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» Motivating examples of gel modeling and analysis
» Biomedical devices
» Gliding bacteria
> Cell motility in gel fiber matrix
» Gels and mixture theory
» Constrained elasticity boundary value problems
» Deformable porous media with polymer-fluid interaction
» Free boundary problem of swelling
» Liquid crystals: remarks on fiber gels and polar particle flow
» Conclusions



Gels: polymeric networks, crosslinked or entangled, holding fluid
[Tanaka, 81]
» Natural gels are found in animal tissue and plant bodies; cell
membranes, cartilage, ....
» Synthetic gels are used in manufacturing devices such as
actuators, valves, body implantable devices: artificial bone,
skin, pacemakers, drug delivery units, ...
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Gels: polymeric networks, crosslinked or entangled, holding fluid
[Tanaka, 81]
» Natural gels are found in animal tissue and plant bodies; cell
membranes, cartilage, ....

» Synthetic gels are used in manufacturing devices such as
actuators, valves, body implantable devices: artificial bone,
skin, pacemakers, drug delivery units, ...

Any medical device implanted into the body turns into gel

Mathematical and modeling issues:

Elasticity, diffusion, transport, dissipation, surface phenomena



Figure: Tibia bone prosthesis by Kasios

How much does it swell and how long does it take to settle down?
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Bonding between different materials

e Polymer U

Polymer S

>

Polymer S

c f SR Polymer U

Polymer S

» The lenght in figure A: 7.5 cm; the thikness of U-polymer ( 2 mm) versus
S-polymer (5 mm). The length of the bent combination U/S (7.5cm). The
length and thickness of polymer S in figure C (12 - 13 cm).

» S— Silicon, crosslinked, rubber-like polymer at room temperature; elastic
module 10° Pa; can absorbe hepthane (organic solvent) at the ratio of 300 to
400 percent of its volume.

» U- Polyurethane, linear polymer; elastic module 108 Pa



Swelling and Shrinking Pattern

Gels experience phase transitions between collapsed and shrunken
phases driven by changes of temperature and pH, (also electric fields
and light, in electrolite gels [Tanaka, 1978])

Bamboo pattern:
regularly spaced
cross-sectional planes,
consisting of collapsed gels.

Bubble pattern: regions of
bulges alternate with

— _ constrictions
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Balance laws

Assume gel as mixture of polymer and solvent.

%’: + div(pivi) = 0,

Linear momentum: pjv; =V -T; +f;, i =1,2

Mass :

Polymer-solvent friction body forces: f1 + f, = 0
Volume fractions: ¢; + ¢ = 1

Cauchy stress tensor 7; =T 4+ 79

Reference configuration Qp, X € Qg

Deformed configuration Q;, x€ Q:, t>0

polymer deformation map x = ®(X, t)

polymer deformation gradient F = Vx®, detfF >0
Component 1: polymer, Component 2: solvent, ¢ :=¢1, ¢2 =1— ¢

&= o(x,t), v=v(x,t)..
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Thermodynamics and constitutive assumptions

&= o {u(d1)W(F) + det F h(¢1, ¢2)} dX

- /Q W(F, d1)dX
h(¢p1,¢2) =  agrlog d1 + bepo log d2 + xP1¢2



Thermodynamics and constitutive assumptions

&= o {u(d1)W(F) + det F h(¢1, ¢2)} dX

- /Q W(F, d1)dX
h(¢p1,¢2) =  agrlog d1 + bepo log d2 + xP1¢2

ov
T = ¢187FT — (prp+m)T
TS = —(¢op+ m)T

__ Oh(¢1,92) .

> T = — o4 - osmotic pressure

> = 77 + %(Vvi + VVI-T): Cauchy stress tensor



Incompressibility and Eulerian formulation of problem

Incompressible mixture p; = v¢;, v = constant =1

div(d1vi + dav2) =0
q251 det F = (;50



Incompressibility and Eulerian formulation of problem

Incompressible mixture p; = v¢;, v = constant =1

div(d1vi + dav2) =0
ngl det F = (;50

1O 1 a1 Vi = VT~ B —v2) + 1V

¢2({2’: + da(v-V)vo =V - T + B($)(vi — v2) — p1Vp

$1+¢g2=1
F: + (Vl . V)F = (Vvl)F

diffusion coefficient D := 37 1(¢1)

Unknowns: vi, v, ¢1, o, p, F



Flory-Huggins free energy function with respect to mixing
parameter x
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Flory-Huggins free energy function with respect to mixing

parameter x

(1) S\./voIIe.n.(qﬁ ~ 0.3) |

(2) Swollen and collapsed

nip )

(3) Swollen and collapsed

(4) Collapsed (¢ ~ 0.7)

hig)
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Dissipation inequality

Let {¢j,vi, p} be a smooth solution of the governing equations.
Then it satisfies the following equation of balance of energy:

C
dt Q(t)

—/ (t1-vi+ty-vp)dS <0,
aQ(t)

(Pl + ZlwaP) + V] dx




Boundary conditions

Let
BQ:HUFQ, Flﬂrzz‘])

» Elasticity

1. Displacement: ® = &g, on I}

2. Traction: (71 + Ta)v = tg, on I,
» Membrane permeability

1. impermeable: g—ﬁ = 0 on 9Q (or part of it)

2. fully permeable: —pap + Ma(p1, ¢2) = Po,
» Py pressure of surrounding solvent
» [, osmotic pressure of in-gel solvent
3. semi-permeable: P — (p + My(x,t)) = k(v —v1) -,
k& = k(¢) > 0 permeability function
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pdet F = ¢o
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» v; = 0: Constrained variational problems of elasticity,
pdet F = ¢o

¢ — 1: incompressible, time-dependent elasticity equation
with Newtonian viscosity

v

v

¢ — 0: incompressible, Navier-Stokes equations

V= d1vi + ¢ovo =0, U := vy — vy #0, neglect intertia
terms & neglect Newtonian viscosity:  diffusion model

v

v

Neglect inertia terms: Elasticity equation with Newtonian
damping & Darcy’s law with damping (Stokes equation with
forcing term vy — v3)



Limiting models and special regimes

» v; = 0: Constrained variational problems of elasticity,
qﬁdet F = ¢0

¢ — 1: incompressible, time-dependent elasticity equation
with Newtonian viscosity

v

» ¢» — 0: incompressible, Navier-Stokes equations

> V:=¢1vi +dovp =0, U:=vy —vp #0, neglect intertia
terms & neglect Newtonian viscosity:  diffusion model

» Neglect inertia terms: Elasticity equation with Newtonian
damping & Darcy’s law with damping (Stokes equation with
forcing term vy — v3)

» Additional linearization of elasticity equations, neglect

Newtonian viscosities, set ¢ = ¢g: stress-diffusion coupling
model by Doi and Yamaue [2004]

» Neglect Newtonian viscosities:  Start-up regimes; hyperbolic
equations with weak damping



Equilibrium states: mixing regimes

Minimize £ = | {$p1W(F) +det F h(¢1, ¢2)} dX
Qo

subject to ¢1det F = ¢pg, 0 < g < 1, u € Ar

Ar={u:uve W28 = ugonl C 9, detF >0, a.e.}



Equilibrium states: mixing regimes

Minimize £ = | {$p1W(F) +det F h(¢1, ¢2)} dX
Qo

subject to ¢1det F = ¢pg, 0 < g < 1, u € Ar

Ar={u:uve W28 = ugonl C 9, detF >0, a.e.}
W(F) := wlle, lle, llle) > o(IZ + 1Y + 1IE) + o,

» W polyconvex
2
> B>3,7> 505, > 0,720
» g(s) = sh(%, 1-— %), s > 1, convex and monotonically
decreasing

Existence of a minimizer follows from [Ball, 1977]



> (> % gives a stronger restriction than § = 1 in general
theorem: loss of elasticity occurs by increase of fluid volume
fraction

» Condition on g follows from convexity of h(¢): 0< x < 1.5
(mixing regime)

» Dependence of w on //lz is experimentally motivated by
softenning of gel upon swelling

» Mixed displacement-traction boundary conditions hold in
many applications



Equilibrium configurations: non-mixing regimes

» Suppose that h is nonconvex with respect to ¢; (x > 1.5)
» Modify the energy to include |V¢|%:

. 2
/ SIVe[2dx =6 [ |(det(Vu))"2VxAdj(Vu)|
Q o

Minimize{(u@)exx} E = /Q {g/)W(F) + det F h(?ZS 1- gb)} dX
0

+ / 5|V |* dx
Q



Equilibrium configurations: non-mixing regimes

» Suppose that h is nonconvex with respect to ¢; (x > 1.5)
» Modify the energy to include |V¢|%:

: 1 ,
/ 5|ng§|2dx:6/ (det(Vu)) "2V xAdj (Vu)|
Q Q

Minimize((, s)ex.} € = / {¢W(F) + det F h($,1 — ¢)} dX
p)EX, o
+ / 5|V |* dx
Q
Xoo=  {(u,0): d€d+W'2 ucu+ W™, ¢det F = ¢, ae

0<¢<1,||Vu|l,« < C< oo},
e Wb, ¢ e W2, prescribed

Let Qo € R® be bounded, with Lipschitz boundary 8Qq. For any C > 0
there exits a minimizer of £ in X.



» Prescription of Dirichlet boundary condition on ¢ = ¢
corresponds to a fully permeable membrane boundary;

» Neumann boundary condition g—ﬁ = 0 expresses

impermeability; Robin condition in the case of semipermeable
membrane



» Prescription of Dirichlet boundary condition on ¢ = ¢
corresponds to a fully permeable membrane boundary;

» Neumann boundary condition g—ﬁ = 0 expresses
impermeability; Robin condition in the case of semipermeable

membrane

» Taking 0 < 6 << 1, solutions present boundary layer behavior
near boundaries with prescribed displacement [MCC,
Cockburn, 2008]

» Concentration of stresses occurs in boundary layers or in
contact interfaces between two different materials

» This may cause bonding deterioration and breaking of the
device



Sketch of the proof

1. [|[Vul|, < C implies det Vu < 9C?

2. There is a minimizing sequence {¢n, un} € Xoo

3. Poincare inequality allows us to extract a subsequence, u — & weak* in
Wi

4. 0< ¢pn <1, detVu, > 1 and ¢p > %

5. Obtain bound for [ |V x énl?

6. up — O weak* in W5 and ¢ — ¢ weakly in W2

7. Show that {¢, i} € Xs. Use the weak continuity of determinants

8. Proof of weak lower semicontinuity of last term in energy analogous to

the case of liqud crystal elastomers [Calderer-Liu-Yan, 2006; 2008]



Remarks on Coupling of Elasticity and Cahn-Hilliard

models

» Modify the equations of balance of mass by allowing diffusion:

dpi _ (v +IveiP)
Pt (uy Wy = -2
12
> s w — 0 holds

» Local balnce of mass constraint no longer valid

» Entropy inequality and subsequent dissipation are modified
accordingly

» Approach appropriate to hydrogels with possibly large ionic
effects



Gradient flow of coupled elasticity and Cahn-Hilliard

models

H. Garcke [PhD. thesis, 2003] studied a generalized
Ginzburg-Landau energy of the form:
1 1
E(c,u) = /{2|Vc|2 + @(c) + W(e, 5 (Vu + VuT))}
Q
N
Z Ci = 1
i=1
The governing system is:
8tc = LAw
1
w = P(=V - Ve + &c(c) + We(e, 5(Vu + Vu')
V-5§=0

Proves existence of weak solutions also for the case that ®(c) is
logarithmic.
Model related to the earlier Cahn-Larche, [1973]



Parameters

» V,, is the volume occupied by one monomer;
» N1, N, denote the number of lattice sites occupied by the
polymer and the solvent, respectively.
» N, is the number of monomers between entanglement points;
»  is the Flory interaction parameter;
» [ is the polymer drag coefficient;
» 1 is a scaling parameter related to the shear modulus.
N, 20
Ny 1000

N> 1
V., Anm?
X 85



Linear steady-state regime

$oV - (A — gu)(v -u)l + 2pE(Vu))

= V(p + My(div u) + My(div u)) + ”2—1 div (Vvy + Vv]) + ”2—2 div (
Vi = U,
V(a((1 = ¢o) + godiv u) + (1 — ¢o)p)

— B(div u)(vi — v2) + 7’2—2 div (Vva + Vv]),
V - (¢ovi + (1 — ¢go)v2) =0

Coupling of steady state equations of compressible, dissipative
elasticity with linear Stokes problem for fluids, with global
incompressibility constraint. The second equation corresponds to
Darcy’s law with dissipation



For prescribed displacement (or traction or mixed) boundary
conditions for elasticity, membrane conditions for the fluid and
initial conditions for u, there exists a unique classical solution of
the system. Moreover, the fields v; and v, decay to 0 as t — oo
[MCC, Chabaud, 2008]
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For prescribed displacement (or traction or mixed) boundary
conditions for elasticity, membrane conditions for the fluid and
initial conditions for u, there exists a unique classical solution of
the system. Moreover, the fields v; and v, decay to 0 as t — oo
[MCC, Chabaud, 2008]

» System reduces to the model by Doi and Yamau [2004] upon
setting tr Vu = 0 and neglecting Newtonian viscosity

» Analogies with models analyzed by Douglas and Duran [1987]
in oil recovery applications; the fluid phase may have two or
more components

» Mathematical analogs found in geology in dealing with soil
media and clays [Bennethum-Murad-Cushman, 2000]

25/32



Remarks on the nonlinear problem

¢1(vi,e + (vi - V)vi) =div T"(F, ¢1) — ¢1(Vp + Mi(¢1))
5 div (Vv + Vv]) + B(#) (w1 = va),

¢2(Va,e + (V2 - V)v2) = =2 V(p + M2)
+%2 div (Vva + Vv ) + B(8)(v2 — v1),

div (¢1v1 + $2v2) = 0,

Fi +(v1-V)F = (Vv1) F,
r __ 8\U(¢1, F)

(S OF

» Coupling of nonlinear elasticity with Navier-Stokes with gel
incompressibility constraint

» Difficulty with chain rule equation relating Lagrangian and
Eulerian variables

» Local existence of weak solutions for small strains [MCC].



Oldroyd-B model

Vi+ (v-V)v+ Vp=7nVv+div(FTF)
Fi 4 (v-V)F = (Vv)F
divv =0

» Global existence of classical soluions near equilibrium [Lin,
Liu, Zhang, 2006]

» Global existence of weak solution in 2-d [Lin, June 2008]

» Global existence of weak solutions with modified equation
Fi 4+ (v-V)F =Q(Vv)F, Q skew [P.L.Lions, Masmoudi]

» Global existence of appropriately small weak solutions with
modified equation F; + (v - V)F = (Vv)F —vF [Guilloupe,
Saut]



Example: 1-D free boundary problem of swelling

» Neglect Newtonian dissipation and assume Neo-Hokean elasticity
» Assume perfect boundary permeability

> u=vi— v

b + [#(1 — p)ulx =0,
e+ (1~ 26) ~ G(#)] = -
d(x,t) = ¢, at x = £5(t).
S'(t) = [1 = ¢(S(1), t)]u(S(1), t), S(0) =L,
(x,0) = ¢ u(x,0)=0u° for —L<x<L
The system is strictly hyperbolic if
G'(¢)+u? <0
e G'(¢) < 0 for polymers used in devices

e For polyssacharides, G'(¢) >0, ¢ € (0,a) C (0, 1); the critical
value G'(¢c) = 0 may suggest onset of de-swelling

_Pu
(1 -¢)



How Myxobacteria Glide?

Electron micrograph of
an isolated cell of M.
santhus DK1622 showing
one of the cells poles;
nozzles are ring like
structures seen at pole

C. Wolgemuth E.Holczyk, D.Kaiser and G.Oster [2002]
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Figure: Electron
micrograph of nozzles

Figure: Schematic
illustration of nozzle
arrangement in cell
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Local wellposedness

u; + F(u)x + G(u) =0, (1)
t=0: u=ug (2)



Local wellposedness

u; + F(u)x + G(u) = 0, (1)
t=0: u=ug (2)
u:= [¢a U]T’
Fi= 31— $)u, 5021 —20) - G,
o Pu T
¢ =059

e The system admits an entropy-entropy flux pair (n(u), q(u)),
with 7(u) convex [MCC, Zhang, 2007]

e Local well posedness of the Cauchy problem



Global wellposedness [Dafermos,2006]

The following properties hold:
» The equilibrium solution ue := (¢*,0) is L!-stable
» The function G is weakly dissipative

Consider initial data ug € B/(ue), [Jue —ugll, TV(_ soyto < 00
small enough.

Then there exists an admissible global BV solution to the Cauchy
problem



From free boundary to fixed boundary

Perform chage of variables of gas dynamics:

= : z, tydz, 7=
y /j(t)qs( ) t
Then

(=5(t),5(t)) — (0,1)

For sufficiently small initial data, there exists a unique global
Cl-solution of the system [Chen, MCC, 2008]



Remarks on Mesenchymal motion

Mesenchymal motion describes cellular movement in tissues formed
by fiber networks

> Interacting system of polymer, solvent and cells

» Fibers are elastic and highly orientable, forming uniaxial liquid
crystal network [Barocas, Tranquillo, 2004]

> Cells cause fiber degradation upon perpendicular impact

» They flow as polar liquid crystals [Painter, 2008; Bischofs,
Schwarz, 2008]



Measure of ordering

Uniaxial order tensor: Q = s(n RXn — %I)
How to measure Q7

» Dielectric tensor in small molecule nematic liquid crystals,
D=c¢,l+e,n®n, Ea =€ — €L

» Diffusion tensor in fibers; the counterparts of € parameters
represent the anisotropic diffusion coefficients.

» Fiber matrix presents liquid crystal point defects: Are they
nucleation sites of tumors?






