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Schanuel’s conjecture

x1,...,xn € C, linearly independent over Q

= tr.degQQ(z1, ..., Tn, €1, ...,e"") > n (7)

Equivalently,

x1,...,xn € C,y1,...,yn € C*,y; = e*i. Then,

tr.degQQ(azz-’S, y;'s) > rky (Z:cl + ...+ Zxn) (?)

Exponential case (Lindemann-Weierstrass thm) :
Vi, z; € Q = true (with equality).

Logarithmic case (Schneider’s problem) :
Vi,y; € Q= (?7) (with equality)



G = (Gm)™, n-dim’l split torus over Q C C
TG :=TyG = Lie(G)
expg . TG(C) ~C" — G(C) ~ (C*)",

r1 e’1
r = : — Yy =
Tn etn
Lie hull G, of x := smallest algebraic sub-

group H of GG such that x € TH(C).

(NB : contains, often strictly, the hull Gy of
y = smallest alg. subgroup H of G such that

y € H(C)).
The conjecture then reads :
r € TG(C),y = expg(x) € G(C)

= tr.degqQ(z,y) > dimGy (7)



Abelian integrals

k=kCC, Pck[X,Y],f €ek(X,Y),pg,p1 € k

/plf(X,Y)dX . P(X,Y)=o0.
Po

More intrinsically, X/k smooth projective al-
gebraic curve, w € HO(X, Q}f/k(D)) for some

D € DivT(X). By Weil-Rosenlicht, there is :

e a generalized Jacobian G = Jac(X, D) :

O—-L—-G—A—>0
where L = G!, x G5, A = Jac(X);

e a canonical (Abel-Jacobi) map
¢ : (X, point ) — G,

e an invariant differential form wg € T*G(k)
on G with ¢*ws = w Mmod. exact forms.

Set y = ¢(P1) — ¢(Py) € G(k). Up to addition
of an element of k, we get

/P1 /y
w = W,
Py 0o @



More precisely, there exists z € TG(C) (de-
pending on the path of integration) such that

Y
y = expg(z), and /O wa =< walz > .

(z,y) € (TG x G)(C),y = expg(x)
= tr.degqQ(z,y) > Gz (?7)

X =P1,D = (0) 4+ (0) » G = Gy, and
x = ¢n(y) : standard Schanuel problem.

Otherwise, (?7) must be modified. One at-
taches to M = (X, D, (P1) — (Ppy)) a “motivic
Galois group" Gy, acting on TG.

André's conjecture : tr.degqQ(z,y) > dimG .z

(inspired by, and implying, the Grotendieck
conjecture : if k= Q, then

tr.degqQ(z,y) = dimG p.x;

see also Kontsevich’'s conjecture on periods.)



Elliptic integrals

Ref. : Whittaker-Watson.
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with Z-linearly independent @Q;'s in E(k).

G € Ext(E,G], x Gqg x GT, .
G=0Gx G ., With
e G € Ext(E,Gl)) : an essential extension

e (G = the universal vectorial extension of G.
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For P € E(k), set u= [} w, hence

P = (p(u), ¢'(w) = expp(u).
0(2) = 2Tloeer(l — 2)es 27 | ¢(z) = 22

fv(z) — Ja(g%jfg)e—C(v)z (U 7 Q)

((z+w) = ((z) +n(w), nowi — niwa = 2mi,
fo(z4w) = fu(2)eM) | A (w) = n(w)v—C(v)w.
(r=1) Q =expg(v), G ~pirat £ X Gm x Ga.

3 /¢ fv(u)e_g
ea:pé:C3—>G(C) St — | C(u) -t
u o(u)

271 Av(w1) Av(wo)
Ker(expm) =2 | 0 |®Z | n(wyr) |DZ | n(w2)

0 w1q w9

In conclusion, if § = {y3,y2,y1} € G(k) is
above y; = (p(u), p'(u)) € E(k),

&= {n 280 — c(v)u — tn(ys) , C(u) — w2 , u}
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Mumford-Tate groups

To y € G(k), we attach a one-motive M/k,
a k-vector space H})R(M), a Q-vector space

Hp(M), and a period matrix M(M)
/
27 Ap(w1) M(wr) Infu(u) + £o £0
0 n(wi1) mnlw2) ¢(u)+to d
0 w1 w9 U W
0 0 0 1 {df}
70 71 72 Yz

Hg(M) is endowed with a mixed Hodge struc-
ture. In particular, an increasing weight filtra-
tion We with

W_o=Hp(Gn),W_1 = Hp(G),Wog = Hg(M)

Gr_1=Hpg(FE),Grg =172

and a Hodge filtration F* on Hg(M) ® C.
Similarly with H{,p(M).



The canonical pairing

<W|’y>=/w
B

induces an isomorphism

Hppr(M) ®, C — Hp(M)* ® C

(represented by the period matrix M(M) above),
which respects both filtrations.

Mixed Hodge structures form a Q-linear tan-
nakian category, with fiber functor Hg. The
Mumford-Tate group of M is

MT,; = Aut®(Hg(M)).

Isom®(H} (M), Hg(M)* ® k) is represented
by a scheme Z/k, which is a MT; ® k-torsor.

~> Alternative rephrasings of the conjectures :

tr.deg.qQ(Z,y) > dim(MTpr.vz) (7))
(if k=Q) : N(M) is a generic point of Z/k (7?)



Function field analogue I

Let (F,9), with F¢ = C, be a sufficiently
large differential field extension of (K = C(t),
d/dt). For x € F, define y =¢e* € F*/C* as a
solution of the diff’l equation

0

- oz.

Y
K(x,y) is well-defined (and depends only on
the classes of =z in F/C).

AXx (1970) : x; € F,y; = e%i(i = 1,...,n). Then

tr.degr K (x;'s,y;'s) > rky (Z:I:l + ...+ Zx, mod C).

/

NB : rkz(....) = dimGy
where G, is the smallest algebraic group H of
G = GI', such that x e TH(F) + TG(C).

T (now)

G = Gy := smallest algebraic group H of G
such that y € H(F') + G(C).




G = an algebraic group defined over C. By
Kolchin, there is a canonical logarithmic de-
rivative map

Mng : G(F) - TG(F) =TG xaq G,
e.g. if GC GLy, : 0tng(U) = 0U.U L.

When G is commutative, “Ing inverts expg
modulo the constants".

For y € G(F'), define the relative hull G, of
y as the smallest algebraic group H/C such
that y € H(F) mod. G(C).

Theorem 1.a (AXx, Kirby) : assume that G
is a semi-abelian variety (no additive sub-

group), (z,y) € (TG x G)(F),y = expg(z).
T hen,

tr.deg. g K(x,y) > dimGy.

This cannot hold true in general if additive
subgroups occur. However



Brownawell-Kubota : E/C ell. curve, uq, ..., un
€ I, linearly independent over End(E) mod
C. Then

Theorem 1.b : let further G (resp. Gy) be
the universal vectorial extension of G (resp.
Gy). For any & € TG(F) s.t. expa(Z) = §
projects to y € G(F),

tr.deg. k K(Z,7) > dimG)y.

E.g., for v; € C,Q; = expp(v;) € E(C), l.i. /Z

tr.degp K (u;, p(u;), C(uy;), O(UZ_I_UZ) =1,...,n) > 3n

o(u;) —

as well as Ena(""z+“@), > 3n
O(UZ)

NB : B-K also got : ..., o(u;);....... > 3n

Proof : a kind of intersection theory + rigidity
of alg. groups.



i) wlog, assume that Gy = G. Amost by de-
finition, G is an essential extension of G :
hence G, = G. Must now prove that

tr.deg.(C(Z,5)/C) > dim(G) + 1.

ii) reduce by Seidenberg (cf. J. Kirby) to the
analytic case ~»

e X =TG x G (alg. group over C),

e A = graph of expx (anal. subgroup of X),
e K = the analytic curve defined by the image
of {Z,y} : C DU — X(C).WIlog, assume that
0 € K and let V be its Zariski closure in X/C,
so that tr.deg.(C(z,y)/C) = dimV.

iii) Ax's theorem (1972) : there exists an ana-
lytic subgroup B of X containing both A and
V such that dimK < dimV + dimA — dimB.

We shall prove that B = X. Consequently :
dimV > dimX — dimA + dimK,

| |
tr.deg.(C(z,y)/C) dimG + 1
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Since V is a connected algebraic variety > O,
the abstract group it generates in X is an
algebraic subgroup g(V) of X = TG xG. Since
K C V, and since Gy = G, the image G’ C
G of g(V) under the 2nd projection projects
onto G, and therefore coincides with G. Let
T' C TG be the image of g(V) under the 1st
projection.

Now, g(V) is an algebraic subgroup of T/ x G
with surjective images under the two projec-
tions. But any such subgroup induces an iso-
morphism from a quotient of G to a quo-
tient of T” : setting H = ¢(V) N (0 x &), and
H = g(V)n(T' x 0), we have G/H ~T'/H’.
If these quotients were not trivial, the 2nd
one would admit G, among its quotients, and
ditto for the 1st one, hence for G : contra-
diction. Consequently, G/H = 0, and g(V),
hence B, contains 0 x G.

Finally, B D A projects onto TG by the 1st
projection. Hence, B = TG x G = X.
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Where are the Picard-Vessiot groups ?
[French : remboursez!]

(= [Scots.] Gie'e ma’ bawbies back.)

This seems to have little to do with differen-
tial Galois theory : relatively to 0, K(x,y)/K
need not even be a differential extension!

However, it is a differential extension, and in
fact a strongly normal one, in each of the
“unmixed" cases T € TG(K), resp. y € G(K),
where on recalling that G; = Gy, Theorem 1
amounts to

e (exponential case) : set b = 87 € TG(K).
Then the (Kolchin) differential Galois group
of 867@@(@) =bis

Auty(K(§))/K) = Ga.

e (logarithmic case) : set a = dlnxj € TGy(K).
Then the (Picard-Vessiot) differential Galois
group of 9r = a is

Auty(K(2))/K) = TGy.
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At least in the split case, the latter result
could be deduced from

e the purely differential fact [cf. Bible, 1.33]
that if connected, the Picard-Vessiot group
of any system 9Y = AY, A € gl,(K) is the C-
Lie hull G4 C ¢gln,(C) of (a convenient gauge
transform of) A,

combined with

e 3 more geometric observation of the type :
logarithmically exact differentials on a curve
S which are linearly independent over Z re-
main so over C (and even so when taken
modulo exact forms on S).



Function field analogue II
[in the logarithmic case]

Until now, we considered

(£) (2)
o= ["7 at) = [ e

1 0
I.e. integrals between non-constant points of
a constant diff. form on a curve X/C.

In a more natural frame-work, X and w vary
with ¢ as well, bringing back the symmetry
between objects such that v and v, and, more
deeply, allowing for notions of duals in the
space of generalized periods.

S= curve/C,7: X —- S, K =C(S),X/K

Fix a non constant ¢t € C(S),0 = d/dt and
K-rational sections pg,p1 of w.

p1(1)
/ F(t,X,Y)dX ., P(tX,Y)=0.
po(t)
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All the previous notions from the theory of
one-motives admit relative versions over S
(variation of mixed Hodge structures). Mo-
reover, the Og-module H} ,(M/S) carries a
Gauss-Manin (= generalized Picard-Fuchs)
connection V, whose space of horizontal sec-
tions is generated over C by the local system
Rlm.Q = Hg(M/S)*.

H(M) = Hpr(M/K)* , D=V},

is a K[d/dt]-module, again filtered (in the el-
liptic case and with r = 1 as above) by the
sub-equations

W_o=H(Gm) 21;,W_1 =H(G), Wy = H(M)

Gr_1 =H(F),Grg = H(Z) ~ 1.

Over a sufficiently small domain U C S(C),

N(M)(t)|: U — GL(HLHr(M/U) @ O

represents a fundamental matrix of analytic
solutions of H(M), and its last vector z =
(Z(t), 1) satisfies expg, (Z(t)) = §(t) € G(K).
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The field K(z) = K(&,y) depends only on
the projection =z of x on TG.

Let PV ,,; be the Picard-Vessiot group of the
D-module H(M) : Vg € PV, g — & € W_4
also depends only on x € TG. Write PV ;. x
C Hg(G/U) ® C for the corresponding orbit.

Exercise : tr.degig K(Z,y) = dimPV ;. x .

i.e. the last columns of the elements of PV,
govern Schanuel’s problem in the logarithmic
case. Here is an elliptic illustration.

Theorem 2 : g5(t),93(t) € K,j(t) € C, E/K
the corresponding elliptic curve; {u;(t);i =
1,...,n} holomorphic functions on U C C, such
that P, = expp(u;),i = 1,...,n are Z-linearly
independent points in E(K). Then,
tr.deg K (u;, ((u;), fno(u;); 1 =1,...,n) = 3n.

lexpg = expp ), ¢ = G,0 =0t; j € C= no CM]

The proof combines three ingredients :



e (A) an essentially geometric fact (Manin)

G € Exty gop 1 (E,Gm) ~ E~ E(K) > Q

~ H(G) = H*(Q) € Extp_,,0q0 (H(E),1)
and dually

P € E(K) = Exty, oo, /i (Z, E)

~ H(P) := Wo/W_o € Extp_0q.(1, H(E)).

Manin's kernel theorem is that the kernel
of these maps is generated by the points of
height O, i.e. the constant part of E (here 0)
and the torsion points of FE.

e (B) pure PV theory (cf. C. Hardouin’s talk,
in the general framework of a neutral tanna-
Kian category), viz. :

Let V be an irreducible D-module, V = V5o,
and let &4,...,&, be C-lin. ind. extensions in
Extp_,,04(1,V). Then, the unipotent radical
Of PV(ELD ... &) fills up V™.
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e (C) Rigidity of algebraic groups.

Y = H(FE), with V. = Hg(£/U) ® C, has an
(antisymmetric) polarization < | >. Let H €
Extgr(V,C) be the Heisenberg group on V,

1 vb C
H={|0 I, v|;vEV,ceC|
O 0 1
Forn=1, and P = @ non-torsion, A + B +
rigidity force an isomorphism

Yp Ry(H(M))~H

For : = 1,...,n and the P, = @Q;’s lin. indep.
over 7, let R, be the unipotent radical of

V= (¢P17 7¢Pn> D Ry — Hn)

and by A + B, W(Ry) projects onto V™. But
since < | > is non degenerate, the derived
group of any subgroup of H" projecting onto
V™ fills up C", so that H" is again an essential
extension! Hence, Ry, = H", and

tr.deg. w K (u;, C(u;), fno(u;)) = dimH"™ = 3n.



