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Abstract. In this paper we obtain a generalization of the Frobenius–
Stickelberger addition formula for the (hyperelliptic) σ-function of
a genus 2 curve in the case of three vector-valued variables. The
result is given explicitly in the form of a polynomial in Kleinian
℘-functions.

1. Introduction

In this paper we consider the sigma function σ(u1, u2) associated
with a curve of genus 2

(1) y2 = λ0 + λ1x + · · ·+ λ4x
4 + 4x5.

The function σ(u1, u2) = σ(u) is entire in the complex variables (u1, u2)
and the parameters λ0, . . . , λ4 of the curve. It is characterized by a
set of fourth-order partial differential equations, the Baker equations
[Bak07, pg. 49], [BEL97b, §6.1] and plays a fundamental role in the
generalization of Weierstrass elliptic function theory to curves of higher
genera.

The elliptic function σ(u) depends on a scalar variable u and is as-
sociated with the cubic curve

y2 = 4x3 − g2x− g3.

The σ-function satisfies the addition theorem

(2)
σ(u+ v)σ(u− v)

σ(u)2σ(v)2
= ℘(v) − ℘(u),

where the Weierstrass elliptic function ℘(u) is related to σ(u) by

℘(u) = −
d2

du2
ln σ(u).

Equation (2) can be generalized in various ways. We can increase the
genus of the curve and/or increase the number of terms to be added.
When higher genera are considered, the argument of σ is taken to be
a general point of the Jacobi variety of the algebraic curve of genus
g. An addition formula is in fact a consequence of the theorem of the
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square for the theta divisor [Bar83], and as such, it holds for more
general theta functions than for Jacobian ones. It is natural to develop
both types of generalizations on the basis of the Kleinian theory of
σ-functions [Kle88] (see also [Bak95, Bak98] and [BEL97a, BEL97b])
which represents a natural generalization of the Weierstrass elliptic
functions to hyperelliptic curves of higher genera.

The first generalizations of (2) to two-variable formulae in the hyper-
elliptic case of genera 2 and 3 were given by Baker in [Bak95, Bak98];
a formula for arbitrary g was given by Buchstaber et al. [BEL97b,
BEL97c]. In these latter papers the right hand side of the addition
formula was presented as the Pfaffian of a matrix whose entries are
linear in the Kleinian ℘ functions.

The generalization to a higher number of variables in the genus 1 case
(elliptic curves) seems to have been found first by Frobenius and Stick-
elberger [FS77], although special cases were known earlier to Brioschi
[Bri64] and Kiepert [Kie73].

The Frobenius and Stickelberger addition formula [FS77] for the el-
liptic σ-function is

σ(z0 + z1 + . . .+ zn)
∏

0≤k<l≤n σ(zk − zl)

σn+1(z0) . . . σn+1(zn)
=(3)

1

(−1)
1

2
n(n−1)1!2! . . . n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ℘(z0) ℘′(z0) . . . ℘(n−1)(z0)
1 ℘(z1) ℘′(z1) . . . ℘(n−1)(z1)
...

...
... . . .

...
1 ℘(zn) ℘′(zn) . . . ℘(n−1)(zn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This formula is widely used in various problems of mathematics and
physics. It was a key formula in the proof of the complete integrability
of the elliptic Calogero-Moser system [Kri80].

The generalizations of addition theorems of this form are know as
Schottky–Klein addition formulae (cf. [Bak95, pg. 430], [Fay73, eq.(43)]).
In this paper we shall develop a generalization of (3) to the hyperellip-
tic curve of genus 2 in the case n = 2. Our contribution is to give an
explicit version of the right-hand-side in terms of Kleinian ℘-functions.
This result improves on the formula given in [BEL97b, 6.6.1] because
it removes the denominator and reduces the number of derivatives of
the σ function to three.

The principal ingredients of our treatment are the hyperelliptic ℘-
functions of Klein [Kle88] (see also [Bak95, Bak07, BEL97a, BEL97b])

and results by Ônishi [Ôni02b, Ôni02a].
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2. Ultraelliptic σ-functions

In this section we give a brief introduction to Klein’s theory of σ-
functions for a genus two curve. Let X be the hyperelliptic curve of
genus g = 2 given by the formula

y2 = R(x),

R(x) = λ0 + λ1x+ · · · + λ4x
4 + 4x5(4)

= 4
5
∏

i=1

(x− ei), ei 6= ej,

where the branch points ei and the parameters λi are arbitrary complex
numbers.

A basis of holomorphic differentials dui(x, y), i = 1, 2 on the Riemann
surface of the curve and the associated differentials of the second kind
dri(x, y), i = 1, 2, have the form

du1(x, y) =
dx

y
, du2(x, y) =

xdx

y
,(5)

dr1(x, y) =
12x3 + 2λ4x

2 + λ3x

4y
dx, dr2(x, y) =

x2dx

y
.(6)

Introduce a standard homology basis of a, b cycles and period matrices

2ω =

(

∮

aj

dui

)

i,j=1,2

, 2ω′ =

(

∮

bj

dui

)

i,j=1,2

,(7)

2η =

(

−

∮

aj

dri

)

i,j=1,2

, 2η′ =

(

−

∮

bj

dri

)

i,j=1,2

.(8)

These periods satisfy the generalized Legendre relations

(

ω ω′

η η′

)(

0 −12

12 0

)(

ω ω′

η η′

)

= −
iπ

2

(

0 −12

12 0

)

,

where 12 is the 2 × 2 unit matrix. The period matrix τ = ω′ω−1 is
symmetric and its imaginary part is positive-definite.

We define the lattice Λ = Z2 ⊕ 2ωZ ⊕ 2ω′Z. There exist 16 linearly
independent half-periods ΩI (namely 2ΩI ∈ Λ), where I is a set of
indices. To describe them explicitly, we pick the homology basis as
shown in Fig.1. Denote Ak the Abelian image of the branch point ek,
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Figure 1. Homology basis on the Riemann surface of
the curve V (x, y) with real branch points e1 < e2 < . . . <
e6 = ∞ (upper sheet). The cuts are drawn from e2i−1 to
e2i, i = 1, 2, 3. The b–cycles are completed on the lower
sheet (dotted lines).

k = 1, . . . , 5, as

(9) Ak =

(ek ,0)
∫

(∞,∞)

du(x, y)

and the characteristic [Ak] of the point Ak,

(10) [Ak] =

[

ε′
k
t

εt
k

]

; Ak = ωεk + ω′ε′
k

with components of the vectors εk, ε′
k equal to 0 or 1. Then we have

[A1] =

[

1 0
0 0

]

, [A2] =

[

1 0
1 0

]

, [A3] =

[

0 1
1 0

]

,(11)

[A4] =

[

0 1
1 1

]

, [A5] =

[

0 0
1 1

]

, [A6] =

[

0 0
0 0

]

(12)

for the characteristics of branch points, while the characteristic of the
vector of Riemann constants with the base point e6 = ∞ is

(13) 2ω[K∞] = [A2 + A4] =

[

1 1
0 1

]

.



A GENERALIZED ADDITION FORMULA 5

The 16 half-periods, subdivided into 10 even, Ωi,j and 6 odd Ωi are
given by the formula

Ωi,j = Ai + Aj + 2ωK∞, 1 ≤ i < j ≤ 5,

Ωi = Ai + 2ωK∞, 1, . . . , 5.

We recall that Jac(X) = C
2/Z2 ⊕ 2ωZ⊕ 2ω′

Z is the Jacobian of the
curve X, and denote by ε a primitive eighth root of 1, ε8 = 1.

The θ-function with characteristic [δ] =

[

δt

δ′t

]

is

θ[δ](u|τ) =
∑

n∈Z2

exp

[

2πi

{

1

2
(n +

1

2
δ)tτ(n +

1

2
δ) + (n +

1

2
δ)t(u +

1

2
δ′)

}]

while the ultraelliptic σ -function is given by the formula

σ(u) = C exp

(

1

2
utηω−1u

)

θ[K∞](2ω−1u|τ).(14)

The matrix ηω−1 is symmetric and the constant C is

C =
επ

√

det(2ω)

1
√

∏

1≤i<j≤5(ei − ej)
.

The σ-function represents a natural generalization of the Weierstrass
σ-function and has the same property of invariance under the action of
the symplectic group Sp(4,Z).

The σ-function can be expanded in a neighbourhood of the origin by
a series in u1, u2 with the first few terms given by

σ(u1, u2) = u1 −
1

3
u3

2 +
1

24
λ2u

3
1 +O(u5).

In the rational limit, λi = 0, the first term of the σ-expansion represents
the Schur function, u1 −

1
3
u3

2.
The Lie algebra annihilating the σ-function and defining it uniquely

as a power expansion with coefficients given recursively was recently
found in [BL02].

Introduce the Kleinian ℘-functions

℘ij(u) = −
∂2

∂ui∂uj
ln σ(u), i, j = 1, 2,

℘ijk(u) = −
∂3

∂ui∂uj∂uk
ln σ(u), i, j, k = 1, 2.
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These Kleinian ℘-functions are given as rational functions on X×X
[Bak07, pg. 38]. The two-index symbols ℘i,j are

℘22 = x1 + x2, ℘12 = −x1x2,

℘11 =
F (x1, x2) − 2y1y2

4 (x1 − x2)
2 ,(15)

where F (x1, x2) is the Kleinian 2-polar

F (x1, x2) =

2
∑

r=0

xr
1x

r
2 [2λ2r + λ2r+1(x1 + x2)] .

The first two of relations (15) represent the solution of the Jacobi in-
version problem. The 3-index symbols ℘ijk are given by

℘222 =
y1 − y2

x1 − x2
, ℘122 =

x1y2 − x2y1

x1 − x2
, ℘112 = −

x2
1y2 − x2

2y1

x1 − x2
,

℘111 =
y2ψ(x1, x2) − y1ψ(x2, x1)

4(x1 − x2)3
,(16)

where

ψ(x1, x2) = 4λ0 + λ1(3x1 + x2) + 2λ2x1(x1 + x2) +

λ3x
2
1(x1 + 3x2) + 4λ4x

3
1x2 + 4x3

1x2(3x1 + x2).

The values of the ℘-functions at half-periods are as follows: ℘ij(Ωk) =
∞, ℘ijk(Ωl) = ∞ at all odd half-periods, ℘ijk(Ωm,n) = 0 at all even
half-periods. Also

℘22(Ωm,n) = em + en,

℘12(Ωm,n) = −emen,(17)

℘11(Ωm,n) = emen(ep + eq + er) + epeqer ≡ em,n,

for all 1 ≤ m < n ≤ 5 and p 6= q 6= r ∈ {1, . . . , 5}/{i, j}.
To characterize the class of ℘-functions more completely, we shall

give the differential relations between them. To that end we introduce
the 4 × 4-matrix H of rank 3

H =









λ0
1
2
λ1 −2℘11 −2℘12

1
2
λ1 λ2 + 4℘11

1
2
λ3 + 2℘12 −2℘22

−2℘11
1
2
λ3 + 2℘12 λ4 + 4℘22 2

−2℘12 −2℘22 2 0









.

The following relation is valid for arbitrary k, l ∈ C4

(18) ltππtk = −
1

4
det

(

H l

kt 0

)

,
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where πt = (℘222,−℘221, ℘211,−℘111). The ideal given by (18) defines
the meromorphic embedding of the Jacobi variety Jac(X) into the com-
plex space C

5; a basis of the ideal is given by three equations

(kt; lt) = ((0, 0, 0, 1); (0, 0, 0, 1))

= ((0, 0, 1, 0); (0, 0, 0, 1))

= ((0, 0, 1, 0); (0, 0, 1, 0)),

respectively.
The vector π satisfies the equation Hπ = 0, or in detailed form

−℘12℘222 + ℘22℘221 + ℘211 = 0,(19)

2℘11℘222 +

(

1

2
λ3 + 2℘12

)

℘221

−(λ4 + 4℘22)℘211 + 2℘111 = 0,(20)

1

2
λ1℘222 − (λ2 + 4℘11)℘221

+(
1

2
λ3 + 2℘12)℘211 + 2℘22℘111 = 0,(21)

−λ0℘222 +
1

2
λ1℘221 + 2℘11℘211 − 2℘12℘111 = 0,(22)

and so the functions ℘22, ℘12 and ℘11 are related by the equation

(23) detH = 0.

The equation (23) defines the quartic Kummer surface in C3 in coordi-
nates X = ℘22, Y = ℘12, Z = ℘11. Moreover, the following differential
equations hold:

℘2222 = 6℘2
22 +

1

2
λ3 + λ4℘22 + 4℘12,

℘2221 = 6℘22℘12 + λ4℘12 − 2℘11,

℘2211 = 2℘22℘11 + 4℘2
12 +

1

2
λ3℘12,

℘2111 = 6℘12℘11 + λ2℘12 −
1

2
λ1℘22 − λ0,

℘1111 = 6℘2
11 − 3λ0℘22 + λ1℘12 + λ2℘11 −

1

2
λ0λ4 +

1

8
λ1λ3.

All these relations generalize known relations of the Weierstrass theory
of elliptic functions to the genus two case.
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To complete this introduction we give expressions of the θ-quotients
in terms of Kleinian functions. Let

v = (2ω)−1
2
∑

k=1

(xk,yk)
∫

(∞,∞)

du − K∞,

then

θ2[Ak](v|τ)

θ2(v|τ)
=

e−
ıπ
2
|Ak|

√

2R′(ek)R′(el)
Pk(u),(24)

θ2[Ak + Al](v|τ)

θ2(v|τ)
=

e−
ıπ
2
{|Ak|+|Al|}(ek − el)
√

2R′(ek)R′(el)
Qk,l(u),(25)

θ[Ak](v|τ)θ[Al](v|τ)θ[Ak + Al](v|τ)

θ3(v|τ)
=

e−
ıπ
2
{|Ak|+|Al|}(ek − el)
√

2R′(ek)R′(el)
Rk,l(u),

(26)

where

Pk(u) = e2
k − ℘22(u)ek − ℘12(u),

Qk,l(u) = ℘11(u) + ℘12(u)(ek + el) + ℘22(u)ekel + ek,l,

Rk,l(u) = ℘112(u) + (ek + el)℘122(u) + ekel℘222(u),

|Ak| = (−1)δ
t
kδk for the characteristic [Ak] =

[

δ
t

εt

]

and the quantities

ek,l are given in (17).

3. The addition rule on Jac(X) × Jac(X)

The addition rule on Jac(X)×Jac(X) in terms of Kleinian ℘-functions
was given by Baker[Bak95, Bak07]. Let

u =

∫ (x1,y1)

(∞,∞)

du +

∫ (x2,y2)

(∞,∞)

du,

u′ =

∫ (x′

1
,y′

1
)

(∞,∞)

du +

∫ (x′

2
,y′

2
)

(∞,∞)

du.

(27)

Then Baker’s addition formula is

(28)
σ(u + u′)σ(u − u′)

σ(u)2σ(u′)2
= ℘′

11 − ℘11 − ℘′
22℘12 + ℘22℘

′
12,

where ℘ij = ℘ij(u), and ℘′
ij = ℘ij(u

′). The direct way to derive
this formula is to use well known addition formulae with right hand
side of the form θ[K∞](u + v|τ)θ[K∞](u − v|τ) in combination with
expressions for θ-quotients (24,25). But this direct method requires
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large calculations involving θ-characteristics and we were unable to
succeed with this approach in more complicated cases. We describe an
alternative calculation in the next section.

We shall first demonstrate our approach by re-deriving (28) using
a different method. To do that we recall that the θ-divisor (θ) is a
subvariety in Jac(X) given by the equation

(29) θ(u|τ) = 0, or equivalently σ(u) = 0.

According to Riemann’s vanishing theorem, points from (θ) are repre-
sented by

(30) u =

(x,y)
∫

(∞,∞)

du − 2ωK∞.

The co-ordinates of a point of the curve (x, y) can be given in terms of
the σ-functions restricted to the θ-divisor as follows (see [Gra91, Jor92])

xi = −
σ1(ui)

σ2(ui)

∣

∣

∣

∣

(θ)

, 2yi = −
σ(2ui)

σ2(ui)

∣

∣

∣

∣

(θ)

.

Recall that the Weierstrass gap sequence at the branch point at
infinity for the genus two curve is the complement of the sequence of
non-negative integers ni = 2αi + 5βi where αi, βi are positive integers
or 0, which give the orders of poles of monomials wi(x, y) = xαiyβi at
infinity, and are the over-lined integers:

0, 1, 2, 3, 4, 5, 6, 7, . . ..

We shall use the following result, a special case of a result by Ônishi
[Ôni02b, Ôni02a].
Theorem Let X be an algebraic curve of of genus 2. Then we have

σ(u0 + u1 + · · · + un)
∏

0≤k<l≤n σ(uk − ul)

σn+1
2 (u0) . . . σ

n+1
2 (un)

=
1

2[n/2−1]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 w1(x0, y0) . . . wn(x0, y0)

1 w1(x1, y1) . . . wn(x1, y1)

...
...

...
...

1 w1(xn, yn) . . . wn(xn, yn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(31)

where [·] means integer part, (x0, y0), . . . , (xn, yn) is a non-special divi-
sor on X, ui is the Abel image

ui =

∫ (xi,yi)

(∞,∞)

du,



10 J C EILBECK, V Z ENOLSKII, AND E PREVIATO

and σ2(ui) is the value of the σ derivative restricted to the θ-divisor,
(θ) : σ(ui) = 0

σ2(ui) = σ2(ui1, ui2)

=
∂

∂ui2

σ(ui1, ui2)|σ(ui)=0.

The factor 1/2[n/2−1] arises in our version of this theorem as we use a

different normalization of the curve than Ônishi.
In particular, for n = 1 we have

σ(u0 + u1)σ(u0 − u1)

σ2
2(u0)σ

2
2(u1)

= x1 − x0.

We now return to the derivation of the Baker addition formula. For
this we introduce the notation

∆(x,y;x′,y′) =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x1
2 y1

1 x2 x2
2 y2

1 x
′
1 x

′
1
2

y
′
1

1 x
′
2 x

′
2
2

y
′
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where x = (x1, x2)
t,y = (y1, y2)

t, etc. Then by applying the above
theorem, we obtain after simplification

σ(u + u′)σ(u − u′)

σ2
2(u)σ2

2(u
′)

=
∆(x,y; x′,y′)∆(x,y; x′,−y′)

V (x,x′)V (x)V (x′)
,

where V is the Vandermonde determinant of its arguments

V (x) = V (x1, x2) =

∣

∣

∣

∣

∣

1 x1

1 x2

∣

∣

∣

∣

∣

,(32)

V (x,x′) = V (x1, x2, x
′
1, x

′
2) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x1
2 x3

1

1 x2 x2
2 x3

2

1 x
′
1 x′1

2 x′31

1 x′2 x′2
2 x′32

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,(33)

thus V (x,x′,x′′) is 6 × 6 Vandermonde determinant.
After expanding these determinants, factorizing, applying the equa-

tion of the curve (4) and the relations (15), we arrive finally at the
required formula (28). This is a simplified version of the calculation
carried out by Baker [Bak95, pp. 331-332] and also derived by him
using another method in 1907 [Bak07, pg. 100].
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4. The addition rule on Jac(X) × Jac(X) × Jac(X)

By analogy with the previous section we define

∆(x,y; x′,y′;x′′,y′′) =
1

4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x1
2 y1 x1

3 x1y1

1 x2 x2
2 y2 x2

3 x2y2

1 x′1 x′1
2 y′1 x′1

3 x′1y
′
1

1 x′2 x′2
2 y′2 x′2

3 x′2y
′
2

1 x′′1 x′′1
2 y′′1 x′′1

3 x′′1y
′′
1

1 x′′2 x′′2
2 y′′2 x′′2

3 x′′2y
′′
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

If we denote

u′′ =

∫ (x′′

1
,y′′

1
)

(∞,∞)

du +

∫ (x′′

2
,y′′

2
)

(∞,∞)

du,

and u, u′ as before (27), then changing the σ-functions by the formula
(31) we obtain

σ(u + u′ + u′′)σ(u − u′)σ(u′ − u′′)σ(u′′ − u)

σ(u)3σ(u′)3σ(u′′)3
= ∆(x,y; x′,y′; x′′,y′′)

×
∆(x,y; x′,−y′)∆(x′,y′; x′′,−y′′)∆(x′′,y′′; x,−y)

V (x,x′,x′′)V 2(x)V 2(x′)V 2(x′′)
)

(34)

A straightforward expansion of the right hand side of the expression
would result in almost 107 terms, beyond the capability of current alge-
braic computer systems and machines. We give here a brief description
of the techniques used to reduce this to a manageable calculation.

It is necessary to first expand each determinant separately, then fac-
tor as far as possible each coefficient of the yi’s or product of the yi’s.
To reduce the number of terms at this stage we next substitute single
variables for each linear combination in x, i.e. x1−x2 = z1, x1−x

′
1 = z2,

etc. At this stage the number of terms is reduced sufficiently to allow
us to expand the product of the determinants as a polynomial in the zi

and yi. Next we substitute the equation of the curve (4) to eliminate
any quadratic powers of the yi, and then substitute for any products
y1y2 using the expression for ℘11 in (15).

We now have three types of terms: (i) terms cubic in the yi, for
example with a factor y1y

′
1y

′′
2 , (ii) terms linear in the yi but containing

a factor like ℘11 (or ℘′
11 or ℘′′

11), for example with a factor y1℘
′
11, and

(iii) terms linear in the yi but with no ℘11-like factors. Within these
classifications we can further subdivide by considering terms with each
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possible choice of these factors separately. The next stage is to con-
sider each of these subexpressions, first substituting for the zi and then
factorizing in the xi. Finally we apply the relations (15) and (16) and
recombine the results. We remark that the expression contains cubic
factors z−3

i which were removed by substituting the relation for ℘111

in (16). This brings to the expression terms involving the parameters
λi. Elimination of the λ-variables with help of relations (20-22) finally
leads to the addition formula which is the principal result of this paper

σ(u + u′ + u′′) σ(u − u′) σ(u′ − u′′) σ(u′′ − u)

σ(u)3 σ(u′)3 σ(u′′)3
=

1

8
℘112℘

′
122℘

′′
222 −

1

8
℘112℘

′
222℘

′′
122−

1

4

(

−℘′′
12℘22 + ℘′

12℘22 − ℘′
22℘12 + ℘′′

22℘
′
12 − 2℘′′

11+

℘′′
22℘12 − ℘′

22℘
′′
12 + 2℘′

11

)

℘111−

1

4

(

2℘′′
22℘22℘

′
12 − 2℘′′

12℘
′
22℘22 − ℘′′

22℘11 + ℘′
22℘11 + ℘12℘

′
12+

℘′
11℘

′
22 − 2℘′′

11℘
′
22 − ℘′′

11℘
′′
22 − ℘12℘

′′
12 + 2℘′

11℘
′′
22 − ℘′

12
2
+ ℘′′

12
2)
℘112+

1

4

(

−℘′
11℘

′
22℘

′′
22 + ℘′′

22℘
′
12℘12 − ℘′

22℘
′′
12℘12 + ℘′′

11℘
′
22℘

′′
22 − 2℘′′

11℘
′
12−

℘′′
12

2
℘′

22 + 2℘′
12℘11 − 2℘′′

12℘11 + ℘′
12

2
℘′′

22 + 2℘′
11℘

′′
12

)

℘122+

1

4

(

℘′
11℘

′
22℘

′′
12 − ℘′

22℘
′′
12℘11 − ℘′′

11℘
′′
22℘

′
12+

℘′′
12

2
℘′

12 − ℘′′
12℘

′
12

2
+ ℘′′

22℘
′
12℘11

)

℘222+

+ cyclic permutations of ℘, ℘′, ℘′′,

where ℘ = ℘(u), ℘′ = ℘(u′), ℘′′ = ℘(u′′).
In assessing the validity of a computer-assisted result like this it is

important to carry out checks during each stage of the calculations.
One final check is to examine the behaviour of the formula above in
the limit that u ≡ (u1, u2) → 0. (To be more precise, we take the limit
of the above formula multiplied by σ(u)3). To zeroth order in u1, u2 we
recover the Baker formula (28) in the variables u′,u′′. To first order in
u1 we find the following genus two addition formula for ζ1

ζ1(u
′ + u′′) − ζ1(u

′) − ζ1(u
′′) =

1

2

(

∂

∂u′1
+

∂

∂u′′1

)

logB(u′,u′′)

where B(u, v) is the RHS of (28)

B(u, v) = ℘22(u)℘12(v) − ℘22(v)℘12(u) + ℘11(v) − ℘11(u)
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and

ζi(u) =
∂

∂ui

ln σ(u), i = 1, 2.

It is straightforward to derive this addition formula by taking logarith-
mic derivatives of (28). An analogous formula holds for ζ2.

Our new formula is also valid in the rational limit when the σ-
function is changed to the Schur function: σ(u) → u1 −

1
3
u3

2 and thus
the formula represents a non-trivial addition rule for the Schur func-
tion.

The extension of these results to higher genera, g > 2 and products
(Jac(X))N , N > 3 will be the subject of further investigations.
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[Kle88] F. Klein, Über hyperelliptische Sigmafunctionen, Math. Ann. 32 (1888),
351–380.

[Kri80] I. M. Krichever, Elliptic solutions of Kadomtsev-Petviashvili equation
and integrable particle systems, Funct. Anal. Appl. 14 (1980), 45–54.

[Ôni02a] Y. Ônishi, Determinant Expressions for Hyperelliptic Functions (with an
Appendix by Shigeki Matsutani), Preprint NT/0105189, 2002.
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