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Main reason why quantum mechanics (QM) is used in materials
science and molecular modelling: it is chemically specific.

But rigorous mathematical work on QM to date has focused
overwhelmingly on universal properties.

Goal: Begin to understand basic chemically specific properties of
atoms mathematically from the Schrödinger equation.
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1869: Periodic table of Lothar Meyer, Dimitri Mendelejew

Atoms can be grouped into a ”periodic table”, due to striking
near-periodicities in physical and chemical behaviour

Example: Ionization energy as a function of atomic number (experiment)

1920s: Quantum mechanical explanation of Bohr, Hund, Slater

Chemical differences should come from different atoms having
different electronic structure. Propose semi-empirical hydrogen
orbital configurations

This talk:

Try to understand how some basic chemical differences between
atoms emerge mathematically from the Schrödinger equation.

5



Schrödinger equation for atoms/ions

I N electrons, one nucleus of charge Z (neutral atoms: N=Z)

I Electronic strcture described by Ψ : (R3 × Z2)N → C

I Governing PDE:
(
−1

2
∆ + V (x)

)
︸ ︷︷ ︸

=:H

Ψ = E Ψ

I Potential: Coulomb attraction of electrons by nucleus,
Coulomb repulsion between electrons

V (x) = −
N∑

i=1

Z

|xi |
+

∑
1≤i<j≤N

1

|xi − xj |

I Antisymmetry condition:

Ψ(.., xi , si , .., xj , xj , ..) = −Ψ(.., xj , sj , .., xi , si , ..)
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Comments on Schrödinger equation

1. Chemically specific parameters:
Z (nuclear charge) standard parameter
N (number of electrons) changes the dimension of the PDE

(Orbital free DFT: N = integral constraint on density).

2. Numerics: Problem of exponential scaling
SE for single Carbon atom (N=6) is a PDE in R3N = R18.
Discretize: R→ 10 gridpoints =⇒ R3N → 1018 gridpoints.

3. Key ingredient for understanding chemistry: nodes
Competition between −∆ + V (x) (wants positive ground state),
antisymmetry (forces more and more nodes as N increases), spin
(allows to avoid some nodes), and electrostatic details of V (x)
(influences where the nodes go).

Without antisymmetry, every element would be like Hydrogen. Without

spin, hydrogen would be like Helium, Helium like Beryllium, Beryllium

like some sort of Carbon. Either way, all hell would break loose.
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Function space for the Schrödinger equation

Kato’s theorem: H is a self-adjoint, bounded below operator on
L2

anti ((R3 × Z2)N) with domain H2
anti ((R3 × Z2)N).
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Mathematical definition of basic chemical quantities

Energy level := eigenvalue of H=−1
2
∆+V(x)

Zhislin’s thm: For N ≤ Z (neutral atoms and positive ions), there
exist exactly countably many eigenvalues, the corresponding
eigenspaces being finite-dimensional. Variational pf: GF, ARMA, 2003

Ground state energy / ground state := lowest e-value/e-space

Ionization energy: I (N , Z ) := E (N , Z )− E (N − 1, Z )

GS energy minus GS energy of system with one electron less

Ground state spin and angular momentum quantum numbers

L ∈ {0, 1, 2, 3, ...}, S ∈ {0, 1
2 , 1,

3
2 , ...}

They measure the amount of symmetry of the functions in the GS
under spatial and spin rotation. Of crucial chemical importance.
Zero if and only if the functions in the GS are invariant.
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Mathematical definition of the quantum numbers L and S

SE for atoms and its domain invariant under SO(3)×SU(2)×Z2

(i) simultaneous rotation of all electron positions about the origin,
Ψ(x1, s1, .., xN , sN) 7→ Ψ(RT x1, s1, ..,R

T xN , sN), R ∈ SO(3)

(ii) simultaneous rotation of all electron spins (by U ∈ SU(2))

(iii) simultaneous inversion of all electron positions at the origin.

Conserved quantities (op’s which commute with Hamiltonian):

(i) L = 1
i

∑N
j=1 xj ∧∇xj many-el.ang.mom.operator

(ii) S many-electron spin operator

(iii) P parity operator

Representation theory for Lie algebra of symmetry group gives:
• L2, L3, S2, S3, P commute with H and each other,
• the eigenvalues of L2 are L(L+1), L=0,1,2,...,
• on any irreducible e-space of H, L2 has only one eigenvalue.

The integer L parametrizing this L2 eigenvalue is called the
ang.mom.quantum number of the eigenspace.
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What to do to understand eigenstates, L, S?

Have two parameters to play with (N and Z)

Asymptotics in N no good
(Thomas-Fermi limit; loses chem.specificity)

Z → 0 no good
(transition to non-existence of eigenstates at Zcrit ≥ N/2)

Only option left: Z →∞.
Our results are rigorous asymptotic results in this limit.
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Results, 1: Spin and angular momentum quantum numbers

Theorem

(GF/Goddard) For N = 1, .., 10, and sufficiently large Z , the
angular momentum and spin quantum numbers, and the
dimension, of the Schrödinger ground state are:

Atom H He Li Be B C N O F Ne

] electrons 1 2 3 4 5 6 7 8 9 10

L 0 0 0 0 1 1 0 1 1 0

S 1
2 0 1

2 0 1
2 1 3

2 1 1
2 0

Chemist’s notation 2S 1S 2S 1S 2P 3P 4S 3P 2P 1S

dim 2 1 2 1 6 9 4 9 6 1

All numbers agree with experiment even for neutral atoms (Z=N).

Open problem: prove that these numbers do not change as Z is
decreased down to Z = N.
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Results, 2: Ground states

Theorem

(GF/Goddard) For N = 1, .., 10, and large Z , the Schrödinger
ground state is asymptotic to the explicit vector space given on the
next slide, in the sense that the projection operators P0, P̃0 onto
these spaces satisfy limZ→∞ |||P0 − P̃0||| = 0, the norm being the
operator norm on L2.
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Atom Symmetry Ground state Dimension

H 2S |1〉, |1〉 2

He 1S |11〉 1

Li 2S |112〉, |112〉 2

Be 1S 1√
1+c2

(
|1122〉+ c 1√

3

(
|1133〉+ |1144〉+ |1155〉

))
1

c = −
√

3
59049(2

√
1509308377− 69821) = −0.2310996 . . .

B 2Po 1√
1+c2

(
|1122i〉+ c 1√

2

(
|11ij j〉+ |11ikk〉

))
6

1√
1+c2

(
|1122i〉+ c 1√

2

(
|11i j j〉+ |11ikk〉

))
(i , j , k) = (3, 4, 5), (4, 5, 3), (5, 3, 4)

c = −
√

2
393660(

√
733174301809− 809747) = −0.1670823 . . .

C 3P 1√
1+c2

(
|1122ij〉+ c|11kkij〉

)
9

1√
1+c2

(
1√
2

(
|1122i j〉+ |1122i j〉

)
+ c 1√

2

(
|11kki j〉+ |11kki j〉

))
1√

1+c2

(
|1122i j〉+ c|11kki j〉

)
(i , j , k) = (3, 4, 5), (4, 5, 3), (5, 3, 4)

c = − 1
98415(

√
221876564389− 460642) = −0.1056318 . . .

N 4So |1122345〉 4
1√
3

(|1122345〉+ |1122345〉+ |1122345〉)
1√
3

(|1122345〉+ |1122345〉+ |1122345〉)
|1122345〉

O 3P |1122i i jk〉 9
1√
2

(|1122i i jk〉+ |1122i i jk〉)
|1122i i jk〉

(i , j , k) = (3, 4, 5), (4, 5, 3), (5, 3, 4)

F 2Po |1122i i j jk〉 6

|1122i i j jk〉
(i , j , k) = (3, 4, 5), (4, 5, 3), (5, 3, 4)

Ne 1S |1122334455〉 1

Schrödinger ground states in the limit Z →∞.
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Notation
Hypergeometric functions (low hydrogen eigenstates)

φ1s(x) = Z 3/2
√
π

e−Z |x|, φ1s : R3 → C (1s-orbital)

φ2s(x) =
(

1− Z |x|
2

)
e−Z |x|/2 (2s-orbital)

φ2pi (x) = Z 5/2
√

32π
xie
−Z |x|

2 , i = 1, 2, 3 (2p-orbital)

Spin functions
↑ : {± 1

2} → C, ↑(s) = δ1/2(s) (Spin-up-orbital)

↓ : {± 1
2} → C, ↓(s) = δ−1/2(s) (Spin-down-orbital)

Joint space/spin functions in L2(R3 × Z2)
1, 2, 3, 4, 5 = φ1s ↑, φ2s ↑, φ2p3 ↑, φ2p1 ↑, φ2p2 ↑, where
(φ1s ↑)(x , s) = φ1s(x)↑ (s)
1, 2, 3, 4, 5 = same with spin down

Antisymmetrised tensor products, alias Slater determinants
(of N orthonormal functions ψ1, . . . , ψN ∈ L2(R3 × {± 1

2}):

∣∣∣ψ1 . . . ψN

〉
(x1, s1, . . . , xN , sN) =

1√
N!

det

 ψ1(x1, s1) · · · ψ1(xN , sN)
...

...
ψN(x1, s1) · · · ψN(xN , sN)


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Results, 3: Excited states

Theorem

(GF/Goddard) Let N = 1, .., 10, and let n(N) be equal to,
respectively, 1, 1, 2, 6, 8, 12, 8, 6, 2, 1.

(i) For Z suff. large, the lowest n(N) Schrödinger energy levels
E1(N,Z ) < ... < En(N)(N,Z ) have exactly the spin quantum no.,
angular momentum quantum number, and dimension given on the
next slide.

(ii) For Z →∞, these energy levels have the asymptotic expansion

Ej(N,Z )

Z 2
= a(0)(N) +

1

Z
a
(1)
j + O(

1

Z 2
),

with a(0), a
(1)
j as given on the next slide. Moreover all other energy

levels are bounded away from a(0) as Z →∞.

Also, have determined the asymptotic eigenspaces. A bit too
complicated to record here.
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Symm. Ψ E c E (num.) c (num.)

Li 2S Ψ1 −9
8Z 2 + 5965

5832Z -7.0566
2P◦ Ψ2 −9

8Z 2 + 57397
52488Z -6.8444

Be 1S 1√
1+c2

(Ψ1 + cΨ2) −5
4Z 2 + 1

1679616(2813231− 5
√

1509308377)Z − 1
59049(2

√
1509308377− 6981)

√
3 -13.7629 -0.2311

3P◦ Ψ4 −5
4Z 2 + 1363969

839808 Z -13.5034
1P◦ Ψ3 −5

4Z 2 + 2826353
1679616Z -13.2690

3P Ψ5 −5
4Z 2 + 1449605

839808 Z -13.0955
1D Ψ6 −5

4Z 2 + 14673197
8398080 Z -13.0112

1S 1√
1+c2

(Ψ1 + cΨ2) −5
4Z 2 + 1

1679616(2813231 + 5
√

1509308377)Z 1
59049(2

√
1509308377 + 6981)

√
3 -12.8377 4.3271

B 2P◦ 1√
1+c2

(Ψ3 + cΨ4) −11
8 Z 2 + 1

6718464(16493659−
√

733174301809)Z − 1
393660(

√
733174301809− 809747)

√
2 -22.7374 -0.1671

4P Ψ6 −11
8 Z 2 + 2006759

839808 Z -22.4273
2D Ψ7 −11

8 Z 2 + 40981549
16796160Z -22.1753

2S Ψ1 −11
8 Z 2 + 4151299

1679616Z -22.0171
2P Ψ5 −11

8 Z 2 + 8322281
3359232Z -21.9878

4S◦ Ψ2 −11
8 Z 2 + 706213

279936Z -21.7612
2D◦ Ψ8 −11

8 Z 2 + 14301407
5598720 Z -21.6030

2P◦ 1√
1+c2

(Ψ3 + cΨ4) −11
8 Z 2 + 1

6718464(16493659 +
√

733174301809)Z 1
393660(

√
733174301809 + 809747)

√
2 -21.4629 5.9851

C 3P 1√
1+c2

(Ψ6 + cΨ7) −3
2Z 2 +

(
3806107
1119744 −

1
3359232

√
221876564389

)
Z − 1

98415(
√

221876564389− 460642) -34.4468 -0.1056
1D 1√

1+c2
(Ψ9 + cΨ10) −3

2Z 2 +
(

19148633
5598720 −

1
3359232

√
221876564389

)
Z 1

98415(
√

221876564389− 460642) -34.3202 0.1056
5S◦ Ψ4 −3

2Z 2 + 464555
139968Z -34.0859

1S 1√
1+c2

(Ψ1 + cΨ2) −3
2Z 2 +

(
966289
279936 −

1
1679616

√
62733275266

)
Z − 1

98415(
√

62733275266− 230321) -34.1838 -0.2047
3D◦ Ψ12 −3

2Z 2 + 4730843
1399680Z -33.7203

3P◦ Ψ8 −3
2Z 2 + 1904147

559872 Z -33.5938
1D◦ Ψ11 −3

2Z 2 + 9625711
2799360Z -33.3688

3S◦ Ψ3 −3
2Z 2 + 961915

279936Z -33.3828
1P◦ Ψ5 −3

2Z 2 + 242119
69984 Z -33.2422

3P 1√
1+c2

(Ψ6 + cΨ7) −3
2Z 2 +

(
3806107
1119744 + 1

3359232

√
221876564389

)
Z 1

98415(
√

221876564389 + 460642) -32.7641 9.4668
1D 1√

1+c2
(Ψ9 + cΨ10) −3

2Z 2 +
(

19148633
5598720 + 1

3359232

√
221876564389

)
Z 1

98415(−
√

221876564389− 460642) -32.6376 -9.4668
1S 1√

1+c2
(Ψ1 + cΨ2) −3

2Z 2 +
(

966289
279936 + 1

1679616

√
62733275266

)
Z 1

98415(
√

62733275266 + 230321) -32.3943 4.8853

Asymptotic Schrödinger energy levels, Li–C
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Symm. Ψ E c E (num.) c (num.)

N 4S◦ Ψ2 −13
8 Z 2 + 2437421

559872 Z -49.1503
2D◦ Ψ7 −13

8 Z 2 + 24551357
5598720 Z -48.9288

2P◦ 1√
1+c2

(Ψ3 + cΨ4) −13
8 Z 2 + 1

6718464(30636167−
√

1144203315841)Z − 1
393660(

√
1144203315841− 1032821)

√
2 -48.8195 -0.1324

4P Ψ6 −13
8 Z 2 + 7549145

1679616Z -48.1630
2D Ψ8 −13

8 Z 2 + 76337819
16796160Z -47.8103

2S Ψ1 −13
8 Z 2 + 3843463

839808 Z -47.5888
2P Ψ5 −13

8 Z 2 + 15393535
3359232 Z -47.5478

2P◦ 1√
1+c2

(Ψ3 + cΨ4) −13
8 Z 2 + 1

6718464(30636167 +
√

1144203315841)Z 1
393660(

√
1144203315841 + 1032821)

√
2 -46.5905 7.5532

O 3P Ψ5 −7
4Z 2 + 4754911

839808 Z -66.7048
1D Ψ6 −7

4Z 2 + 47726257
8398080 Z -66.5360

1S 1√
1+c2

(Ψ1 + cΨ2) −7
4Z 2 + 1

1679616(9884485−
√

89111336179)Z − 1
295245(2

√
89111336179− 572179)

√
3 -66.3421 -0.1458

3P◦ Ψ4 −7
4Z 2 + 1224899

209952 Z -65.3265
1P◦ Ψ3 −7

4Z 2 + 9897607
1679616Z -64.8578

1S 1√
1+c2

(Ψ1 + cΨ2) −7
4Z 2 + 1

1679616(9884485 +
√

89111336179)Z 1
295245(2

√
89111336179 + 572179)

√
3 -63.4984 6.8592

F 2P◦ Ψ2 −15
8 Z 2 + 11982943

1679616 Z -87.6660
2S Ψ1 −15

8 Z 2 + 4108267
559872 Z -85.8342

Ne 1S Ψ1 −2Z 2 + 2455271
279936 Z -112.2917

Asymptotic Schrödinger energy levels, N–Ne
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Some proof ingredients

I Scaling: Ψ̃(x) = Z 3N/2Ψ(Zx), Ẽ = Z−2E
Preserves L2 norm
Equation becomes (−1

2∆−
∑N

j=1
1
|xj |+

1
Z

∑
i<j

1
|xi−xj |)Ψ̃ = Ẽ Ψ̃

I Perturbation theory: For large Z, all the action is in a finite
dim subspace. More precisely: asymptotics governed by
PHPΨ = E Ψ, P=projector onto non-interacting GS. (”PT
model”)

I Hydrogen atom theory + theory of non-interacting fermions:
Can determine non-interacting GS explicitly. Dimension for
He, Li, Be, B, C, N, O, F, Ne: 1, 8, 28, 56, 70, 56, 28, 8, 1
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Some proof ingredients, ctd

Difficulties:

I Non-interacting GS (i.e. state space of PT model) of
somewhat daunting looking dimension

I PT Hamiltonian PHP easy to write down abstractly, but need
method to determine it explicitly

I PT model is a strongly interacting many-body model.

Overcome these by

I decomposition of PHP into small invariant blocks via
– careful use of symmetry group and its repr.theory
– Introduction of a Hodge operator (El.-hole duality)

I explicit determination of PHP via
– identities from quantum chemistry (’Slater’s rules’)
– Fourier calculus (e.g. need FT of products of hydr.orbitals)
– Residue calculus (evaluation of 1D rational integrals)
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Math. picture of periodic table, 1: L and S values
Key point: These are closely related to the notion of ‘group’ in the periodic table

I Only five different (L,S) pairs occur mathematically for the
first 10 atoms (and experimentally for the first 20)

I This yields a classification into 5 classes
I Each class is either ‘group’, or a union of 2 ‘groups’

I Gradients of (L,S) with respect to atomic number would
separate the group 3 metals from the halogens, and the
Carbon group from the oxygen group
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L and S values and crystal lattice structures

The first element with a non-radially-symmetric ground state is
Boron.

Unlike the first three elements (H, He, Li), which are fcc, liquid,
fcc at low temperature, it has a very complicated ground state.

It is clear from the lack of radial symmetry that even a minimal
model would have to account for the internal rotational degrees of
freedom; a potential depending only on the positional degrees of
freedom is no good.
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Math. picture of periodic table, 2: Electronic structure

Our asymptotic ground states provide for the first time a
mathematical explanation of the semi-empirical ”hydrogen orbital
configurations” developed by Bohr, Hund and Slater to explain the
periodic table.

These configurations are based on 3 semi-empirical postulates:

(a) Each electron in an atom occupies a hydrogenic orbital.

(b) Sub-shell ordering The orbitals in each hydrogen energy level,
or shell, form sub-shells which are occupied in the order
1s 2s 2p 3s 3p 4s 3d . . .

(c) Hund’s rule Within any partially filled sub-shell, the electrons
adopt a configuration with the greatest possible number of aligned
spins.

Example In Carbon the six electrons would occupy the orbitals
1s ↑ 1s ↓ 2s ↑ 2s ↓ 2p1 ↑ 2p2 ↑.
Alternative choices 2p1 ↓ or 2p2 ↓ for the last orbital obey (b) but not (c)
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Math. picture of periodic table, 2: Electronic structure

• For seven out of ten elements (H, He, Li, N, O, F, Ne) the
Bohr/Hund/Slater configuration (when interpreted not as
individual electronic states but a Slater-determinantal
many-electron wavefunction) is an element of the asymptotic GS

• For the remaining three elements (Be, B, C) the
Bohr/Hund/Slater configuration is the dominant part of the
asymptotic GS

Corrections to semi-empirical rules:

I Alongside any Slater determinant, the asymptotic GS contains
its orbit under the many-electron symmetry group

I sub-shell ordering not strictly obeyed: for Be, B, C, 10 to 20
percent corrections from ”higher” sub-shells also present

I In rare cases (such as the lowest 1D and 5S states of Carbon)
ordering of excited states disagrees with Hund’s rules (with
experiment confirming our ordering).
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Math. picture of the periodic table, 3: Excited levels

Lines: Asymptotic Schrödinger levels [GF/Goddard]
Circles: experiment [NIST atomic spectra database].
Use of scaled axes suggested by our analysis, and to our knowledge new.

For the highest level at Z = 6 and the fourth level at Z = 18, we were

unable to find experimental data.
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Math. picture of the periodic table, 4: ionization energies
For very positive ions, agreement with experiment is good, but for
neutral atoms, it is poor.

Tough problem, due to multiscale effect: smaller by a factor of
about 200 than total energy (!)

Asymptotics-based low-dimensional numerical method: captures,
at least qualitatively, the bizarre experimental graph
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More about asymptotics-based low-dimensional numerics

Total energies extremely well captured; our about 50 DOF’s
competitive with large-scale studies with about 108 DOF’s
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Summary

The semi-empirical hydrogen orbital configurations of Bohr, Hund
and Slater have a precise mathematical meaning, as asymptotic
limits of true Schrödinger ground states for large nuclear charge.

(Up to certain small but interesting corrections.)

This provides a theoretical alternative to semi-empirical discussions
of the periodic table in the literature, and a rare benchmark for the
design and validation of computational methods.
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Lessons from John Ball
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Lessons from John Ball
MSc course notes, An introduction to variational methods for PDE’s, 16 January, 1991

”[This course] takes certain philosophical positions.

First, the problem is the key; it is no use spending a lot of time
and energy learning new methods if in the end you apply them to a
poor problem. This has the corollary that mathematicians should
take responsibility for the models they analyse. They should know
where they come from, how to derive them, what the starting
assumptions are, and why they are of interest to science. It is not
sufficient to accept the word of a physicist, biologist, or another
mathematician, or the author, that such and such a model or
problem is a good one. This is not just an insurance policy, since
the underlying science of a model is often crucial for its analysis...”
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Lessons from John Ball, ctd

”Second, that the analysis of the problem be rigorous (that is,
right and proved to be so). Whatever approximations we made in
deriving the model, we make no approximations in its analysis
except those justified by theorems. Thus, any results obtained are
a true test of the model. This is an aim, not a fetish. The
problems posed by the PDE’s of pure and applied science can be of
immense difficulty and beyond the reach of known rigorous
techniques. In this case, it is common sense to use approximation
methods and numerical studies (which are crucial tools for
discovering new phenomena), or to consider simplified equations,
isolating some key difficulty of the original problem. But we should
distinguish carefully between conjectures based on these methods
and proved theorems.”
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Lessons from John Ball, ctd

”Third, that no artificial distinction be drawn between pure and
applied mathematics. If you like, this is a combination of the two
preceding positions. We maximize the chances of success by
moving as freely as possible between the science of the model and
any branch of mathematics appropriate for its analysis. ... The
unity of the modelling/analysis process was second nature to many
of the greatest mathematicians of previous generations, such as
Newton, Euler, Riemann, and Cauchy. For example, Cauchy made
fundamental advances both in developing continuum models of
solids and fluids and in inventing numerous techniques for their
analysis, including complex integration theory and many basic tools
of real analysis...”

70



Happy birthday John!
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