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Symmetry Approach - basic definitions and facts

Suppose we have an evolutionary partial differential equation
Ut:F(Un,...,’LL]_,’LL), n > 2 (1)
where

u=u(x,t), ug = uz(x,t), uo = ugz(x,t), ... .

In the Symmetry Approach it is assumed that all functions such as F
depend on a finite number of variables and belong to a proper differ-
ential field F(u, D) generated by uw and the derivation D:
0 0 0
D=ui— +u>r——+uz—+ -,
18?1,0 + 28u1 + 38u2 +
which represents the derivation in x.



Partial differential equation uy = F defines another derivation of the
field F(u, D)
0 0 0

Di=F" +F— 4+ F— ...
t 6uo+ 18u1+ 28u2+

F,, = D*(F) € F(u, D)

commuting with D.

A symmetry of equation u; = F' can be defined as a derivation D,

0 0 0
Dr=G—+G{—+Gor—+ -
T g + 1(%1 + 2(%2 +

of the field F(u, D), where G, = D*(®) € F(u,D), which commutes
with derivations D and D;.



This definition is equivalent to the following definition, which we will
be using in what follows

Definition 1. Function G € F(u, D) generates a symmetry of the equa-
tion (1) if the differential equation

D:(u) =G
is compatible with (1).

The Frechét derivative of a € F(u, D) is defined as a linear differential
operator of the form

L 8uk

Using the Frechét derivative one can express the derivation with respect
to t as

Di(a) = ax(F), a€ F(u,D)



The Lie brackets for any two elements
a,b € F(u,D) is defined as

[a,b] = ax(b) — b«(a) .

In these terms the definition of symmetry of equation (1) can be for-
mulated as follows: function G € F(u,D) generates a symmetry of
equation (1) if

[F,G] = 0.

The order of the symmetry

ord(G) = deg(Gx)



Formal pseudo-differential series, which for simplicity we shall call for-
mal series, are defined as

A=amD™4+a, D" '+ ..-4+ag+a 1D 14+.--.

The product of two formal series is defined by
aDF o bD™ = a(bD™TF L ClD(B)DF T 4.0y,
where k,m € Z and the binomial coefficients are defined as

=D =2) (= j+1)




Definition 2. The formal series

AN=1pD™ 1y 1D P lg 1D 4
where 1. € F(u, D), is called a formal recursion operator for equation
(1) if
Di(N) = FsoAN—No Fkx.

The central result of the Symmetry Approach can be represented by
the following Theorem:

Theorem 1. If equation (1) possess an infinite hierarchy of symmetries
of arbitrary high order, then there exists a formal recursion operator.



The ring of differential polynomials R.
The sequence of dynamical variables {ug,ui,us,...}

up =u, up =0y u, nE ZL>g.

We denote by R the ring of polynomials over C of infinite number of
dynamical variables.

Natural gradation:

0
X = Zuk—
k>0 8uk

R= P R", R"-R"CR"™, R'={fcR|Xf=nf}.
nEZ_|_



Weighted gradation: Let u be a positive rational number, which we
call the weight of w and denote W (u) = u. We define the weights of
the dynamical variables as

Wu;) = p =+ .

The weight of a monomial is defined as the sum of the weights of
dynamical variables which contribute to the monomial including their
multiplicities. We say that a polynomial f € R is a homogeneous
polynomial of weight X W (f) = X\ if every its monomial is of the weight
A.

“Little oh”:
f=o(R") iff fc @ R"

k>n



Symbolic representation R of differential ring R.

The symbolic representation is a simplified form of notations and rules
for formal Fourier images of dynamical variables u,,, differential poly-
nomials and formal series with coefficients from the ring R ¢ C.

Let a(k,t) denotes a Fourier image of u(x,t)

u(z, t) = /_O:O ik, 1) exp(inz) dr .

Then we have the following correspondences:

—~

ug — U, u] — 1KU, ... um — (ix)"a.



The Fourier image of a monomial upum Can obviously be represented
as
[(ir1)"(ir2)™ 4 (i)™ (ik1)™]

2

UnUm = // 0(k1 + ko — k)

w(k1,t)u(ko,t) exp(ice) dr1 dro dk

Therefore
Un U, —
/ 0(k1 + K2 — K) i )" (iri2) —; (i) liri1) ]ﬁ(m, t)u(ko,t) dry dry .

We shall simplify notations further omitting the delta function, inte-
grations, replacing ikn by &, and @(k1,t)a(ko,t) by u2. Thus we shall
represent the monomial upum, by a2 symbol
2 l6765" + €5¢T

2

UnUm,



ng. ni. No

Following this rule we shall represent any differential monomial ug”u; uy< - - -

of degree
m=mng+mny+---+ng
by the symbol

no, ni Ng m /0 0 1 1 2
ug ug o ugt = U ET Gl Engtng Smgtng 1 S

where m = ng +n1 + --- + ngq and the brackets () mean the symmetri-
sation over the group of permutation of m elements (i.e. permutation
of all arguments ;)

<f(€17‘ 7£m) Z flo(&1), .., 0(Em)) -

For example

2 2 2 2
up — uéy, u% — u2£:13§:23, u3u2 u4£1 T8 ;I: 5 1 & :



The symbolic representation R of the differential ring R can be defined
as follows.

1. The sum of differential monomials is represented by the sum of the
corresponding symbols.

2. To the multiplication of monomials f and g with symbols

f_>upa'(€17°"7€p)7 gﬁuqb(gla'“)gq}

corresponds the symbol

fg — up+q<a'(£17 ooy gp)b(gp—l—la ooy gp—|—q>> .

3. The derivative D(f) of a monomial f with the symbol vPa(&q,...,&p)
IS represented by

D(f) =P+ &S+ -+ &alér, . &p) -



Symmetry Approach in symbolic representation

Consider an evolutionary equation

ut=F(un,un_1,...,u1,u) cR

We can always represent F' as

F=Fu+Fu+...+Fu, FuleR,i=1,...,s

In the symbolic representation it can be written as

2 S 1
up = ww () + S a2(6n, &)+ = ww(E) + Y —ailér. @) = F, (2)
1=2

where w(é1),a;(&q,...,&;) are symmetrical polynomials. We will also
assume that degw(&1) > 2.



Symmetries of equation (2), if they exist, can be found recursively:
Proposition 1. Expression

wr = uQ(E) + Y LA (e, ) = G (3)

i>2 J

is a symmetry of (2) if and only if functions A;(&q,...,€;) determined
as follows are polynomials in &1, ...,§;

(&1 + &2) — 2(&1) — 2(€2)

Az(£1,82) = w(é1 + &) —w(€1) —w(és)

as(£1,€2),

Q&1+ &2+ &3) — Q2(&1) — Q2(&2) — Q2(€3)
w(é1 + & +8&3) —w(€1) —w(é2) — w(€3)

A3(£1,£2,83) = a3(£1,£2,€3) +

_|_§<A2(€1, {2 +€3)a2(€2,83) — aa(€1,82 + £3)A2(£2,€3))
2 w(€1 + &2+ &3) —w(é1) —w(€2) —w(€3)




G2(€1, oy Emat1)
GY(&1, - &m+1)

Am+1(€17-"7£m—|—1) — a’m—|—1(€17'°~7£m—|—1)+

GY(E1, oy Ema1) L

m—1 m + 1 m—+1
<Z i Aiy1€1,58, D &am—j+1(Eix1, - Emt1) —
j=1 J k=j+1
m—1 m—+1
m-+ 1
— ?am—j-u(ﬁl,-.-,im—j, > &) Air1Em—jt1 - Emt1))
j=1J k=m—j+1
where

Gw(fla- 75771) — W( Z gn) Z W(fn) GQ(flw afm) — Q( Z fn) Z Q(fn)

=1 n=1 n=1



Definition 3. We will call G € R an approximate symmetry of degree
p Iif
(G, F] = o(RP)



Theorem 2. (Sanders—\Wang) Consider two equations of the form

(A) w=usl+ ) “ai(€,. ., 8)
i>1 ¢
and

o
(B) w=ul’+ ) —bi(&,--.,&)
i>1 °
Suppose that

° deg(ai) <n, deg(bz-) <n,
o ax(£1,&2) = b2(£1,82)

o a3(£1,82,£3) = b3(£1,£2,83)



Then if equations (A) and (B) have symmetries of the form

’U/r—ug]_ _I_Z A(glw“vgi)?

1>1 U
and
’u,7-—’U,£1 +Z B(fl)"')fi)a
1>1 U
then

a;i(€1,-..,&) =b(&1,...,&), Ai(€r,...,&) = Bi(&1, ..., &),

i=4,5,....



Proof From Proposition 2 we have

({1 + &)™ =& — &5
(€1 + &) —&) - &5

(€1 + &)™ — &7 — &,
(1 4+ &) — &7 — &5 2(£1,£2).

Therefore A>(&1,&5) = Bo(£1,£>). For cubic terms we obtain
(§1+ & +83)" & — &0 — &5
(€1 + &+ 83)"— &7 — 65 — &3

+L3) (&1, 62, £3)

(1 + & +&)M—E -5 = &8
(§1+&+863)"—E7 — €5 — &3
+LB3) (€1, 62,83)

Terms L) (&1, 6o,€&3) and L) (g1, &5, €3) depend only on terms of de-
gree 1 and 2 and therefore L(3) (¢, &5,£3) = LB (&4, 65, 63)

An(£1,82) =

as(£1,£2),

Bo(£1,82) =

A3(£1,82,83) = a3(£1,£2,€3) +

B3(£1,£2,83) =

b3(£1,62,83) +



and hence A3(£1,£7,&3) = B3(£1,62,£3). Consider now 4th degree
terms:

1+ F+&)m =& —-- =&

Ag(&1,-..,84) = A VR S— as(&1,---,84) +
1
+ LM (q,...,€4)
Ba(er,... &) = it 8T L T b e+

1+ F+&) - - —&a
+E(4)(£17 c e 754)
Terms L) (&1, 65, €3,€64) and LM (€1, 65, €3,€4) are equal. Therefore

1+ +&)m =& —--- =&
Agq — By = —b
TP e g g T
Lemma 1. (F. Beukers) Polynomials
o = (G ) - - =g

are irreducible over C if s > 4 and n > 1.

Therefore aq = by, Ay = B4. Applying now the above arguments in-
ductively we prove the theorem. ¢



As an example let us consider equation

ur = unp +uuy, n=2,3,....

This is a homogeneous equation with W(u) = n — 1 and total weight
2n — 1. In the symbolic representation it can be rewritten as

.2
up = u€y + 5(51 + &2).

Without loss of generality let us suppose that it possess a higher sym-
metry of the form

02
ur = ufy’ + §A2(§1,§2) +
Then for A>(&1,&>) we obtain

(€14 &)™ — e — g
(61 F &) — e —gn 1T 62

Ax(&1,82) =



Let us define hp(z,y) = (z 4+ y)" — 2™ — y".

Theorem 3. (Lech-Mahler) Let ¢q,¢co,...c,. and C1,Co,...,Cr be non-
zero complex numbers. Suppose that none of the ratios C;/C;, i # j
is a root of unity. Then the equation

c1CT 4+ c2Cy + -+ 4+ .C =0

in the unknown integer n has finitely many solutions.



It is convenient to introduce an affine coordinate ¢ = z/y. Applying
the Lech-Mahler theorem to the equation

(14+q¢)"—q¢"—-1=0

we find that this equation possess infinitely many solutions in integer
n if and only if

e ¢ =0, any n,

e g = —1, odd n,

e 1l+qg+¢°=0, n=5mod86,

e 1+ g+ ¢2=0 (double roots), n =1mod6



Theorem 4. (F. Beukers.) Polynomials hn(x,y) can be factorized as
hn(z,y) = tn(z,y)gn(x,y), where
(gn(z,y),g1/(xz,y)) =1, I #n and

tn(x,y) zry, Vn

xy(r+vy), mn=1 mod 2,
zy(z +y)(@* +2y+y°), n=5 mod 6
ry(z +y)(a® + 2y +y°)% n=1 mod 6

From this theorem it follows that if the equation possess the approx-
imate symmetry of degree 2 then n = 2,3,5 or 7. Then using the
conditions of the existence of approximate symmetries of degree 3 one
can prove that the equation is integrable for n = 2,3 and not integrable
for any other n.



Classification theorem of scalar homogeneous evolutionary equa-
tions

Theorem 5. (Sanders—Wang) If a homogeneous equation with W (u) >
0

ut = un + Flu]

possess an infinite hierarchy of higher symmetries then it is up to re-
scaling one of the following

ur = uo + uui,

ur — us _I_ uuq,

ur — U3 _I_ ’U,%,

ug = uz+ U2U]_,

ur = u3z -+ 9uu% —+ 3u2u2 + 3u4u1,

uy = ug + buuz + Sujuo + 5u2u1,
5

ur = us + bujusz + gu:f,

25

ur = ug + buuz + ?u1u2 + 5u2u1,
15 5

w = wus+ Sujuz+ T”% + gui

w = us+ 5(up —u)ug + Su% — 20uuqun — 5u:1)° + 5utug



Non-evolutionary equations.
_ —1 —1
Utt — a18£u+a28gut+f(uauxa--w@g ’U,,’U,t,’U,ta;,...,ag Ut)

p>q, aj,apeC

Example — the Boussinesq equation

Uttt — aﬁu + (Uz)a:a:

Every non-evolutionary equation can always be replaced by a system
of two evolutionary equations

U = v,
{ v = a108u + axdiv + f(u, ug, . . . ,85_1% V, Vg, .., %_11))
If f = D.(f), then the system

Ut — Uy,
-1 ~
vp = 0108 “u+ a0iv+ f
also represents our non-evolutionary equation.



For example, the Boussinesq equation uy; = 97u + (u?)zz can be rep-
resented by

(A) ut — v, Ut — 3:?, u + (UQ):L':U,

(B) ut = vz, v =03u—+ (u?)z,

(C) wt = vaw, vt = O2u+ u?,



We restrict our attention to the systems of the form:

Even order equations:

Ut — Vg,
{ v = 102" Tu + 0% + f(u,ug, ..., 02" %u, v, vy, ..., 00 10)
Odd order equations:
u = 0,0,
2 1-— _ _
v = wn-l- "u+ flu,ug, ..., 02" Tu, v, vy, ..., 02T,

r=0,1,...,n.



Approximate Symmetries in the Symbolic Representation. Nec-
essary Integrability Conditions.

Our system in the symbolic representation takes the form

Ut — UC].) 5 1
v = aqué] T+ azu(i+
+ >0 i guviTlay i (&1, 5 8¢y Co—i)

Symmetry

wr = BrutP 4 BooCT T ST S Wt TIA o (€, € Gl Cei)

s>21=0

“Generic case' :

a? —1

4o + oz%, —— ] =

a£0,4+1, ar=1

and B; =45, f2=1.



Affine coordinate q: &1 =gq, & = 1.

(A20(g,1),A02(g,1),A411(g,1), A1 1(1, )7,

_
A
@ (a2.0(g,1),a02(g,1),a1,1(q,1),a1.1(1,9))".



Let us introduce the following polynomials

S1(a; ) =14+a)14+¢)"—(1—-a)(1+4¢")
So(a;g) =(1-a)(1+¢)" -1+ a)d" -1+«
S3(; ) =(1-a)(1+g)"-(1-a)d"—-1—-«

Sa(q) =14+ —-1-4"

and

Mi(a,8;¢) =(14+a+68)14+¢)" -1 —-—a+6)(14+¢")
My(o,8,9) =(1—-a+8)A+)"—-A4+a+8)d"—-14+a—-p
M3(o,8;¢) =1 —-a+8)A+¢)" -1 -a+p8)¢d" —1—-a-p

Ma(a, Big) = (1 —a+8)((14+¢)"—1—g")



Proposition 2. Expression

wr o= D gy 4
+ 3 3w A (€6 G Comi)

s>21=0
iIs an approximate symmetry of degree 2 of system

y

ut — Ugla
1 2n—1
| vt = g rust" T 4 o
\ + X0 iguviTa; s (&1, -5 &, G5 Comi)

if and only if functions A;>_;(q,1), i = 0,1,2, determined as follows
are polynomials in q:

A =T"Y(Fy(e;q), Fi(—a; q), Fa(a; q), Fo(—0; q))

@ =T 1 (f1(e; q), f1(—a; q), f2(a; @), f3(a; q))

( 4 (1—a)?¢g" 1 1—a (1-a)¢"? \
4 14+a)?¢" ! 1+a (1+a)" !
4 (1—a®)g" 1 1—a QA4+a)g 1
\ 4 (1- a)g" 1 14+a (1-a)g 1 )




2 [(1 —a)Z1(e, 85 q9) — Za(e, B, C])]

Fi(o, B85 9) = a1 — ) (1 F g1 :
2 [23(—a,6; q) — Z2(a, B; q)]
Fo(a, By q) = GRS :
where
) . M4(057B; q) )
Z4<aaﬁvQ) — S4(Q) fl(a1Q)7

In particular, functions Z,(x«, 3;q) must be polynomials in gq.



“Degenerate’” dispersion relations

Functions
M;(+a, 8; q)

S (<o @) fi(xa; q)

Zi(£a, B, q) =

must be polynomials in gq.

Consider two of these conditions Z1(+a, 3;q). Recall that

S1(a;q) =1+ a)A+¢)" - (1 —a)(1+q")
Mi(a,8;¢) =(1+a+8)1+¢)" -1 —-a+8)(1+4q")
Suppose that p,s # 0,—1 and the values of «a, 8 are such that

Mi(e,B8,p) =0, Si(a;p) =0

Mi(—o,8;5) =0, Si(—a;s)=0



T hen

1+p"+s"+ (ps)" = ((1+p)(1+s))" =0,
L+p"+s"+(@s)" —((1+p)(1+s)" =0 (4)

Applying the Lech-Mahler theorem we obtain that if equation (4) has
infinitely many solutions in m then

p,s and (1 4+ p)(1 + s) are roots of unity.



T herefore

p°s2 + 2sp° + 2ps° + p° +s°+3ps+2s+2p+1=0

Applying the Smyth's algorithm we obtain (up to the change p —
1

s — 1, p—s,s— p) the following solutions:

511

1) pZe%, s=e6, nm=1,57,11modl2,

2) p=e5,s=e5, nm=1,37,9m0dl10,



271

For n = 3 the possible common root is p = e 5 . Substituting this into
S1(a;p) = 0 we find

For n =5 the possible common root is p = e%. For o we find

5 a?—1 1
33’ 4 54

o =



Odd order non-evolutionary equations.
Theorem 6. If a homogeneous system with W(u) > 0

ut — Ur,
vt = Uppt1—p + flu,v], =0,1,...,n, n=1,2,3,...,

possess an infinite hierarchy of higher symmetries then it is (up to
re-scaling v — au,v — fv,t — yt,x — dz, o, 3,7v,0 = const)

)
ut — v,
| vt = u2 + 3uvy + vug — 3u2u1,

,

ut — v1,
v = (Dg 4+ w)?™(u) —v?, n=1,23,....

\



Even order non-evolutionary equations for n =2,3,5

We remind the form of the system in consideration

ut =— 71, (5)
vp = aiuop—1 + aovp + flu,v] ;= Flu,v] € Ry4on—1

Case n = 2.

It is easy to show that if system (5) is homogeneous and has non-zero
quadratic terms, then W(u) = w = 1,2,3. There are no homogeneous
integrable systems (5) with n = 2, w = 3 and non-zero quadratic terms.

The most general form of the system (5) in the case of w =2 is
o (6)
Vg = a1u3 + apvp + cluul + couv,

Proposition 3. System (6) possess an infinite hierarchy of higher sym-

metries if and only if ao = co = 0. By obvious re-scaling it can be put
in the form

ut — U1
vy = u3z + 2uug



The most general form of the system (5) in the case of w =1 is

ur — U1 (7)
2
vt = o1u3 + axvy + ciuun + cpui + c3ulv + cquvy +
—I—c5112 + c6u2u1 + C7u2v + 08u4

Proposition 4. System (7) posses an infinite hierarchy of higher sym-



metries if and only if (up to a re-scaling u — au, x — Bx, t — ~t)

;

U = v1
vt:u3—|—u%

] ut =11
\ ’Ut:u3—|—2u1fv—|—2u2u1
[ up = vq

v = u3z + 2u1v + 4uvy — 6u2u1

U = v1

<

\ vt=u3—|—4uu2—|—3u%—v2—|—6u2u1—|—u4
[ up = vy

¢ v = ausz + vo + 4dauun + 30411% + uiv 4+ 2uvq
2 -+ 6au2u1 -+ u?v -+ au®
U = v1
v = vo + 2uvy
U = v1
T a2 o) 22
t =vp —uf +2ujv —v
U = v1
v = v — 2uun — Qu% + 2uqv + 6uvy — 12u2uq




Case n = 3.

It is easy to show that if system (5) is homogeneous and has non-
zero quadratic terms, then W(u) = w = 1,2,3,4,5. There are no
homogeneous integrable systems (5) with n = 3, w = 3,4,5 and non-
zero quadratic terms.

The most general homogeneous system (5) corresponding to w = 2
can be written as

1, (8)
aius + arvz + Dz[ciuus + czu% + csu’] +

“+c3uvy + cqvuq.

ut

Ut



Proposition 5. If system (8) possesses an infinite hierarchy of higher
symmetries then, up to re-scalings v — au, x — Bx, t — ~t, it is one of
the list

uty — vi,

<

\ vt=2u5—|—v3—|—Da;[2uu2—|-u%—|—%u3]

) ut:;-)17 1

| vt = gus + vz + Dy luus + uv + §u3]

) Ut:’U]_,

| v = u5—|—v3—|—Dm[2uu2—|—2u1—|—2uv—|— ]

) uty — vq,

| vt = v3 T uvy + uv

) uy — vi,
'Ut=v3—|—2uu3—|—4u1u2—4u1v—8uv1—24u2u1



Homogeneous systems of equations (5) with w = 1 can be written in
the form:

v1, (9)
a1us + arv3 + clu% + coujuz + czuug + cqurv + csuqvy +
“+ceuvo + C7u:13 + cguuqiuo + 69u2’cL3 -+ clou2v1 +

“+ciiuuqv + —|—012u2u% -+ 613u3u2 -+ cl4u3v -+

+ec15utug + creul

Ut

Ut

Proposition 6. If system (9) possesses infinitely many 4rd degree ap-
proximate symmetries then, up to re-scalings v — au, x — pBx, t — ~t,



it is one of the equations in the following list

’

ut — Vg

vy = 2ug + v3 + u% + 2uqusz + 24—7u:f

ut — U]

v = %u5 + v3 + ujusz + uivy + %u:l)’

U = vq

v = %u5 + v3 + 2ujuz + %u% + 2uqivq + %u:l)’
U = vq

V¢ = V3 + uqv1

U = vq

vy = aus + vz + 10ozu§ + 15auqusz + 6auug + vuo—+
+3uiv1 + 3uvy — v + 15ozu:1)’ -+ 15ozu2u:3—|-
+60auuius + 3uuqv + 3u2v1 -+ 45au2u%—l—
+20au3u2 -+ u3v -+ 15au4u1 -+ au®

ur — V1

v = ug + 6uug + 15uqusz + 1011% — ’02—|—

—|—15u2u3 -+ 15u:1)’ + 60uuqus + 45u2u%—|-

—|—20u3u2 + 15u%uq + u®



ut = v1
vy = v3 + 3uivy + 3uvy + 3u2v1
{ U = v1

vt=v3—u%—|—2u2v—v2



Case n

= 5.

Proposition 7. The following systems posses infinite hierarchies of
higher symmetries:

N\

(ut—fuz

Ut — 4U8 + (%5 + 3’LL’LL6 —+ 9u1u5 —|— uzu —|— 35 _|_
—|—2u1v2 + 4uvz + 20u2ug + 8Ouu1U3 + 60uu —|—

’

\

(

—|—88u1u -+ @ue‘u -+ @u ul -+ %fuﬁ

Ut — U1
1
Uy = —ggU9 + Ug + 2 guTUL + 2 SUEUD + 2 Susu3 + 12u£
—buzvy — 1—5’LL2?)2 — 1Ou1v3 44511,511% 725u1u2’a4—
745,“%“1 45 2u + 45u%0 + 225u3u +
675 2 405
T8 "gusug — 16 Teu

U = v1
v = vg + 2uoug + 6uzug — 6uzv — 22usv1 — 30uUivo—
—20uv3 + 96uuqiv + 96u2vq —

—2Da;[8u2u4 + 32uuquz + 13u%u2 + 24uu%]+
+120D [4u3us + 6u?uf] — 3840uuq

(10)

(11)

(12)



Camassa-Holm type equations equation

m=u—u>, MM =cmui+ umq

Camassa-Holm equation can be rewritten as

ur = A(—uuz + (¢ + 1)uuqy — cuqus), c#0, (13)

where operator A = (1 — D?)~1.

We extend the differential ring R

1
RA=R, RYA=RAUAMRY, RX'=RAUJARY),

Symbolic representation of operator A is A — 1_1772. The symbolic

representation of elements of differential rings R”A IS obvious. For
example if A€ RQ and

a(€1,---,&n)

u"a(€1,...,&n) => A(A) “1_(§1+...+§n)2




Theorem 7. (Mikhailov-VN) Equation

ur = A(—uuz + (¢ + 1)uuy — cuqun), c#0

is integrable if and only ifc=2 orc=3



