in the second formulae = 1 for the case (1) and —1 for the case (I1).

In particular for the curve of order (3,4) the symmetric functions are given
as

31

S1 = —28023+§80333 .

S = —55033(5022 — §9233) + 58023(8023 — §9333) — 13
1 1

S = —58033(8012 — 133) + 58013(8023 — §9333)

In the case of the curve of order (3,5)
o _ 1 3 1
1 = 580444— 58034+ §D38044
1 1 1
S = —58034(8034— §9444) + 580204 = 5923
1 1
— 58044(5033 — §9344) + 5 P24
1 1 1
8 = —58024(5033 — §9344) + 55034(5023 — §9244) — 513
1 1
+ 580144+ §p38014
1 1
58034(8013 — 144) — 58014(8033 — §9344)

L
Il

6. DiscussIiON

Itwas mentioned in theintroductionthat in[4, 5] thematrix H = {hix}_; 159 o1

was found for the genus g hyperelliptic curve (4.1) of rank < 4 with the en-
tries

hik = 4@i_1k-1—26kji—2— 26 k-2
1
+ 5 (8ik(A2i—2 4 Aok—2) + Bk jt1rai—1 + i kr1hak—1) -
It was shown there, that the following relations are valid

i,0+1,0+2 .
§q0i §2g9gk = —detH[lk,gil;giz] =0, i,k=1,...,0,

i,j.0+1,9+27 _ . B
detH [k,|,g—i—l,g—|—2] =0, 1, J;k; | = 1....0,
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o i, g+l i, g+2 i—1, g+2
Pgogi = — det H [g+lg+2] + detH [Ig.,g+2] — detH [g+1,g+2]a

I=1,....0,
whereH [']1l . ij’:] = {hi_j, }k=1.....m1=1,... n denotesan mx n sub-matrix. The

first group of these relations describe the Jacobi variety Jac(V) as age-
braic variety, the second group describes the Kummer variety, Kum(V) =
Jac(V) /u — —u and the third group describes the KdV hierarchy.

The techniques developed in this paper is aimed to enlarge this result to
the case of arbitrary algebraic curve. We mention here only, that for the
trigonal curve of order (3,4) the condition of vanishing the next principal
part (after those, which give the solution of Jacobi inversion problem) in
the expansion of the Kleinian formulaleads to the equation

§93333 = 6953 — 3922 + AP2933,

which after double differentiation by us becomes the Boussinesq equa-
tion with respect to the function u(x,t) = 24 4(congt,t,x). Because the
Kleinian function appears to be natural coordinates of the Boussinesq hi-
erarchy, then the approach presented here creates insights to contribute to
an algebro-geometrical description of solutions of the Boussinesq equation,
[14, 9, 15, 18, 8], and the trigonal generalizations of the Neumann system
[19, 20, 21].
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