Perturbative Symmetry Approach

Alexander Mikhailov, Vladimir Novikov, Jing Ping Wang

Mini Programme on Algebraic Theory of Differential Equations, ICMS, Edinburgh
8th August 2006

Symmetry Approach - basic definitions and facts

Suppose we have an evolutionary partial differential equation

$$u_t = F(u_n, ..., u_1, u), \quad n \ge 2$$
 (1)

where

$$u = u(x,t), u_1 = u_x(x,t), u_2 = u_{xx}(x,t), \dots$$

In the Symmetry Approach it is assumed that all functions such as F depend on a finite number of variables and belong to a proper differential field $\mathcal{F}(u,D)$ generated by u and the derivation D:

$$D = u_1 \frac{\partial}{\partial u_0} + u_2 \frac{\partial}{\partial u_1} + u_3 \frac{\partial}{\partial u_2} + \cdots,$$

which represents the derivation in x.

Partial differential equation $u_t = F$ defines another derivation of the field $\mathcal{F}(u,D)$

$$D_t = F \frac{\partial}{\partial u_0} + F_1 \frac{\partial}{\partial u_1} + F_2 \frac{\partial}{\partial u_2} + \cdots$$
$$F_k = D^k(F) \in \mathcal{F}(u, D)$$

commuting with D.

A symmetry of equation $u_t = F$ can be defined as a derivation D_{τ}

$$D_{\tau} = G \frac{\partial}{\partial u_0} + G_1 \frac{\partial}{\partial u_1} + G_2 \frac{\partial}{\partial u_2} + \cdots$$

of the field $\mathcal{F}(u,D)$, where $G_k = D^k(G) \in \mathcal{F}(u,D)$, which commutes with derivations D and D_t .

This definition is equivalent to the following definition, which we will be using in what follows

Definition 1. Function $G \in \mathcal{F}(u, D)$ generates a symmetry of the equation (1) if the differential equation

$$D_{\tau}(u) = G$$

is compatible with (1).

The Frechét derivative of $a \in \mathcal{F}(u, D)$ is defined as a linear differential operator of the form

$$a_* = \sum_k \frac{\partial a}{\partial u_k} D^k.$$

Using the Frechét derivative one can express the derivation with respect to t as

$$D_t(a) = a_*(F), \quad a \in \mathcal{F}(u, D)$$

The Lie brackets for any two elements $a, b \in \mathcal{F}(u, D)$ is defined as

$$[a,b] = a_*(b) - b_*(a)$$
.

In these terms the definition of symmetry of equation (1) can be formulated as follows: function $G \in \mathcal{F}(u,D)$ generates a symmetry of equation (1) if

$$[F, G] = 0.$$

The order of the symmetry

$$\operatorname{ord}(G) = \deg(G_*)$$

Formal pseudo-differential series, which for simplicity we shall call formal series, are defined as

$$A = a_m D^m + a_{m-1} D^{m-1} + \dots + a_0 + a_{-1} D^{-1} + \dots$$

The product of two formal series is defined by

$$aD^{k} \circ bD^{m} = a(bD^{m+k} + C_{k}^{1}D(b)D^{k+m-1} + \cdots),$$

where $k,m\in\mathbb{Z}$ and the binomial coefficients are defined as

$$C_n^j = \frac{n(n-1)(n-2)\cdots(n-j+1)}{j!}$$
.

Definition 2. The formal series

$$\Lambda = l_m D^m + l_{m-1} D^{m-1} + \dots + l_0 + l_{-1} D^{-1} + \dots,$$

where $l_k \in \mathcal{F}(u,D)$, is called a formal recursion operator for equation (1) if

$$D_t(\Lambda) = F_* \circ \Lambda - \Lambda \circ F_*$$
.

The central result of the Symmetry Approach can be represented by the following Theorem:

Theorem 1. If equation (1) possess an infinite hierarchy of symmetries of arbitrary high order, then there exists a formal recursion operator.

The ring of differential polynomials \mathcal{R} .

The sequence of dynamical variables $\{u_0, u_1, u_2, \ldots\}$

$$u_0 = u, \quad u_n = \partial_x^n u, \quad n \in \mathbb{Z}_{\geq 0}.$$

We denote by $\mathcal R$ the ring of polynomials over $\mathbb C$ of infinite number of dynamical variables.

Natural gradation:

$$X = \sum_{k \ge 0} u_k \frac{\partial}{\partial u_k}$$

$$\mathcal{R} = \bigoplus_{n \in \mathbb{Z}_+} \mathcal{R}^n, \quad \mathcal{R}^n \cdot \mathcal{R}^m \subset \mathcal{R}^{n+m}, \quad \mathcal{R}^n = \{ f \in \mathcal{R} \mid Xf = nf \}.$$

Weighted gradation: Let μ be a positive rational number, which we call the weight of u and denote $W(u) = \mu$. We define the weights of the dynamical variables as

$$W(u_i) = \mu + i.$$

The weight of a monomial is defined as the sum of the weights of dynamical variables which contribute to the monomial including their multiplicities. We say that a polynomial $f \in \mathcal{R}$ is a homogeneous polynomial of weight $\lambda \ W(f) = \lambda$ if every its monomial is of the weight λ .

"Little oh":

$$f = o(\mathcal{R}^n)$$
 iff $f \in \bigoplus_{k > n} \mathcal{R}^k$

Symbolic representation $\widehat{\mathcal{R}}$ of differential ring \mathcal{R} .

The symbolic representation is a simplified form of notations and rules for formal Fourier images of dynamical variables u_n , differential polynomials and formal series with coefficients from the ring $\mathcal{R} \oplus \mathbb{C}$.

Let $\hat{u}(\kappa,t)$ denotes a Fourier image of u(x,t)

$$u(x,t) = \int_{-\infty}^{\infty} \hat{u}(\kappa,t) \exp(i\kappa x) d\kappa.$$

Then we have the following correspondences:

$$u_0 \rightarrow \hat{u}, u_1 \rightarrow i\kappa \hat{u}, \dots u_m \rightarrow (i\kappa)^m \hat{u}.$$

The Fourier image of a monomial u_nu_m can obviously be represented as

$$u_n u_m = \iiint \delta(\kappa_1 + \kappa_2 - \kappa) \frac{[(i\kappa_1)^n (i\kappa_2)^m + (i\kappa_2)^n (i\kappa_1)^m]}{2}$$
$$\hat{u}(\kappa_1, t) \hat{u}(\kappa_2, t) \exp(i\kappa x) d\kappa_1 d\kappa_2 d\kappa,$$

Therefore

$$\lim_{n \to \infty} u_n u_m \to \lim_{n \to \infty} \frac{u_n u_m}{\int \int \delta(\kappa_1 + \kappa_2 - \kappa) \frac{[(i\kappa_1)^n (i\kappa_2)^m + (i\kappa_2)^n (i\kappa_1)^m]}{2} \widehat{u}(\kappa_1, t) \widehat{u}(\kappa_2, t) d\kappa_1 d\kappa_2.$$

We shall simplify notations further omitting the delta function, integrations, replacing $i\kappa_n$ by ξ_n and $\hat{u}(\kappa_1,t)\hat{u}(\kappa_2,t)$ by u^2 . Thus we shall represent the monomial u_nu_m by a symbol

$$u_n u_m \to u^2 \frac{[\xi_1^n \xi_2^m + \xi_2^n \xi_1^m]}{2}$$

Following this rule we shall represent any differential monomial $u_0^{n_0}u_1^{n_1}u_2^{n_2}\cdots$ of degree

$$m = n_0 + n_1 + \dots + n_q$$

by the symbol

$$u_0^{n_0}u_1^{n_1}\cdots u_q^{n_q} \to u^m \langle \xi_1^0\cdots \xi_{n_0}^0 \xi_{n_0+1}^1\cdots \xi_{n_0+n_1}^1 \xi_{n_0+n_1+1}^2\cdots \xi_m^q \rangle$$

where $m=n_0+n_1+\cdots+n_q$ and the brackets $\langle \rangle$ mean the symmetrisation over the group of permutation of m elements (i.e. permutation of all arguments ξ_i)

$$\langle f(\xi_1,...,\xi_m)\rangle = \frac{1}{m!} \sum_{\sigma \in \Sigma_m} f(\sigma(\xi_1),...,\sigma(\xi_m)).$$

For example

$$u_n \to u\xi_1^n$$
, $u_3^2 \to u^2\xi_1^3\xi_2^3$, $u^3u_2 \to u^4\frac{\xi_1^2 + \xi_2^2 + \xi_3^2 + \xi_4^2}{4}$.

The symbolic representation $\widehat{\mathcal{R}}$ of the differential ring \mathcal{R} can be defined as follows.

- 1. The sum of differential monomials is represented by the sum of the corresponding symbols.
- 2. To the multiplication of monomials f and g with symbols

$$f \to u^p a(\xi_1, ..., \xi_p), \ g \to u^q b(\xi_1, ..., \xi_q)$$

corresponds the symbol

$$fg \to u^{p+q} \langle a(\xi_1, ..., \xi_p) b(\xi_{p+1}, ..., \xi_{p+q}) \rangle$$
.

3. The derivative D(f) of a monomial f with the symbol $u^p a(\xi_1,...,\xi_p)$ is represented by

$$D(f) \to u^p(\xi_1 + \xi_2 + \cdots + \xi_p)a(\xi_1, ..., \xi_p)$$
.

Symmetry Approach in symbolic representation

Consider an evolutionary equation

$$u_t = F(u_n, u_{n-1}, \dots, u_1, u) \in \mathcal{R}$$

We can always represent F as

$$F = F_1[u] + F_2[u] + \ldots + F_s[u], \quad F_i[u] \in \mathbb{R}^i, \ i = 1, \ldots, s$$

In the symbolic representation it can be written as

$$u_t = u\omega(\xi_1) + \frac{u^2}{2}a_2(\xi_1, \xi_2) + \dots = u\omega(\xi_1) + \sum_{i=2}^s \frac{u^i}{i}a_i(\xi_1, \dots, \xi_i) = \widehat{F},$$
 (2)

where $\omega(\xi_1), a_i(\xi_1, ..., \xi_i)$ are symmetrical polynomials. We will also assume that $\deg \omega(\xi_1) \geq 2$.

Symmetries of equation (2), if they exist, can be found recursively: **Proposition 1.** Expression

$$u_{\tau} = u\Omega(\xi_1) + \sum_{j \ge 2} \frac{u^j}{j} A_j(\xi_1, ..., \xi_j) = G$$
 (3)

is a symmetry of (2) if and only if functions $A_j(\xi_1,...,\xi_j)$ determined as follows are polynomials in $\xi_1,...,\xi_j$

$$A_2(\xi_1, \xi_2) = \frac{\Omega(\xi_1 + \xi_2) - \Omega(\xi_1) - \Omega(\xi_2)}{\omega(\xi_1 + \xi_2) - \omega(\xi_1) - \omega(\xi_2)} a_2(\xi_1, \xi_2),$$

$$A_3(\xi_1, \xi_2, \xi_3) = \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \Omega(\xi_1) - \Omega(\xi_2) - \Omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \Omega(\xi_1) - \Omega(\xi_2) - \Omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \Omega(\xi_1) - \Omega(\xi_2) - \Omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1) - \omega(\xi_2) - \omega(\xi_2)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1 + \xi_2)}{\omega(\xi_1 + \xi_2 + \xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3) - \omega(\xi_1 + \xi_2)}{\omega(\xi_1 + \xi_2 + \xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3)} a_3(\xi_1, \xi_2, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3)}{\omega(\xi_1 + \xi_2 + \xi_3)} a_3(\xi_1, \xi_3) + \frac{\Omega(\xi_1 + \xi_2 + \xi_3)}{\omega(\xi_1 + \xi_3 + \xi_3)} a_3(\xi_1, \xi_3) + \frac{\Omega(\xi_1 + \xi_3 + \xi_3)}{\omega(\xi_1 + \xi_3 + \xi_3)} a_3(\xi_1 + \xi_3) + \frac{\Omega(\xi_1 + \xi_3 + \xi_3)}{\omega(\xi_1 + \xi_3 + \xi_3)} a_3(\xi_1 + \xi_3) a_3(\xi_1 +$$

$$+\frac{3\langle A_2(\xi_1,\xi_2+\xi_3)a_2(\xi_2,\xi_3)-a_2(\xi_1,\xi_2+\xi_3)A_2(\xi_2,\xi_3)\rangle}{\omega(\xi_1+\xi_2+\xi_3)-\omega(\xi_1)-\omega(\xi_2)-\omega(\xi_3)}$$

$$A_{m+1}(\xi_1, ..., \xi_{m+1}) = \frac{G^{\Omega}(\xi_1, ..., \xi_{m+1})}{G^{\omega}(\xi_1, ..., \xi_{m+1})} a_{m+1}(\xi_1, ..., \xi_{m+1}) +$$

$$G^{\omega}(\xi_1,...,\xi_{m+1})^{-1} \cdot \Big[$$

$$\langle \sum_{j=1}^{m-1} \frac{m+1}{m-j+1} A_{j+1}(\xi_1, ..., \xi_j, \sum_{k=j+1}^{m+1} \xi_k) a_{m-j+1}(\xi_{j+1}, ..., \xi_{m+1}) -$$

$$-\sum_{j=1}^{m-1} \frac{m+1}{j+1} a_{m-j+1}(\xi_1, ..., \xi_{m-j}, \sum_{k=m-j+1}^{m+1} \xi_k) \cdot A_{j+1}(\xi_{m-j+1}, ..., \xi_{m+1}) \rangle \right]$$

where

$$G^{\omega}(\xi_1, ..., \xi_m) = \omega(\sum_{n=1}^m \xi_n) - \sum_{n=1}^m \omega(\xi_n), G^{\Omega}(\xi_1, ..., \xi_m) = \Omega(\sum_{n=1}^m \xi_n) - \sum_{n=1}^m \Omega(\xi_n)$$

Definition 3. We will call $G \in \mathcal{R}$ an approximate symmetry of degree p if

$$[G, F] = o(\mathcal{R}^p)$$

Theorem 2. (Sanders–Wang) Consider two equations of the form

(A)
$$u_t = u\xi_1^n + \sum_{i>1} \frac{u^i}{i} a_i(\xi_1, \dots, \xi_i)$$

and

(B)
$$u_t = u\xi_1^n + \sum_{i>1} \frac{u^i}{i} b_i(\xi_1, \dots, \xi_i)$$

Suppose that

- $\deg(a_i) < n$, $\deg(b_i) < n$,
- $a_2(\xi_1, \xi_2) \equiv b_2(\xi_1, \xi_2)$
- $a_3(\xi_1, \xi_2, \xi_3) = b_3(\xi_1, \xi_2, \xi_3)$

Then if equations (A) and (B) have symmetries of the form

$$u_{\tau} = u\xi_1^m + \sum_{i>1} \frac{u^i}{i} A_i(\xi_1, \dots, \xi_i),$$

and

$$u_{\tau} = u\xi_1^m + \sum_{i>1} \frac{u^i}{i} B_i(\xi_1, \dots, \xi_i),$$

then

$$a_i(\xi_1, \dots, \xi_i) \equiv b_i(\xi_1, \dots, \xi_i), \ A_i(\xi_1, \dots, \xi_i) \equiv B_i(\xi_1, \dots, \xi_i),$$

$$i = 4, 5, \dots.$$

Proof From Proposition 2 we have

$$A_2(\xi_1, \xi_2) = \frac{(\xi_1 + \xi_2)^m - \xi_1^m - \xi_2^m}{(\xi_1 + \xi_2)^n - \xi_1^n - \xi_2^n} a_2(\xi_1, \xi_2),$$

$$B_2(\xi_1, \xi_2) = \frac{(\xi_1 + \xi_2)^m - \xi_1^m - \xi_2^m}{(\xi_1 + \xi_2)^n - \xi_1^n - \xi_2^n} b_2(\xi_1, \xi_2).$$

Therefore $A_2(\xi_1, \xi_2) \equiv B_2(\xi_1, \xi_2)$. For cubic terms we obtain

$$A_{3}(\xi_{1},\xi_{2},\xi_{3}) = \frac{(\xi_{1} + \xi_{2} + \xi_{3})^{m} - \xi_{1}^{m} - \xi_{2}^{m} - \xi_{3}^{m}}{(\xi_{1} + \xi_{2} + \xi_{3})^{n} - \xi_{1}^{n} - \xi_{2}^{n} - \xi_{3}^{n}} a_{3}(\xi_{1},\xi_{2},\xi_{3}) + L^{(3)}(\xi_{1},\xi_{2},\xi_{3})$$

$$B_{3}(\xi_{1}, \xi_{2}, \xi_{3}) = \frac{(\xi_{1} + \xi_{2} + \xi_{3})^{m} - \xi_{1}^{m} - \xi_{2}^{m} - \xi_{3}^{m}}{(\xi_{1} + \xi_{2} + \xi_{3})^{n} - \xi_{1}^{n} - \xi_{2}^{n} - \xi_{3}^{n}} b_{3}(\xi_{1}, \xi_{2}, \xi_{3}) + \tilde{L}^{(3)}(\xi_{1}, \xi_{2}, \xi_{3})$$

Terms $L^{(3)}(\xi_1, \xi_2, \xi_3)$ and $\tilde{L}^{(3)}(\xi_1, \xi_2, \xi_3)$ depend only on terms of degree 1 and 2 and therefore $\tilde{L}^{(3)}(\xi_1, \xi_2, \xi_3) = L^{(3)}(\xi_1, \xi_2, \xi_3)$

and hence $A_3(\xi_1, \xi_2, \xi_3) = B_3(\xi_1, \xi_2, \xi_3)$. Consider now 4th degree terms:

$$A_4(\xi_1, \dots, \xi_4) = \frac{(\xi_1 + \dots + \xi_4)^m - \xi_1^m - \dots - \xi_4^m}{(\xi_1 + \dots + \xi_4)^n - \xi_1^n - \dots - \xi_4} a_4(\xi_1, \dots, \xi_4) + L^{(4)}(\xi_1, \dots, \xi_4)$$

$$B_4(\xi_1, \dots, \xi_4) = \frac{(\xi_1 + \dots + \xi_4)^m - \xi_1^m - \dots - \xi_4^m}{(\xi_1 + \dots + \xi_4)^n - \xi_1^n - \dots - \xi_4} b_4(\xi_1, \dots, \xi_4) + \tilde{L}^{(4)}(\xi_1, \dots, \xi_4)$$

Terms $L^{(4)}(\xi_1, \xi_2, \xi_3, \xi_4)$ and $\tilde{L}^{(4)}(\xi_1, \xi_2, \xi_3, \xi_4)$ are equal. Therefore

$$A_4 - B_4 = \frac{(\xi_1 + \dots + \xi_4)^m - \xi_1^m - \dots - \xi_4^m}{(\xi_1 + \dots + \xi_4)^n - \xi_1^n - \dots - \xi_4} (a_4 - b_4)$$

Lemma 1. (F. Beukers) Polynomials

$$g_n^{(s)} = (\xi_1 + \dots + \xi_s)^n - \xi_1^n - \dots - \xi_s^n$$

are irreducible over C if $s \ge 4$ and n > 1.

Therefore $a_4 = b_4, A_4 = B_4$. Applying now the above arguments inductively we prove the theorem. \diamond

As an example let us consider equation

$$u_t = u_n + uu_1, \quad n = 2, 3, \dots$$

This is a homogeneous equation with W(u) = n - 1 and total weight 2n - 1. In the symbolic representation it can be rewritten as

$$u_t = u\xi_1^n + \frac{u^2}{2}(\xi_1 + \xi_2).$$

Without loss of generality let us suppose that it possess a higher symmetry of the form

$$u_{\tau} = u\xi_1^m + \frac{u^2}{2}A_2(\xi_1, \xi_2) + \cdots$$

Then for $A_2(\xi_1, \xi_2)$ we obtain

$$A_2(\xi_1, \xi_2) = \frac{(\xi_1 + \xi_2)^m - \xi_1^m - \xi_2^m}{(\xi_1 + \xi_2)^n - \xi_1^n - \xi_2^n} (\xi_1 + \xi_2)$$

Let us define $h_n(x,y) = (x+y)^n - x^n - y^n$.

Theorem 3. (Lech-Mahler) Let $c_1, c_2, \ldots c_k$ and C_1, C_2, \ldots, C_k be non-zero complex numbers. Suppose that none of the ratios C_i/C_j , $i \neq j$ is a root of unity. Then the equation

$$c_1C_1^n + c_2C_2^n + \dots + c_kC_k^n = 0$$

in the unknown integer n has finitely many solutions.

It is convenient to introduce an affine coordinate q=x/y. Applying the Lech-Mahler theorem to the equation

$$(1+q)^n - q^n - 1 = 0$$

we find that this equation possess infinitely many solutions in integer \boldsymbol{n} if and only if

- q = 0, any n,
- q = -1, odd n,
- $1 + q + q^2 = 0$, $n = 5 \mod 6$,
- $1 + q + q^2 = 0$ (double roots), $n = 1 \mod 6$

Theorem 4. (F. Beukers.) Polynomials $h_n(x,y)$ can be factorized as $h_n(x,y) = t_n(x,y)g_n(x,y)$, where $(g_n(x,y),g_l(x,y)) = 1, l \neq n$ and

$$t_n(x,y) = xy, \forall n$$

= $xy(x+y), n = 1 \mod 2,$
= $xy(x+y)(x^2+xy+y^2), n = 5 \mod 6$
= $xy(x+y)(x^2+xy+y^2)^2, n = 1 \mod 6$

From this theorem it follows that if the equation possess the approximate symmetry of degree 2 then n=2,3,5 or 7. Then using the conditions of the existence of approximate symmetries of degree 3 one can prove that the equation is integrable for n=2,3 and not integrable for any other n.

Classification theorem of scalar homogeneous evolutionary equations

Theorem 5. (Sanders–Wang) If a homogeneous equation with W(u) > 0

$$u_t = u_n + F[u]$$

possess an infinite hierarchy of higher symmetries then it is up to rescaling one of the following

$$u_{t} = u_{2} + uu_{1},$$

$$u_{t} = u_{3} + uu_{1},$$

$$u_{t} = u_{3} + u_{1}^{2},$$

$$u_{t} = u_{3} + u^{2}u_{1},$$

$$u_{t} = u_{3} + 9uu_{1}^{2} + 3u^{2}u_{2} + 3u^{4}u_{1},$$

$$u_{t} = u_{5} + 5uu_{3} + 5u_{1}u_{2} + 5u^{2}u_{1},$$

$$u_{t} = u_{5} + 5u_{1}u_{3} + \frac{5}{3}u_{1}^{3},$$

$$u_{t} = u_{5} + 5uu_{3} + \frac{25}{2}u_{1}u_{2} + 5u^{2}u_{1},$$

$$u_{t} = u_{5} + 5u_{1}u_{3} + \frac{15}{4}u_{2}^{2} + \frac{5}{3}u_{1}^{3},$$

$$u_{t} = u_{5} + 5(u_{1} - u^{2})u_{3} + 5u_{2}^{2} - 20uu_{1}u_{2} - 5u_{1}^{3} + 5u^{4}u_{1}$$

Non-evolutionary equations.

$$u_{tt} = \alpha_1 \partial_x^p u + \alpha_2 \partial_x^q u_t + f(u, u_x, \dots, \partial_x^{p-1} u, u_t, u_{tx}, \dots, \partial_x^{q-1} u_t)$$

$$p > q, \quad \alpha_1, \alpha_2 \in \mathbb{C}$$

Example – the Boussinesq equation

$$u_{tt} = \partial_x^4 u + (u^2)_{xx}$$

Every non-evolutionary equation can always be replaced by a system of two evolutionary equations

$$\begin{cases} u_t = v, \\ v_t = \alpha_1 \partial_x^p u + \alpha_2 \partial_x^q v + f(u, u_x, \dots, \partial_x^{p-1} u, v, v_x, \dots, \partial_x^{q-1} v) \end{cases}$$

If $f = D_x(\tilde{f})$, then the system

$$\begin{cases} u_t = v_x, \\ v_t = \alpha_1 \partial_x^{p-1} u + \alpha_2 \partial_x^q v + \tilde{f} \end{cases}$$

also represents our non-evolutionary equation.

For example, the Boussinesq equation $u_{tt} = \partial_x^4 u + (u^2)_{xx}$ can be represented by

(A)
$$u_t = v$$
, $v_t = \partial_x^4, u + (u^2)_{xx}$,

(B)
$$u_t = v_x$$
, $v_t = \partial_x^3 u + (u^2)_x$,

(C)
$$u_t = v_{xx}, \quad v_t = \partial_x^2 u + u^2,$$

We restrict our attention to the systems of the form:

Even order equations:

$$\begin{cases} u_t = v_x, \\ v_t = \alpha_1 \partial_x^{2n-1} u + \alpha_2 \partial_x^n v + f(u, u_x, \dots, \partial_x^{2n-2} u, v, v_x, \dots, \partial_x^{n-1} v) \end{cases}$$

Odd order equations:

$$\begin{cases} u_t = \partial_x^r v, \\ v_t = \partial_x^{2n+1-r} u + f(u, u_x, \dots, \partial_x^{2n-r} u, v, v_x, \dots, \partial_x^{2n-r} v), \end{cases}$$

 $r = 0, 1, \dots, n.$

Approximate Symmetries in the Symbolic Representation. Necessary Integrability Conditions.

Our system in the symbolic representation takes the form

$$\begin{cases} u_t = v\zeta_1, \\ v_t = \alpha_1 u\xi_1^{2n-1} + \alpha_2 v\zeta_1^n + \\ + \sum_{s \ge 2} \sum_{i=0}^s u^i v^{s-i} a_{i,s-i}(\xi_1, \dots, \xi_i, \zeta_1, \dots, \zeta_{s-i}) \end{cases}$$

Symmetry

$$u_{\tau} = \beta_1 u \xi_1^m + \beta_2 v \zeta_1^{m-n+1} + \sum_{s \ge 2} \sum_{i=0}^s u^i v^{s-i} A_{i,s-i}(\xi_1, \dots, \xi_i, \zeta_1, \dots, \zeta_{s-i})$$

"Generic case":

$$4\alpha_1 \neq \alpha_2^2$$
, $\Longrightarrow \alpha_1 = \frac{\alpha^2 - 1}{4}$, $\alpha \neq 0, \pm 1$, $\alpha_2 = 1$

and
$$\beta_1 = \frac{\beta}{2}$$
, $\beta_2 = 1$.

Affine coordinate q: $\xi_1 = q$, $\xi_2 = 1$.

$$\overrightarrow{A} = (A_{2,0}(q,1), A_{0,2}(q,1), A_{1,1}(q,1), A_{1,1}(1,q))^T,$$
 $\overrightarrow{a} = (a_{2,0}(q,1), a_{0,2}(q,1), a_{1,1}(q,1), a_{1,1}(1,q))^T.$

Let us introduce the following polynomials

$$S_1(\alpha; q) = (1 + \alpha)(1 + q)^n - (1 - \alpha)(1 + q^n)$$

$$S_2(\alpha; q) = (1 - \alpha)(1 + q)^n - (1 + \alpha)q^n - 1 + \alpha$$

$$S_3(\alpha; q) = (1 - \alpha)(1 + q)^n - (1 - \alpha)q^n - 1 - \alpha$$

$$S_4(q) = (1 + q)^n - 1 - q^n$$

and

$$M_{1}(\alpha, \beta; q) = (1 + \alpha + \beta)(1 + q)^{n} - (1 - \alpha + \beta)(1 + q^{n})$$

$$M_{2}(\alpha, \beta; q) = (1 - \alpha + \beta)(1 + q)^{n} - (1 + \alpha + \beta)q^{n} - 1 + \alpha - \beta$$

$$M_{3}(\alpha, \beta; q) = (1 - \alpha + \beta)(1 + q)^{n} - (1 - \alpha + \beta)q^{n} - 1 - \alpha - \beta$$

$$M_{4}(\alpha, \beta; q) = (1 - \alpha + \beta)((1 + q)^{n} - 1 - q^{n})$$

Proposition 2. Expression

$$u_{\tau} = \frac{\beta}{2} u \xi_1^m + v \zeta_1^{m-n+1} + \sum_{s>2} \sum_{i=0}^s u^i v^{s-i} A_{i,s-i}(\xi_1, \dots, \xi_i, \zeta_1, \dots, \zeta_{s-i})$$

is an approximate symmetry of degree 2 of system

$$\begin{cases} u_t = v\zeta_1, \\ v_t = \frac{\alpha^2 - 1}{4} u\xi_1^{2n - 1} + v\zeta_1^n + \\ + \sum_{s \ge 2} \sum_{i=0}^s u^i v^{s - i} a_{i, s - i}(\xi_1, \dots, \xi_i, \zeta_1, \dots, \zeta_{s - i}) \end{cases}$$

if and only if functions $A_{i,2-i}(q,1)$, i=0,1,2, determined as follows are polynomials in q:

$$\overrightarrow{A} = T^{-1}(F_1(\alpha; q), F_1(-\alpha; q), F_2(\alpha; q), F_2(-\alpha; q))$$

$$\overrightarrow{a} = T^{-1}(f_1(\alpha; q), f_1(-\alpha; q), f_2(\alpha; q), f_3(\alpha; q))$$

$$T = \begin{pmatrix} 4 & (1 - \alpha)^2 q^{n-1} & 1 - \alpha & (1 - \alpha) q^{n-1} \\ 4 & (1 + \alpha)^2 q^{n-1} & 1 + \alpha & (1 + \alpha) q^{n-1} \\ 4 & (1 - \alpha^2) q^{n-1} & 1 - \alpha & (1 + \alpha) q^{n-1} \\ 4 & (1 - \alpha^2) q^{n-1} & 1 + \alpha & (1 - \alpha) q^{n-1} \end{pmatrix}$$

$$F_1(\alpha, \beta; q) = \frac{2\left[(1-\alpha)Z_1(\alpha, \beta; q) - Z_4(\alpha, \beta, q)\right]}{\alpha(1-\alpha)(1+q)^{n-1}},$$

$$F_2(\alpha, \beta; q) = \frac{2\left[Z_3(-\alpha, \beta; q) - Z_2(\alpha, \beta; q)\right]}{\alpha(1+q)^{n-1}},$$

where

$$Z_i(\alpha, \beta; q) = \frac{M_i(\alpha, \beta; q)}{S_i(\alpha; q)} f_i(\alpha; q), \quad i = 1, 2, 3$$

$$Z_4(\alpha, \beta; q) = \frac{M_4(\alpha, \beta; q)}{S_4(q)} f_1(\alpha; q),$$

In particular, functions $Z_i(\pm \alpha, \beta; q)$ must be polynomials in q.

"Degenerate" dispersion relations

Functions

$$Z_i(\pm \alpha, \beta; q) = \frac{M_i(\pm \alpha, \beta; q)}{S_i(\pm \alpha; q)} f_i(\pm \alpha; q)$$

must be polynomials in q.

Consider two of these conditions $Z_1(\pm \alpha, \beta; q)$. Recall that

$$S_1(\alpha; q) = (1 + \alpha)(1 + q)^n - (1 - \alpha)(1 + q^n)$$

$$M_1(\alpha, \beta; q) = (1 + \alpha + \beta)(1 + q)^n - (1 - \alpha + \beta)(1 + q^n)$$

Suppose that $p, s \neq 0, -1$ and the values of α, β are such that

$$M_1(\alpha, \beta; p) = 0, \quad S_1(\alpha; p) = 0$$

$$M_1(-\alpha, \beta; s) = 0, \quad S_1(-\alpha; s) = 0$$

Then

$$1 + p^{n} + s^{n} + (ps)^{n} - ((1+p)(1+s))^{n} = 0,$$

$$1 + p^{m} + s^{m} + (ps)^{m} - ((1+p)(1+s))^{m} = 0$$
(4)

Applying the Lech-Mahler theorem we obtain that if equation (4) has infinitely many solutions in m then

p, s and (1+p)(1+s) are roots of unity.

Therefore

$$p^{2}s^{2} + 2sp^{2} + 2ps^{2} + p^{2} + s^{2} + 3ps + 2s + 2p + 1 = 0$$

Applying the Smyth's algorithm we obtain (up to the change $p \to \frac{1}{p}, s \to \frac{1}{s}, p \to s, s \to p$) the following solutions:

1)
$$p = e^{\frac{\pi i}{6}}$$
, $s = e^{\frac{5\pi i}{6}}$, $n, m = 1, 5, 7, 11 \mod 12$,

2)
$$p = e^{\frac{2\pi i}{5}}$$
, $s = e^{\frac{4\pi i}{5}}$, $n, m = 1, 3, 7, 9 \mod 10$,

For $\underline{n=3}$ the possible common root is $p=e^{\frac{2\pi i}{5}}$. Substituting this into $S_1(\alpha;p)=0$ we find

$$\alpha = -\frac{3}{\sqrt{5}}, \quad \frac{\alpha^2 - 1}{4} = \frac{1}{5}$$

For $\underline{n=5}$ the possible common root is $p=e^{\frac{\pi i}{6}}$. For α we find

$$\alpha = -\frac{5}{3\sqrt{3}}, \quad \frac{\alpha^2 - 1}{4} = -\frac{1}{54}.$$

Odd order non-evolutionary equations.

Theorem 6. If a homogeneous system with W(u) > 0

$$\begin{cases} u_t = v_r, \\ v_t = u_{2n+1-r} + f[u, v], \quad r = 0, 1, \dots, n, \quad n = 1, 2, 3, \dots, \end{cases}$$

possess an infinite hierarchy of higher symmetries then it is (up to re-scaling $u \to \alpha u, v \to \beta v, t \to \gamma t, x \to \delta x, \, \alpha, \beta, \gamma, \delta = const$)

$$\begin{cases} u_t = v_1, \\ v_t = u_2 + 3uv_1 + vu_1 - 3u^2u_1, \end{cases}$$
$$\begin{cases} u_t = v_1, \\ v_t = (D_x + u)^{2n}(u) - v^2, \quad n = 1, 2, 3, \dots \end{cases}$$

Even order non-evolutionary equations for n = 2, 3, 5

We remind the form of the system in consideration

$$u_{t} = v_{1},$$

$$v_{t} = \alpha_{1}u_{2n-1} + \alpha_{2}v_{n} + f[u, v] := F[u, v] \in \mathcal{R}_{w+2n-1}$$
(5)

Case n=2.

It is easy to show that if system (5) is homogeneous and has non-zero quadratic terms, then W(u) = w = 1, 2, 3. There are no homogeneous integrable systems (5) with n = 2, w = 3 and non-zero quadratic terms.

The most general form of the system (5) in the case of w=2 is

$$u_t = v_1 v_t = \alpha_1 u_3 + \alpha_2 v_2 + c_1 u u_1 + c_2 u v,$$
(6)

Proposition 3. System (6) possess an infinite hierarchy of higher symmetries if and only if $\alpha_2 = c_2 = 0$. By obvious re-scaling it can be put in the form

$$u_t = v_1$$

$$v_t = u_3 + 2uu_1$$

The most general form of the system (5) in the case of w=1 is

$$u_t = v_1$$

$$v_t = \alpha_1 u_3 + \alpha_2 v_2 + c_1 u u_2 + c_2 u_1^2 + c_3 u_1 v + c_4 u v_1 + c_5 v^2 + c_6 u^2 u_1 + c_7 u^2 v + c_8 u^4$$
(7)

Proposition 4. System (7) posses an infinite hierarchy of higher sym-

metries if and only if (up to a re-scaling $u \to \alpha u, x \to \beta x, t \to \gamma t$)

$$\begin{cases} u_t = v_1 \\ v_t = u_3 + u_1^2 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = u_3 + 2u_1v + 2u^2u_1 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = u_3 + 2u_1v + 4uv_1 - 6u^2u_1 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = u_3 + 4uu_2 + 3u_1^2 - v^2 + 6u^2u_1 + u^4 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = \alpha u_3 + v_2 + 4\alpha uu_2 + 3\alpha u_1^2 + u_1v + 2uv_1 \\ -v^2 + 6\alpha u^2u_1 + u^2v + \alpha u^4 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = v_2 + 2uv_1 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = v_2 - u_1^2 + 2u_1v - v^2 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = v_2 - 2uu_2 - 2u_1^2 + 2u_1v + 6uv_1 - 12u^2u_1 \end{cases}$$

Case n = 3.

It is easy to show that if system (5) is homogeneous and has non-zero quadratic terms, then W(u)=w=1,2,3,4,5. There are no homogeneous integrable systems (5) with $n=3,\,w=3,4,5$ and non-zero quadratic terms.

The most general homogeneous system (5) corresponding to w=2 can be written as

$$u_t = v_1,$$

$$v_t = \alpha_1 u_5 + \alpha_2 v_3 + D_x [c_1 u u_2 + c_2 u_1^2 + c_5 u^3] +$$

$$+c_3 u v_1 + c_4 v u_1.$$
(8)

Proposition 5. If system (8) possesses an infinite hierarchy of higher symmetries then, up to re-scalings $u \to \alpha u$, $x \to \beta x$, $t \to \gamma t$, it is one of the list

$$\begin{cases} u_t = v_1, \\ v_t = 2u_5 + v_3 + D_x[2uu_2 + u_1^2 + \frac{4}{27}u^3] \end{cases}$$

$$\begin{cases} u_t = v_1, \\ v_t = \frac{1}{5}u_5 + v_3 + D_x[uu_2 + uv + \frac{1}{3}u^3] \end{cases}$$

$$\begin{cases} u_t = v_1, \\ v_t = \frac{1}{5}u_5 + v_3 + D_x[2uu_2 + \frac{3}{2}u_1^2 + 2uv + \frac{4}{3}u^3] \end{cases}$$

$$\begin{cases} u_t = v_1, \\ v_t = v_3, \\ v_t = v_3 + uv_1 + u_1v \end{cases}$$

$$\begin{cases} u_t = v_1, \\ v_t = v_3 + 2uu_3 + 4u_1u_2 - 4u_1v - 8uv_1 - 24u^2u_1 \end{cases}$$

Homogeneous systems of equations (5) with w = 1 can be written in the form:

$$u_{t} = v_{1},$$

$$v_{t} = \alpha_{1}u_{5} + \alpha_{2}v_{3} + c_{1}u_{2}^{2} + c_{2}u_{1}u_{3} + c_{3}uu_{4} + c_{4}u_{2}v + c_{5}u_{1}v_{1} +$$

$$+c_{6}uv_{2} + c_{7}u_{1}^{3} + c_{8}uu_{1}u_{2} + c_{9}u^{2}u_{3} + c_{10}u^{2}v_{1} +$$

$$+c_{11}uu_{1}v + +c_{12}u^{2}u_{1}^{2} + c_{13}u^{3}u_{2} + c_{14}u^{3}v +$$

$$+c_{15}u^{4}u_{1} + c_{16}u^{6}$$
(9)

Proposition 6. If system (9) possesses infinitely many 4rd degree approximate symmetries then, up to re-scalings $u \to \alpha u$, $x \to \beta x$, $t \to \gamma t$,

it is one of the equations in the following list

$$\begin{cases} u_t = v_1 \\ v_t = 2u_5 + v_3 + u_2^2 + 2u_1u_3 + \frac{4}{27}u_1^3 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = \frac{1}{5}u_5 + v_3 + u_1u_3 + u_1v_1 + \frac{1}{3}u_1^3 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = \frac{1}{5}u_5 + v_3 + 2u_1u_3 + \frac{3}{2}u_2^2 + 2u_1v_1 + \frac{4}{3}u_1^3 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = v_3 + u_1v_1 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = \alpha u_5 + v_3 + 10\alpha u_2^2 + 15\alpha u_1u_3 + 6\alpha uu_4 + vu_2 + \\ +3u_1v_1 + 3uv_2 - v^2 + 15\alpha u_1^3 + 15\alpha u^2u_3 + \\ +60\alpha uu_1u_2 + 3uu_1v + 3u^2v_1 + 45\alpha u^2u_1^2 + \\ +20\alpha u^3u_2 + u^3v + 15\alpha u^4u_1 + \alpha u^6 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = u_5 + 6uu_4 + 15u_1u_3 + 10u_1^2 - v^2 + \\ +15u^2u_3 + 15u_1^3 + 60uu_1u_2 + 45u^2u_1^2 + \\ +20u^3u_2 + 15u_1^4 + u^6 \end{cases}$$

$$\begin{cases} u_t = v_1 \\ v_t = v_3 + 3u_1v_1 + 3uv_2 + 3u^2v_1 \end{cases}$$
$$\begin{cases} u_t = v_1 \\ v_t = v_3 - u_2^2 + 2u_2v - v^2 \end{cases}$$

Case n = 5.

Proposition 7. The following systems posses infinite hierarchies of higher symmetries:

$$\begin{cases} u_t = v_2 \\ v_t = \frac{9}{64}u_8 + v_5 + 3uu_6 + 9u_1u_5 + \frac{65}{4}u_2u_4 + \frac{35}{4}u_3^2 + \\ +2u_1v_2 + 4uv_3 + 20u^2u_4 + 80uu_1u_3 + 60uu_2^2 + \\ +88u_1^2u_2 + \frac{256}{5}u^3u_2 + \frac{384}{5}u^2u_1^2 + \frac{1024}{125}u^5 \end{cases}$$
(10)

$$\begin{cases} u_{t} = v_{1} \\ v_{t} = -\frac{1}{54}u_{9} + v_{5} + \frac{5}{6}u_{7}u_{1} + \frac{5}{3}u_{6}u_{2} + \frac{5}{2}u_{5}u_{3} + \frac{25}{12}u_{4}^{2} - \\ -5u_{3}v_{1} - \frac{15}{2}u_{2}v_{2} - 10u_{1}v_{3} - \frac{45}{4}u_{5}u_{1}^{2} - \frac{75}{2}u_{1}u_{2}u_{4} - \\ -\frac{75}{4}u_{3}^{2}u_{1} - \frac{75}{4}u_{2}^{2}u_{3} + \frac{45}{2}u_{1}^{2}v_{1} + \frac{225}{4}u_{3}u_{1}^{3} + \\ +\frac{675}{8}u_{2}^{2}u_{1}^{2} - \frac{405}{16}u_{1}^{5} \end{cases}$$

$$(11)$$

$$\begin{cases} u_{t} = v_{1} \\ v_{t} = v_{5} + 2u_{2}u_{5} + 6u_{3}u_{4} - 6u_{3}v - 22u_{2}v_{1} - 30u_{1}v_{2} - \\ -20uv_{3} + 96uu_{1}v + 96u^{2}v_{1} - \\ -2D_{x}[8u^{2}u_{4} + 32uu_{1}u_{3} + 13u_{1}^{2}u_{2} + 24uu_{2}^{2}] + \\ +120D_{x}[4u^{3}u_{2} + 6u^{2}u_{1}^{2}] - 3840u^{4}u_{1} \end{cases}$$

$$(12)$$

Camassa-Holm type equations equation

$$m = u - u_2, \quad m_t = cmu_1 + um_1$$

Camassa-Holm equation can be rewritten as

$$u_t = \Delta(-uu_3 + (c+1)uu_1 - cu_1u_2), \quad c \neq 0,$$
(13)

where operator $\Delta = (1 - D^2)^{-1}$.

We extend the differential ring ${\cal R}$

$$\mathcal{R}^0_{\Delta} = \mathcal{R}, \quad \mathcal{R}^1_{\Delta} = \overline{\mathcal{R}^0_{\Delta} \bigcup \Delta(\mathcal{R}^0_{\Delta})}, \quad \mathcal{R}^{n+1}_{\Delta} = \overline{\mathcal{R}^n_{\Delta} \bigcup \Delta(\mathcal{R}^n_{\Delta})},$$

Symbolic representation of operator Δ is $\Delta \to \frac{1}{1-\eta^2}$. The symbolic representation of elements of differential rings \mathcal{R}^n_Δ is obvious. For example if $A \in \mathcal{R}^0_\Delta$ and

$$A \to u^n a(\xi_1, ..., \xi_n) \Longrightarrow \Delta(A) \to u^n \frac{a(\xi_1, ..., \xi_n)}{1 - (\xi_1 + \cdots + \xi_n)^2}$$

.

Theorem 7. (Mikhailov-VN) Equation

$$u_t = \Delta(-uu_3 + (c+1)uu_1 - cu_1u_2), \quad c \neq 0$$

is integrable if and only if c = 2 or c = 3