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Introduction.

1. Integrable ODEs

d

dt
U = F(U), U = (U1, . . . , UN)

• First Integrals I = I(U)

d

dt
I =

N∑

k=0

∂I

∂Uk

Fk(U) = 0

• Symmetries G(U)

d

dτ
U = G(U),

d

dτ
F(U) =

d

dt
G(U)

2. 1+1 dimensional systems of PDEs (evolutionary)

ut = f(u, u1, . . . , un), u1 = ux, u2 = uxx, u3 = uxxx, . . .

• No first Integrals

• Infinite hierarchy of local conservation laws

• Infinite hierarchy of local symmetries

• Multi-Hamiltonian structure

• Recursion operators
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• Master symmetry

• Bäclund transformations

• the Lax representation

– Inverse spectral transform and solution of IVP

– Multi-soliton and algebra-geometric solutions

– Darboux transformations

• Bi-linear representations and the τ function

• Connection with the Painlevé theory

3. Non-evolutionary equations, multi-dimensional equa-
tions, integro-differential, differential-difference, discrete,
....



Examples of Integrable Equations

Gardner Green Kruskal and Miura 1967, the KdV equa-
tion

ut = uxxx + 6uux

and the discovery of the inverse scattering method.

Zakharov and Shabat 1971, the NLS equation

iut = uxx ± 2|u|2u

1972, the mKdV equation

ut = uxxx ± 6u2ux

1973, N-wave equations. For N = 3

u1t + v1u1x = iu∗2u3

u2t + v2u2x = iu∗1u3

u3t + v3u3x = iu1u2

1973, the Sine-Gordon equation

utt − uxx + sinu = 0

1974, the Boussinesq equation

utt = uxx ± uxxxx + (u2)xx
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1976, the massive Thirring model

iut + v + u|v|2 = 0
ivx + u + v|u|2 = 0

1979, the Landau and Lifshitz equation S = {S1, S2, S3}, S · S =
1.

St = S
∧

Sxx + S
∧

JS

1979, the 2-d Toda lattice

un tt − un xx = exp(un+1 − un)− exp(un − un−1)

and the Tzetzeika equation

utt − uxx + exp(u)− exp(−2u) = 0

2+1 dimensional equations

1973 ,the Kadomtsev-Petviashvili equation

(ut − uxxx − 6uux)x = ±uyy

Nizhnik 1980, Veselov-Novikov 1984

ut + uzzz + uz̄z̄z̄ = 3(uvz)z + 3(uwz̄)z̄, u = vz̄ = wz

4-d equations (self-dual Yang Mills) 1973.

(gzg
−1)z̄ + (gyg

−1)ȳ = 0

Differential-difference (Volterra, Toda), discrete, ODEs
(N-dim. Euler Top), integro-differential (Benjamin-Ono),
...



Examples of the Lax representations.

KdV ( P.Lax 1968)

ut = uxxx + 6uux ⇐⇒ Lt = [L, A]

where

L = D2
x + u, A = 4D3

x + 6uDx + 3ux

Two linear problems

φxx + uφ− λφ = 0 and φt = Aφ

are compatible if and only if u(x, t) solves the KdV equa-
tion. In the basis φ, φx we can represent

L̂ = Dx +

(
0 −1

u− λ 0

)
,

Â =

(
ux −2u− 4λ

uxx + 2u2 + 2λu− 4λ2 −ux

)

The condition [L̂, Dt − Â] = 0 is equivalent to the KdV
equation.

We always can consider two linear problems

Dxφ = Uφ Dtφ = V φ

where U, V are two n × n matrices which depend on a
spectral parameter λ and our dynamical variables (de-
pendent variables and their derivatives).
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Example (NLS):

L = Dx +

(
iλ −q
±q̄ −iλ

)
= Dx + iλσ3 + W

A = Dt −
(

iλ2 ± i|q|2 2iλq + iqx

∓2iλq̄ ± iq̄x −iλ2 ∓ i|q|2
)

The compatibility condition gives the Nonlinear Schrödinger
equation

iqt = qxx ± |q|2q .

Example: For the Tzetzeika equation

uxy + exp(u)− exp(−2u) = 0

the corresponding operator L is of the form

L = Dx − i

√
3

3
ux




0 1 −1
−1 0 1
1 −1 0


− λ




q 0 0
0 q̄ 0
0 0 1




where q = exp(2πi/3).

Example: The Landau and Lifshitz equation

St = S
∧

Sxx + S
∧

JS

L = Dx − i

3∑

k=1

Wk(λ)Skσk

where Wn(λ)2 −Wm(λ)2 = Jn − Jm and σk are Pauli ma-
trices.



1. Structure of Lax pairs.

We consider two differential operators

L = Dx − U, A = Dt − V,

where U = U(x, t), V = V (x, t) are two n × n matrices.
The compatibility condition

[L, A] = Dt(U)−Dx(V ) + [U, V ] = 0 (1)

provides the existence of a fundamental solution to the
over-determined linear systems

LΨ = Ψx − UΨ = 0, AΨ = Ψt − V Ψ = 0

Equation (1) is a nonlinear PDE, but trivial. Its general
solution is given by

U = ΨxΨ
−1, V = ΨtΨ

−1,

where Ψ = Ψ(x, t) is any nonsingular matrix function.

Equation (1) becomes non-trivial if we assume that ma-
trices U, V also depend on an auxiliary (spectral) param-
eter λ and are rational functions of λ. We also require
that equation (1) is satisfied for all values of λ.

Example: U = U0 +λU1, V = V0 +λ−1V1, then (1) yields

at λ Dt(U1)− [V0, U1] = 0
at λ0 Dt(U0)−Dx(V0) + [U0, V0] + [U1, V1] = 0
at λ−1 Dx[V1]− [U0, V1] = 0

Solution of a matrix Riemann-Hilbert problem Ψ(x, t, λ)

ΨxΨ
−1 = U0 + λU1, ΨtΨ

−1 = V0 + λ−1V1 .
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Gauge freedom, gauge transformations

L → L̂ = g−1Lg, A → Â = g−1Ag .

L̂ = Dx − Û0 − λÛ1, Û0 = g−1U0g − g−1gx, Û1 = g−1U1g

Â = Dt − V̂0 − λ−1V̂1, V̂0 = g−1V0g − g−1gt, V̂1 = g−1V1g

For example

St = S
∧

Sxx and iqt = qxx + 2|q|2q ,

are gauge equivalent.

We can extend the gauge group by external
automorphysms

L → −h−1LAh, A → −h−1AAh .

Matrices g, h may also depend on λ, be differential op-
erators, ....

Miura transformations are examples of gauge transfor-
mations.

Change of the spectral parameter λ → µ = σ(λ)

Example: λ = µ+1
µ−1

L → Dx − Ũ0 +
Ũ1

µ− 1
, A → Dt − Ṽ0 +

Ṽ1

µ + 1
,



where Ũ0 = U0 + U1, Ũ1 = 2U1, Ṽ0 = V0 + V1, Ṽ1 = −2V1.
By a gauge transformation one can set Ũ0 = Ṽ0 = 0.
Result is a Lax pair for the Principal Chiral field model.

Algebraic structure

+, [·, ·], Dx, Dt - Lie algebra U, V ∈ A.

Nonlinear coupled equations ⇒ the Lie algebra A is sim-
ple.

Solvable A ⇒ linear triangular system of equations.

Reductions, the reduction group

Example: The Tzetzeika equation

L = Dx − i

√
3

3
ux




0 1 −1
−1 0 1
1 −1 0


− λ




q 0 0
0 q̄ 0
0 0 1




where q = exp(2πi/3).

We start with a general operator: L = Dx − iU0 − λU1

g−1Lg → Û1 = g−1U1g = diag(a1, a2, a3), diagÛ0 = 0

Thus

L = Dx − i




0 u12 u13

u21 0 u23

u31 u32 0


− λ




a1 0 0
0 a2 0
0 0 a3






We impose a symmetry Q, s.t. Q3 = id:

Q : L(λ) → J−1L(q̄λ)J = L(λ), J =




0 0 1
1 0 0
0 1 0


 .

Then an = aqn and

L = Dx − i




0 w v
v 0 w
w v 0


− λa




q 0 0
0 q̄ 0
0 0 1




Imposing another symmetry P , (P 2 = id):

P : L(λ) → −LA(−λ) = L(λ)

we find w = −v. Transformations P, Q form the S3

group.

Symmetry H, (H2 = id):

H : L(λ) → h−1L̄(λ̄)h = L(λ), h =




0 1 0
1 0 0
0 0 1




implies that w and a are real.

These symmetries act on solutions LΨ = 0

Q : Ψ(λ) → JΨ(qλ)

P : Ψ(λ) → (Ψtr(−λ))−1

H : Ψ(λ) → hΨ̄(λ̄)



Local Symmetries, conservation laws and the Lax
pairs

How to find symmetries and local conservation laws for
equations having the Lax representations (such as KdV
L = D2

x + u, Nonlinear Schrödinger equation, ...)?

A few general definitions:

1. We define a differential ring R[u] of polynomials of
infinite number of variables u, u1, u2, . . . over C with a
derivation D defined by

D(un) = un+1, D(α) = 0, α ∈ C .

We assume that 1 6∈ R[u]. Derivation D represents Dx,
and un represents ∂n

xu.

An evolutionary equation, such as the KdV

ut = u3 + 6uu1 = f [u] ∈ R[u],

defines another derivation Dt of the R[u] by

Dt(u) = f [u], Dt(un) = Dn(f [u]), Dt(α) = 0, α ∈ C
which commutes with D. Derivations of R[u] commut-
ing with D we call evolutionary derivations.

2. A symmetry can be defined as an evolutionary deriva-
tion Dτ commuting with Dt. It is sufficient to define the
action of Dτ on u, i.e. an element Dτ(u) = g[u] ∈ R[u].
Element g[u] is usually called a symmetry generator.
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For KdV:

uτ1 = u1

uτ3 = u3 + 6uu1

uτ5 = u5 + 10uu3 + 20u1u2 + 30u2u1

are symmetries, and there are infinitely many symme-
tries. All corresponding derivations commute [Dτn

, Dτm
] =

0.

3. Local conservation laws. Element ρ ∈ R[u] is said to
be a density of a local conservation law if

Dt(ρ) = D(σ), σ ∈ R[u] ,

i.e. Dt : ρ → D(R[u]).

ρ = D(h), h ∈ R[u] is a trivial density.

ρ ∈ R[u]/D(R[u]). Densities ρ1, ρ2 are equivalent, if ρ1−
ρ2 ∈ D(R[u])

h ∈ D(R[u]) ⇐⇒ δh

δu
= 0

δh

δu
=

∑

k=0

(−D)k(
∂h

∂uk

)

For KdV u, ρ0 = u2, ρ2 = u2
1 − 2u3, . . . are densities of

local conservation laws.


