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1. Introduction

Dubrovin and Novikov observed in 1974 [15] that the 2-gap Lamé potential 6℘(x)
allows an isospectral deformation

6℘(x) −→ U(x, t) = 2℘(x− x1(t)) + 2℘(x− x2(t)) + 2℘(x− x3(t)), (1)

under the action of the KdV flow. This potential exemplifies the link between the pole
dynamics of elliptic solutions of integrable hierarchies and the Elliptic Calogero-Moser
system. This connection was discovered by Airault, McKean and Moser [1]. In 1980,
Krichever gave the algebro-geometric description of such pole dynamics [26]: he found
the curve which is a generator for the Calogero-Moser integrals of motion and whose
θ-divisor gives the poles of the system. Further geometric understanding was provided
by Verdier [32] and his student and collaborator Treibich [29] and the whole area was
named elliptic solitons after them. Nevertheless, only special examples of an explicit
description of elliptic solitons are known at present. [17, 18, 20].

The origin of our work lies in the following observation presented in the remarkable
paper [1], p. 139: the Jacobi variety of a genus two curve, which is associated with
the two-gap Lamé potential 6℘(x), is the fibration whose base and fibres are the
Weierstrass cubics with moduli

g2, g3 and g̃2 =
33

22
(g3

2 + 9g2
3), g̃3 =

35

23
g3(g3

2 − 3g2
3)

respectively. The dynamics of the Calogero-Moser system is then described by
the elliptic surface whose coordinates are: the Weierstrass elliptic functions with
moduli belonging to the first torus and depending on differences of the Calogero-
Moser particles; and time-dependent Weierstrass functions whose moduli belong to
the second torus. The evaluation of this second elliptic curve given in [1] involved
some serendipity which was elucidated by one of the authors [17] from the viewpoint
of the Weierstrass-Poincaré reduction theory of Abelian integrals and θ-functions to
lower genera. Our paper is intended to extend the above observation to a wider class
of curves to obtain a family of explicit solutions of the Elliptic Calogero-Moser system.

Our approach includes several ingredients. One is the Burchnall-Chaundy theory
as applied by one of the authors [27]. Another is the Weierstrass-Poincaré reduction
theory of Abelian functions to lower genera, which was applied to completely integrable
equations in [4]. We also use the recent development by Buchstaber et al. [6, 7, 8] of
the Weierstrass-Klein formulation of the theory of Abelian functions. In what follows
we consider in such a context a reasonably wide class of (n, s)-curves, i.e. curves of
the form

wn − zs + lower order terms = 0,

where n, s are coprime positive integers.
The outline of our work is the following. We consider a set of (n, s)- curves, which

cover elliptic curves in such a way that the associated σ-function can be factored

σ(t1, . . . , tg−1, x) =
∏

σW (x− xi(t1, . . . , tg−1)), tg = x,

where σW is the Weierstrass elliptic function and M is the multiplicity of the σ-divisor.
The variables t1, t2, . . . are the “times” of the integrable hierarchy or the coordinates
of the Jacobi variety of the curve. Note that our indexing of the time variable is in the
reverse order to the one conventionally used for KP. The functions xi are evaluated
on the flow variables of the Elliptic Calogero-Moser system.
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We suppose further that the curve covers additional tori. In the most successful
case, all the independent holomorphic differentials of such special curves are reduced
to elliptic differentials by some rational substitution. Such class of curves include all
the genus two coverings and some curves of higher genera, in particular those which
admit sufficiently many automorphisms. As a result, the Jacobi inversion problem is
reduced to the inversion of elliptic integrals.

We solve the Jacobi inversion problem for the Calogero-Moser particles xi by
using the solution of the problem in terms of Kleinian functions. The inversion of the
elliptic integrals leads to the algebraic varieties whose coordinates are elliptic functions
of the “times” t1, t2 . . . and elliptic functions associated with the torus parallel to the
x flow.

Our approach is exemplified by the case of (3,4) curves, which describes
the Calogero-Moser dynamics associated with the Boussinesq flow. The explicit
description of the Calogero-Moser dynamics also serves to describe the σ-divisor of
the covering in closed form.

The paper is organized as follows. In Section 2 we give a short exposition of the
necessary recent results in the theory of Abelian functions of (n, s)-curves. In Section
3 we describe the methods that yield suitable curves, based on the Burchnall-Chaundy
theory for the case of spectral curves that cover elliptic curves. Section 4 exemplifies
our approach by treating the 5 particle dynamics of the Calogero-Moser system under
the action of the Boussinesq flow.

2. (n, s)-curves and their Abelian functions

In this section we shall give a short introduction to the theory of Abelian functions
for a class of algebraic (n, s)-curves, developed in [7].

Definition 2.1 The algebraic curve Vn,s = (z, w) is called an (n, s)-curve if n, s are
coprime, 2 ≤ n < s and the curve can be realized in the form

Vn,s := wn − zs +
∑
α,β

λαn+βsz
αwβ = 0, (2)

where 0 ≤ α < s− 1, 0 ≤ β < n− 1, αn + βs < ns and g is the integer

g =
(n− 1)(s− 1)

2
. (3)

The (n, s)-curve is non-degenerate if its discriminant with respect to the variable w
has no multiple roots; in this case g is the genus.

Definition 2.2 The Weierstrass gap sequence generated by the coprime numbers
(n, s) is the set of the positive integers w1, . . ., which are not representable in the
form an + bs, a, b ∈ N ∪ {0}. The number of these integers is called the length.

Recall that the Schur function sπ associated with the partition π of the length
g, i.e. with the set of g non-increasing positive integers (π1, . . . , πg) = π is given as

sπ = det(eπi−i+j)1≤i,j≤g, (4)

where ek are the elementary symmetric functions. The functions ek can be expressed
in terms of elementary Newton polynomials pk of weight k.
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Theorem 2.1 (see [7].) Let W n,s be the Weierstrass gap sequence of an (n, s)-
curve, and the set πk = wg−k+1 + k − g, wg−k+1 ∈ W n,s, k = 1, . . . , g, be the
partition.

The Schur function (4) associated with the partition π is represented as the
polynomial σn,s(u1, . . . , ug) = σn,s(u) of g variables ui = pwi

where the weights
wi ∈ W n,s. We shall call this the Schur-Weierstrass polynomial.

The degree of the Schur-Weierstrass polynomial σn,s(u) in the variable u1 is said
to be the multiplicity Mn,s of the σ-divisor and is given by the formula

Mn,s =
(n2 − 1)(s2 − 1)

24
. (5)

It is well known that for the curve Vn,s of genus g there exists a 2g × 2g-matrix

M =
(

ω ω′

η η′

)
, where ω, ω′, η, η′ are g × g-matrices, such that detω 6= 0, ω−1ω′ is

symmetric, Re(ω−1ω′) is positive definite and

M

(
0 −1g

1g 0

)
MT =

√−1π

2

(
0 −1g

1g 0

)
. (6)

The constructive definition of the matrix M is the following. Introduce the
Riemann surface of the curve Vn,s and its canonical homology basis of 2g a and b-
cycles. Canonical holomorphic differentials du = (du1, . . . dug)T are defined by the
formula

dui(z, w) = zαiwβi
dz

fw
, i = 1, . . . , g, (7)

where the pair of positive integers αi, βi represents the i-th element from the set of
the first g non-gaps, αin + βis /∈ W n,s. The matrices ω and ω′ are

2ω =
(∮

ai

duj

)
i,j=1,...,g

, 2ω′ =
(∮

bi

duj

)
i,j=1,...,g

. (8)

The matrices η and η′ are are defined as the periods,

2η =
(
−

∮
ai

drj

)
i,j=1,...,g

, 2η′ =
(
−

∮
bi

drj

)
i,j=1,...,g

(9)

of the associated meromorphic differentials dr = (dr1, . . . drg)T , defined by solving the
relations

dΩ((z, w), (x, y))
dx

− dΩ((z, w), (x, y))
dz

=
g∑

k=1

{
dui(x, y)

dx

dri(z, w)
dz

− dui(z, w)
dz

dri(x, y)
dx

}
, (10)

where

Ω((z, w), (x, y)) =
1

(x− z)fy

n∑
k=1

yn−k

(
f(z, w)
wn−k+1

)
+

,

and (·)+ means that we are taking only non-negative powers into account.
Now we are in a position to introduce the σ-function. Let us define the Abel map

A : (Vn,s)k −→ Cg with the aid of the holomorphic integrals

uj =
k∑

i=1

(∞,∞)∫
(xk,yk)

duj(x, y), j = 1, . . . , g, k ≥ g. (11)
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Although we have given the both components of the limits of integration here, for
typographical convenience we shall give only the first co-ordinate in these limits in
the remaining part of the paper. The Jacobi variety Jac(Vn,s) = Cg/2ω ⊕ 2ω′ is the
natural domain of the σ-function, which is characterised as follows

Definition 2.3 The fundamental σ-function is the entire function in Jac(Vn,s), which
satisfies the two sets of functional equations

σ(u + 2ωk + 2ω′k;M) = exp{2(ηk + η′k′)(u + ωk + ω′k′)}σ(u;M)
σ(u; γM) = σ(u;M), γ ∈ Sp(2g; Z)

the first of these equations display the periodicity property, while the second one the
modular property. In addition, the first term of the of the σ-series is the Schur-
Weierstrass polynomial σn,s(u).

For our purposes, the fundamental σ-function is defined as an automorphic
element of the ring of θ-functions. But in what follows we shall not need this
definition, which explicitly generalises the known expression for the Weierstrass σ-
function in terms of θ-functions. The Abelian functions are then introduced as the
second logarithmic derivatives

℘i,j(u) = − ∂2

∂ui∂uj
ln σ(u;M), i, j = 1, . . . , g. (12)

The following formula, due to Klein, is of great importance for our exposition.

Theorem 2.2 (Klein [24]) Let (y(x0), x0), (y, x) be arbitrary distinct points on Vn,s

and let {(y1, x1), . . . , (yg, xg)} be any set of distinct points ∈ (Vn,s)g. Then the
following relation is valid for every r = 1, . . . , g

g∑
i,j=1

℘ij

(∫ x

x0

du−
g∑

k=1

∫ xk

x0

du

)
Ui(x, y)Uj(xr, yr)

=
F ((x, y); (xr, yr))

(x− xr)2
, (13)

where the monomials Ui(x, y) are numerators of the corresponding holomorphic
differentials, and F ((x, y); (z, w)) is given in terms of Ω((z, w), (x, y)) and the
canonical differentials du and dr,

F ((x, y); (z, w)) =
dΩ((z, w), (x, y))

dz
+

g∑
k=1

dui(x, y)
dx

dri(z, w)
dz

.

From this formula of Klein’s one derives various relations between Abelian
functions. Such relations are used to solve the Jacobi inversion problem in terms of
Kleinian functions as well as to construct the meromorphic embedding of the Jacobi
and Kummer varieties into projective space.

3. Burchnall-Chaundy curves

It was already mentioned in the introduction that the (n, s) curve must be a covering
of an elliptic curve. A wide class of such curves can be described by the Burchnall-
Chaundy theory [9, 10].
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Proposition 3.1 Let Ln and Ps be commuting differential operators of coprime
orders n and s,

Ln =
dn

dxn
+ Ln−2(x)

dn−2

dxn−2
+ . . . + L0(x), (14)

Ps =
ds

dxs
+ Ps−2(x)

ds−2

dxs−2
+ . . . + P0(x), (15)

where L0, . . . ,Ln−2 and P0, . . . ,Pn−2 are meromorphic functions, elliptic (i.e., doubly
periodic) in x. Then Ln and Ps satisfy an algebraic equation of type (2), and the (n, s)
curve Vn,s covers an elliptic curve.

This statement is equivalent to the observation that the ring of functions on
the spectral curve, isomorphic to C[Ln, Ps] as Burchnall-Chaundy proved, consists of
functions that descend to an elliptic curve. We shall apply this statement, in the case
when the functions L0, . . . ,Ln−2 and P0, . . . ,Pn−2 are elliptic functions of the curve
realised as the Weierstrass cubic

V2,3 = (µ, ν) : ν2 = 4µ3 − g2µ− g3. (16)

The commutativity of the operators Ln and Ps guarantees a solution to the
eigenvalue problem

LnΨ(x;α) = zΨ(x;α), PsΨ(x;α) = wΨ(x;α) (17)

exactly when (w, z) is a point of the curve Vn,s. In our case, in view of the periodicity
in x of all the operators in C[Ln, Ps], the algebraic curve Vn,s is a covering of the
elliptic curve V2,3. Moreover, the attendant solution of the KP equation is also doubly-
periodic, being a constant multiple of L0 as a funtion of x; thus, Appendix A3 of [30]
guarantees that this is a very special type of covering, namely a “tangential cover”
in the sense of [29]. Even though the tangential position is very special, the curve
V2,3 is by no means unique; in fact, any isogenous quotient of V2,3 will have the same
property. Following [30], we call the tangential cover Vn,s → V2,3 “minimal” when it
cannot be factored into a (non-equivalent) tangential cover and an isogeny. In what
follows we tacitly assume that all tangential covers are minimal in this sense; this
affects the statements on their degree.

Definition 3.1 We shall call the operators from Proposition 3.1 a Burchnall-Chaundy
pair and the algebraic curve Vn,s the associated Burchnall-Chaundy curve. When the
coefficients of the Burchnall-Chaundy operators are elliptic functions, we shall call the
Burchnall-Chaundy curve a Burchnall-Chaundy tangential cover.

Following Halphen [21] (cf. Hermite [22] p. 372), we introduce the following ansatz for
the eigenfunction

Ψ(x;α) = ekx

p∑
j=0

aj(z, µ, k)
∂j

∂xj
Φ(x;α), (18)

where p is an appropriate positive integer, and ‡

Φ(x;α) =
σ(α− x)
σ(α)σ(x)

exp{ζ(α)x},

is a solution of

Φxx(x;α)− (2℘(x) + ℘(α))Φ(x;α) = 0.

‡ Here and below we use the standard notations of the Weierstrass theory of elliptic functions [3].
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The Weierstrass elliptic function ℘(x) and the function Φ(x;α) have the following
expansion in a vicinity of x = 0

℘(x) =
1
x2

+
1
20

g2x
2 +

g3

28
x4 + . . . (19)

Φ(x;α) =
1
x
− 1

2
℘(α)x +

1
6
℘′(α)x2 − 1

8
℘(α)2x3 +

1
40

g2x
3 +

1
60

℘(α)℘′(α)x4 + . . .

Substituting the expansions (19) into the eigenvalue problems (17), we then derive
two groups of equations, from the conditions of vanishing of the principal parts of the
poles at x = 0. The equation of the Burchnall-Chaundy curve as well as an explicit
expression for the cover will follow from their compatibility.

The following proposition can be proved by this approach

Proposition 3.2 Let Vn,s be a non-degenerate (n, s)-curve which is a Burchnall-
Chaundy tangential cover of the torus {(℘, ℘′)} and whose eigenfunction satisfies the
Halphen ansatz (18). Then

(i) The degree of the cover is the multiplicity Mn,s of the σ-divisor.
(ii) The principal parts of the associated Burchnall-Chaundy operators are of the form

(14,15) respectively with

Ln−2 = nMn,s℘(x), . . .

Ps−2 = sMn,s℘(x), . . .

(iii) The positive integer p in the Halphen ansatz is equal to g − 1.

Part (ii) of this proposition follows from a formal manipulation in differential
algebra. Recall that the eigenfunction (18) can be written as

Ψ(x; k) = Sekx,

with S a formal pseudo-differential operator, where S d
dxS−1 plays the role of the

inverse of a local parameter at the point at infinity of the spectral curve Vn,s, hence
Ln, Ps are analytic functions of it (cf. [28] for an exposition). Part (i) is a statement
on the intersection multiplicity of the elliptic curve of a minimal tangential cover with
the theta divisor of the spectral curve, and was proved in [30] (Proposition A 2.2).
Lastly, (iii) follows from the Krichever theory of Baker-Akhiezer functions and the
fact that g is the genus of the spectral curve.

The Weierstrass reduction theorem states (see e.g. [4, 25, 5])

Theorem 3.3 The genus g algebraic curve Vn,s covers Mn,s-sheetedly the elliptic
curve V2,3, π : Vn,s −→ V2,3 if and only if there exists an element γ from Sp(2g; Z)
such that the period matrix τ = ω−1ω′ can be transformed to the form

γτ =


τ11

k
Mn,s

0 . . . 0
k

Mn,s

0
... τ̃
0

 , (20)

where k ∈ N, 1 ≤ k < Mn,s and τ̃ is a (g − 1)× (g − 1) matrix.
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The cover π induces the reduction of one of the holomorphic differentials of the curve to
the holomorphic differential of the elliptic curve. We are interested in the case when all
the holomorphic differentials reduce to holomorphic differentials of the elliptic curves.
In this case the (symmetric) τ -matrix is reducible to the form

τ1 qij

τ2

. . .
... τg

 , (21)

where qij are rational numbers.

4. (3,4)-curve: Boussinesq flow

4.1. Trigonal functions

Trigonal functions serve as a principal example in [16]. The relations for trigonal
functions were also treated in [13, 14]. Recently the uniformisation of Jacobi varieties
of trigonal curves by means of σ-functions was developed in [8]. Here we consider the
simplest trigonal curve of genus 3, that is the (3, 4) curve, which we write in canonical
form as

f(z, w) ≡ w3 − p(z)w − q(z) = 0, (22)

where p(z) = p2z
2 + p1z + p0, q(z) = z4 + q2z

2 + q1z + q0. The associated Weierstrass
gap sequence is

0, 1, 2, 3, 4, 5, 6, 7, . . ., (23)

and the corresponding Schur-Weierstrass polynomial is of the form

σ(t, y, x) = x5 − 20xy2 + 20t + higher order terms. (24)

We write the equations of the Jacobi inversion problem in the form∫ z1

∞

dz

fw
+

∫ z2

∞

dz

fw
+

∫ z3

∞

dz

fw
= t,∫ z1

∞

zdz

fw
+

∫ z2

∞

zdz

fw
+

∫ z3

∞

zdz

fw
= y,∫ z1

∞

wdz

fw
+

∫ z2

∞

wdz

fw
+

∫ z3

∞

wdz

fw
= x.

These are solved in terms of Kleinian functions as follows

z2 − ℘2,3z − ℘3,3w − ℘1,3 = 0,

2wz + (−℘2,2 + ℘2,3,3)z − ℘1,2 + (℘3,3,3 − ℘2,3)w + ℘1,3,3 = 0.

The elimination of z or w from these equations leads to an equation of the third
degree whose coefficients are symmetric functions of the divisor (z1, w1) + (z2, w2) +
(z3, w3).

We shall give some of the relations [16, 8] between the trigonal functions, which
we shall use in our derivation

℘3,3,3,3 = 4℘3,3p2 − 3℘2,2 + 6℘2
3,3,

℘2,3,3,3 = 6℘2,3℘3,3 + ℘2,3p2 + p1,

℘2,3,3℘3,3,3 = 4℘2,3℘
2
3,3 + 2p2℘3,3℘2,3 + 2p1℘3,3 − ℘2,2℘2,3 − 2℘1,2.
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The first of these relations becomes the Boussinesq equation with respect to the
function U(t, y, x) = 2℘33(u) after double differentiation in x

Uxxxx + 3Utt =
(
6U2 + p2U

)
xx

. (25)

4.2. Burchnall-Chaundy pair

Consider the elliptic curve

w2 = 4z3 − g3 (26)

and its Weierstrass elliptic function (equianharmonic elliptic functions) and a related
Burchnall-Chaundy pair

L3 =
d3

dx3
− 15℘(x)

d
dx

− 15
2

℘′(x),

P4 =
d4

dx4
− 20℘(x)

d2

dx2
− 20℘′(x)

d
dx

.

Introduce the Halphen ansatz according to point (iii) of Proposition 3.2

Ψ(x;α) = exp(kx) (Φ(x;α) + a1Φ′(x;α) + a2Φ′′(x;α)) .

The eigenvalue problem L3Ψ(x) = zΨ(x), expanded into power series in x, leads to
the conditions

a1 = 2ka2,

0 = − 6k2 a2 + 8− ka1,

0 = (−15℘ + 12k2) a1 + (4k3 + 10℘′ − 4z) a2 − 18k,

0 = (15k℘− 2k3 + 2z) a1 − 10k℘′ a2 − 6k2,

0 =
(

45
4

℘2 − 10k℘′
)

a1 +
(

45
2

k℘2 − 6℘℘′
)

a2 − 2z −

− 5℘′ + 2k3 + 15k,

where ℘ = ℘(α), etc. Eliminating a1 and a2 we get

−30k℘ + 10k3 + 10℘′ − 4z = 0, (27)
30k℘− 10k3 + 4z − 10℘′ = 0, (28)
90k℘2 − 50k2℘′ − 12℘℘′ − 4zk2 + 4k5 + 30k3℘ = 0, (29)

to which we add the Weierstrass equation satisfied by ℘, (℘′)2 = 4℘3 − g3. By
constructing a Groebner basis for (27), (28) and (26) using lexicographic ordering in
variables ℘, ℘′, k, z, [12], we can eliminate ℘, ℘′, and find the curve with coordinates
k and z

2000k3z4 − 135000g3z
2k3 + 2278125g2

3k3 − 1024z5 − 6400g3z
3 = 0. (30)

We can check this curve is consistent with (29) also.
Proceeding in the same way we can analyse the P4 eigenvalue equation P4Ψ(x) =

wΨ(x) to get eventually the curve with coordinate w and k

625k4w4 − 43000g3w
3k2 − 21600000g3

3k2 − 54000w2g2
3 − 256w5 = 0. (31)

Taking the resultant of (30) and (31) we get the curve with coordinates z and w

w3 =
(

z2 +
25
4

g3

)(
z2 − 135

4
g3

)
. (32)
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In fact the problem L3Ψ(x) = zΨ(x) represents the classically known Halphen
equation; the solution was found as well in the original memoir [21], and also in the
handbook [23]; the derivation in the framework of reduction theory was given in [19],
and in [31] a generalization of the Halphen equation was studied.

4.3. The three covers

The curve (32) by construction is a tangential cover of the the elliptic curve (26),
namely, both curves are tangent to the direction of the differential du3. But the
curve (32) also covers other elliptic curves, in fact precisely along the direction of the
differentials du2 and du1:

V3,4 = (z, w)

?
(℘, ℘′)

π

@
@

@
@@R

π̃

(℘̃, ℘̃′)

HHHHHHHHHHj

˜̃π
(˜̃℘,

˜̃
℘′)

The cover over the curve Tx is given by the birational map

Tx ≡ (℘, ℘′), ℘′2 = 4℘3 − g3,

℘ =
w2

(
16 z2 + 8100 g3

)
(4 z2 − 135 g3)

2 , (33)

℘ = 2
z

(
16 z4 − 19000 z2g3 − 759375 g3

2
)

(4 z2 − 135 g3)
2 .

This map induces the following reduction of the holomorphic differential to the elliptic
differential

1
3

dz

w
=

d℘

℘′
. (34)

The second cover induces the reduction of the holomorphic differential associated
with the variable y. The corresponding curve is also equianharmonic and is given by
the equation

Ty ≡ (℘̃, ℘̃′), ℘̃′
2

= 4℘̃3 + (40g3)2.
This cover is given by the formulae

℘̃ = w, ℘̃′ =
1
2
(4z2 − 55g3) (35)

and the induced reduction of the holomorphic differential is
2
3

zdz

w2
=

d℘̃

℘̃′
. (36)

The third cover induces the reduction of the holomorphic differential associated
with the variable t. The corresponding curve is also equianharmonic and is given by
the equation

Tt ≡ (˜̃℘,
˜̃
℘′), ˜̃

℘′
2

= 4 ˜̃℘3
+ 54 (10g3)5.
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The cover is given by the formulae

˜̃℘ =
1
16

w
(
64 z6 − 80 g3z

4 − 5300 g3
2z2 − 30375 g3

3
)

z2 (25 g3 + 4 z2)
,

˜̃
℘′ =

1
128

R(z)
z3 (25 g3 + 4 z2)

,

(37)

where

R(z) = 1024 z10 − 61509375 g3
5 − 15187500 g3

4z2 − 700000 g3
3z4

− 240000 g3
2z6 − 19200 z8g3,

and the induced reduction of the holomorphic differential is

5
3

dz

w2
=

d˜̃℘˜̃
℘′

. (38)

Note that the second cover is of degree 2, as the curve Ty is obtained from (32)
by quotienting the involution (z, w) 7→ (−z, w).

4.4. Calogero-Moser dynamics

The multiplicity of the divisor shows in that in this case the locus of poles of the
Boussinesq solution consists of 5 particles, which suggests the following ansatz for the
σ-function

σ(t, y, x) =
5∏

i=1

σW (x− xi(t, y)), (39)

and, therefore

℘33(t, y, x) =
5∑

i=1

℘W (x− xi(t, y)), (40)

where ℘W is the Weierstrass elliptic function with moduli g2 = 0, and g3 arbitrary.
The expansion of the first three Kleinian functions at x = xj + ε is

℘33 =
1
ε2

+ Fj + F ′jε + O(ε2),

℘23 = − 1
ε2

∂xj

∂y
−Gj −G′jε + O(ε2),

℘22 =
1
ε2

(
∂xj

∂y

)2

+
1
ε

∂2xj

∂y2
+ O(1),

where we set

Fj =
5∑

i6=j

℘(xj − xi), F ′j =
5∑

i6=j

℘′(xj − xi),

Gj =
5∑

i6=j

℘(xj − xi)
∂xi

∂y
, G′j =

5∑
i6=j

℘′(xj − xi)
∂xi

∂y
.
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The substitution of these expansions into the trigonal relations leads to the
dynamical equations(

∂xi(y, t, . . .)
∂y

)2

= 4
∑
j 6=i

℘(xi − xj), i = 1, . . . , 5, (41)

∂2xi(y, t, . . .)
∂y2

= 4
∑
j 6=i

℘′(xi − xj), i = 1, . . . , 5, (42)

which have the compatibility condition∑
j 6=k

℘′(xk − xj)
(

∂xk

∂y
+

∂xj

∂y

)
= 0, k = 1, . . . , 5, (43)

and also to the geometrical constraint (locus)

G2
j = 4F 3

j , j = 1, . . . , 5.

Proposition 4.1 Consider the trigonal curve (32) and the divisor

(z1, w1) + (z2, w2) + (z3, w3),

where the coordinates depends on x and the coordinates of the particles xi(t, y),
i = 1, . . . , 5. Then as x → xj with x = xj + ε the limiting divisor is given by the
formulae (

1
ε3

,
1
ε4

)
+ (Z(j)

1 ,W
(j)
1 ) + (Z(j)

2 ,W
(j)
2 ), (44)

where

Z
(j)
1,2 = Xj ±

√
X2

j + Yj , W
(j)
1,2 =

∂xj(t, y)
∂y

Z
(j)
1,2 +

∂xj(t, y)
∂t

(45)

and

Xj = − 1
4

(
∂2xj(t, y)

∂y2
−

(
∂xj(t, y)

∂y

)3
)

, (46)

Yj = − 1
2

∂2xj(t, y)
∂y∂t

+
1
8

(
∂xj(t, y)

∂y

)2
∂xj(t, y)

∂t
. (47)

4.5. Elliptic varieties

We are now in position to display the elliptic variety associated with the 5-particle
dynamics under the Boussinesq flow. With this aim we shall write the first two
equations of the Jacobi inversion problem at x = xj and reduce the Abelian integrals
to elliptic integrals with the aid of the reduction formulae (35,37,36,38)

φ(Z
(j)
1 ,W

(j)
1 )∫

∞

dν√
4ν3 + 54(10g3)5

+

φ(Z
(j)
2 ,W

(j)
2 )∫

∞

dν√
4ν3 + 54(10g3)5

=
3
5
t, (48)

W
(j)
1∫

∞

dν√
4ν3 + (40g3)2

+

W
(j)
2∫

∞

dν√
4ν3 + (40g3)2

=
3
2
y, (49)
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where j = 1, . . . , 5 and φ(z, w) is the coordinate of the cover

φ(z, w) =
1
16

w
(
64 z6 − 80 g3z

4 − 5300 g3
2z2 − 30375 g3

3
)

z2 (25 g3 + 4 z2)

and (Z1,W1), (Z2,W2) are given in (45). The application of the addition theorem for
the Weierstrass elliptic function leads to rather complicated expressions, which involve
the Weierstrass elliptic functions ℘̃(3y/2), ˜̃℘(3t/5) and the quantities X and Y .

We shall write these equations in the particular case of fixed t = 0. To do that we
shall use the addition theorem for the Weierstrass elliptic function and also expressions
for the second cover (35) to transform (49) to the form

℘̃

(
2
3
y

)
= −W

(j)
1 −W

(j)
2 +

Z
(j)
1

2 − Z
(j)
2

2

W
(j)
1 −W

(j)
2

2

.

This equation can be rewritten with the help of (45-47) as follows(
df

dy

)2

− f6 − 4
(

℘̃

(
2
3
y

)
+ 2g(y)

)
f2 = 0, (50)

where we denote f = dxi(y)/dy, g(y) = ∂xi(t, y)/∂t|t=0. The function g(y) can be
determined from the condition that the points (Z1,2,W1,2) given in (45) belong to the
curve Vn,s.

The problem of integration of the associated Calogero-Moser particle system is
then reduced to solving the ordinary differential equation (50). In particular, at y ≈ 0
the equation (50) has 5 solutions. The first one is trivial, f = 0; the remaining four are
found by setting f = Ayα. One finds that α = −1/2, while g(y) ≈ y−2 in this limit.
The result is in agreement with the expansion (24), which shows, that five particles
are evolving on the locus under the action of Boussinesq flow.
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