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The Weierstrass ℘-function I

Recall the classic elliptic ℘-function of Weierstrass.

Karl Weierstrass
1815-1897

It is meromorphic with
two independent periods
ω1, ω2,

ω1
ω2

/∈ R:

℘(u+ω1) = ℘(u+ω2) = ℘(u) for all u ∈ C.

We can define using the
auxiliary σ-function,

℘(u) = − d2

du2 ln[σ(u)].

.
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The Weierstrass ℘-function II

The function satisfies key differential equations,

[℘′(u)]2 = 4℘(u)3 − g2℘(u)− g3,

℘′′(u) = 6℘(u)2 − 1
2g2.

.
Consider a non-singular algebraic curve of the form,

y2 = x3 + ax + b, a,b constant.

This is an elliptic curve, which is parametrised by (℘, ℘′).
.
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The Weierstrass ℘-function III

For points close to the origin we have series expansions,

℘(u) =
1
u2 +

1
20

g2u2 +
1
28

g3u4 + . . .

σ(u) = u − 1
240

g2u5 − 1
840

g3u7 − . . .

Both ℘(u) and σ(u) satisfy addition formula.

℘(u + v) =
1
4

[
℘′(u)− ℘′(v)

℘(u)− ℘(v)

]2

− ℘(u)− ℘(v).

−σ(u + v)σ(u − v)

σ(u)2σ(v)2 = ℘(u)− ℘(v).
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General and cyclic (n, s)-curves

General (n,s)-curves

Let (n, s) be coprime with n < s. Define general (n,s)-curves as

yn − xs −
∑
α,β

µ[ns−αn−βs]xαyβ = 0 µj constants,

where α, β ∈ Z with α ∈ (0, s − 1), β ∈ (0,n − 1) and
αn + βs < ns. These have genus g = 1

2(n − 1)(s − 1).

They have a simpler subclass of cyclic (n, s)-curves

yn = xs + λs−1xs−1 + ...+ λ1x + λ0

These curves are invariant under

(x , y)→ (x , ζy), ζn = 1.
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Abelian functions associated to curves

For a given (n, s)-curve, C, we can construct two standard
period matrices, ω1 and ω2 which are associated with the curve.
.

Let M(u) be a meromorphic function of u ∈ Cg . Then M(u) is
an Abelian function associated with C if

M(u + ω1nT + ω2mT ) = M(u),

for all integer vectors n,m ∈ Z where M(u) is defined.
.
We work with an Abelian functions that generalise the
Weierstrass ℘-function and are realised in general using
the higher genus σ-function, associated to
an (n, s)-curve.
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The higher genus σ-function

Function of g variables: σ = σ(u) = σ(u1,u2, ...,ug).
Riemann θ-function multiplied by exponential factor.
Entire function.

Quasi-periodic: For ` = ω1nT + ω2mT

σ(u + `) = χ(`) exp
(
L(`)

)
σ(u).

Only zeros are of order one and can be shown to form a
subset of the Jacobian, Θ[g−1].

Definite parity: σ(−u) = (−1)
1

24 (n2−1)(s2−1)σ(u).
Expansion around the origin has leading order part given
by Schur-Weierstrass polynomial.
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Kleinian ℘-functions I

We define ℘-functions associated to a given (n, s)-curve using
the σ-function, (in analogy to the elliptic case).

Kleinian ℘-functions
Define the Kleinian ℘-functions as the second log derivatives.

℘ij = − ∂2

∂ui∂uj
lnσ(u), i ≤ j ∈ {1,2, ...,g}

They are Abelian functions.

Imposing this notation on the elliptic case gives ℘11 ≡ ℘.
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Kleinian ℘-functions II

We can extend this notation to higher order derivatives. E.g.

℘ijk = − ∂3

∂ui∂uj∂uk
lnσ(u) i ≤ j ≤ k ∈ {1,2, ...,g}

℘ijkl = − ∂4

∂ui∂uj∂uk∂ul
lnσ(u) i ≤ j ≤ k ≤ l ∈ {1,2, ...,g}

Imposing this notation on the elliptic case would show
℘′ ≡ ℘111 ℘′′ ≡ ℘1111

A curve with g = 3 has 6 ℘ij and 10 ℘ijk :

{℘11, ℘12, ℘13, ℘22, ℘23, ℘33}
{℘111, ℘112, ℘113, ℘122, ℘123, ℘133, ℘222, ℘223, ℘233, ℘333}
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Review of higher genus work I

n=2, s=3: elliptic curves
.

n=2, s>3: hyperelliptic curves

Felix Klein
1849-1925

H. F. Baker
1866-1956

Klein and Baker generalised Weierstrass functions,
inspiring current approach. They derived many results for
those functions associated to a (2,5)-curve (genus two).
Buchstaber, Enolski and Leykin (1997) modernised the
approach, derived results for hyperelliptic curves of
arbitrary genus & many details for the genus 2 & 3 cases.
Recent progress made on addition
formulae and differential equations.
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Review of higher genus work II

n=3: trigonal curves
Considerable work has been published by authors
including Baldwin, Buchstaber, Eilbeck, Enolski, Gibbons,
Leykin, Matsutani, Onishi and Previato.

n=4: tetragonal curves
The lowest genus case (g=6) was examined in detail in
2008. Solution to JIP, series expansions, PDEs,
applications and an addition formula were derived.

n>4: n-gonal curves
No specific examples have yet been studied. In theory, the
techniques developed for n = 4 could be applied in a
similar way. Computational restraints limit progress.
.
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Spaces of Abelian functions

We categorise the Abelian functions associated to a curve
according to their pole structure. Denote by

Γ
(
J,O(mΘ[g−1])

)

≡ Γ(m)

the vector space over C of Abelian functions defined upon the
Jacobian, J of a curve, which have poles of order at most m
occurring only when u ∈ Θ[g−1]. The Riemann-Roch theorem
for Abelian varieties gives the dimension of this space as mg .
.

The n-index ℘-functions belong to Γ(n). In each case there are

(g + n − 1)!

n!(g − 1)!
,

of these, so further classes are needed.
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The basis for Γ(2)

The simplest case is Γ(2) since there can be no Abelian
function with a pole of order 1, and an entire Abelian function
must be a constant.

g = 1 : Dim= 2 and space generated by {1, ℘}.
g = 2 : Dim= 4 and space generated by {1, ℘11, ℘12, ℘22}.

When g = 3 there are 6 ℘ij but the space has dimension 8. The
form of the final basis function depends on the curve:

(2,7)-case: Use the function

∆ = ℘11℘33 − ℘12℘23 − ℘2
13 + ℘13℘22.

(3,4)-case: Use the function Q = ℘1333 − 6℘13℘33.

Matthew England Higher genus Abelian functions



Background and motivation
Bases and addition formulae

Bases of Abelian functions
Addition formulae

The basis for Γ(2)

The simplest case is Γ(2) since there can be no Abelian
function with a pole of order 1, and an entire Abelian function
must be a constant.

g = 1 : Dim= 2 and space generated by {1, ℘}.
g = 2 : Dim= 4 and space generated by {1, ℘11, ℘12, ℘22}.

When g = 3 there are 6 ℘ij but the space has dimension 8.

The
form of the final basis function depends on the curve:

(2,7)-case: Use the function

∆ = ℘11℘33 − ℘12℘23 − ℘2
13 + ℘13℘22.

(3,4)-case: Use the function Q = ℘1333 − 6℘13℘33.

Matthew England Higher genus Abelian functions



Background and motivation
Bases and addition formulae

Bases of Abelian functions
Addition formulae

The basis for Γ(2)

The simplest case is Γ(2) since there can be no Abelian
function with a pole of order 1, and an entire Abelian function
must be a constant.

g = 1 : Dim= 2 and space generated by {1, ℘}.
g = 2 : Dim= 4 and space generated by {1, ℘11, ℘12, ℘22}.

When g = 3 there are 6 ℘ij but the space has dimension 8. The
form of the final basis function depends on the curve:

(2,7)-case: Use the function

∆ = ℘11℘33 − ℘12℘23 − ℘2
13 + ℘13℘22.

(3,4)-case: Use the function Q = ℘1333 − 6℘13℘33.

Matthew England Higher genus Abelian functions



Background and motivation
Bases and addition formulae

Bases of Abelian functions
Addition formulae

The Q-functions

Definition
Hirota’s bilinear operator is defined as δi = ∂/∂ui − ∂/∂vi .
It is then simple to check that

℘ij(u) = − 1
2σ(u)2 δiδjσ(u)σ(v)

∣∣∣
v=u

i ≤ j ∈ {1, . . . ,g}.

We extend this to define the n-index Q-functions (for n even).

Qi1,i2,...,in (u) =
(−1)

2σ(u)2 δi1δi2 ...δinσ(u)σ(v)
∣∣∣
v=u

i1 ≤ ... ≤ in ∈ {1, . . . ,g}.
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The Q-functions II

Apply the definition with n odd and it collapses to zero.
The Q-functions can be expressed using polynomials of
℘-functions. For example,

Qijk` = ℘ijk` − 2℘ij℘k` − 2℘ik℘j` − 2℘i`℘jk .

They are all Abelian functions with poles of order no more
than two. Hence they belong to the space Γ(2).

The Q-functions provide an inexhaustible supply of functions for
Γ(2), allowing the derivation of this basis for all curves, (subject
to computational restrictions). To find which to include we test
for linear independence using the σ-expansion.
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Hyperelliptic ∆-functions

It is possible to use a Q-function instead of ∆ in the basis for
the (2,7)-case. But ∆ is beneficial as it allows for the theory to
be complectly realised using only 2 and 3-index ℘-functions.

Similar function can be found in other hyperelliptic cases.
E.g. in the (2,9)-case Γ(2) is spanned by

{1, ℘11, ℘12, . . . , ℘44,∆1,∆2, . . .∆5}

where each ∆i is a quadratic polynomial in ℘ij .
It has been explicitly checked that no such functions exist
in a variety of non-hyperelliptic cases.
The ∆-functions appear to be a feature
unique to hyperelliptic cases.
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The basis for Γ(n) with n > 2

To derive a basis for Γ(n) start with the following steps:
Include all the entries from Γ(n − 1). This leaves only
entries with poles of order n to be identified.
Include derivatives of the entries from Γ(n − 1).
Note: these may not all be linearly independent.

g = 1 : here Γ(3) has dimension 3 and is spanned by {1, ℘, ℘′}.
.
But in general, the derivatives of existing functions will not be
sufficient to complete the next basis.
.
As an example, we will consider Γ(3) in the genus 3 cases,
which has dimension 27.
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The basis for Γ(3) in the (3,4)-case

In EEMOP (2007) the authors derived a basis for Γ(3). They
used a new class of functions, ℘[ij] defined as the (i , j)-minor of
the matrix [

℘ij
]

3×3 =

 ℘11 ℘12 ℘13
℘12 ℘22 ℘23
℘13 ℘23 ℘33

 .
These are all the difference between two products of 2-index
℘-functions. For example, ℘[12] = ℘12℘33 − ℘23℘13.

The basis is given by{
1, ℘11, ℘12, ℘13, ℘22, ℘23, ℘33,Q1333, ℘111, ℘112, ℘113,

℘122, ℘123, ℘133, ℘222, ℘223, ℘233, ℘333, ∂1Q1333, ∂2Q1333,

∂3Q1333, ℘
[11], ℘[12], ℘[13], ℘[22], ℘[23], ℘[33].

}
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In EEMOP (2007) the authors derived a basis for Γ(3). They
used a new class of functions, ℘[ij] defined as the (i , j)-minor of
the matrix [

℘ij
]

3×3 =

 ℘11 ℘12 ℘13
℘12 ℘22 ℘23
℘13 ℘23 ℘33

 .
These are all the difference between two products of 2-index
℘-functions. For example, ℘[12] = ℘12℘33 − ℘23℘13.
The basis is given by{

1, ℘11, ℘12, ℘13, ℘22, ℘23, ℘33,Q1333, ℘111, ℘112, ℘113,

℘122, ℘123, ℘133, ℘222, ℘223, ℘233, ℘333, ∂1Q1333, ∂2Q1333,

∂3Q1333, ℘
[11], ℘[12], ℘[13], ℘[22], ℘[23], ℘[33].

}
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The basis for Γ(3) in the (2,7)-case I

In the (2,7)-case the functions ℘[13] and ℘[22] are linearly
dependent and hence only one may be included in the basis.
To complete the basis a new type of function is needed.
.
This problem was considered by Nakayashiki (2008) who
derived properties of the missing element.

The final element
has recently been shown to be

T = ℘2
222 − 4℘3

22 −Q2222℘22

= ℘2
222 + 2℘3

22 − ℘22℘2222.
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The basis for Γ(3) in the (2,7)-case II

The function T is given by T222222 where,

Tijklmn = ℘ijk℘lmn − 2
3℘ij℘kl℘mn − 2

3℘ij℘km℘ln − 2
3℘ij℘kn℘lm

− 2
3℘ik℘jl℘mn − 2

3℘ik℘jm℘ln − 2
3℘ik℘jn℘lm − 2

3℘il℘jk℘mn

+ 1
3℘il℘jm℘kn + 1

3℘il℘jn℘km − 2
3℘im℘jk℘ln + 1

3℘im℘jl℘kn

+ 1
3℘im℘jn℘kl − 2

3℘in℘jk℘lm + 1
3℘in℘jl℘km + 1

3℘in℘jm℘kl

− 2
3Qijkl℘mn − 2

3Qijkm℘ln − 2
3Qijkn℘lm + 1

3Qijlm℘kn + 1
3Qijln℘km

+ 1
3Qijmn℘kl + 1

3Qiklm℘jn + 1
3Qikln℘jm + 1

3Qikmn℘jl − 2
3Qilmn℘jk

+ 1
3Qjklm℘in + 1

3Qjkln℘im + 1
3Qjkmn℘il − 2

3Qjlmn℘ik − 2
3Qklmn℘ij .

These belong to Γ(3), for any (n, s)-curve.
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Deriving new classes of functions

The T -functions were derived during a separate
calculation designed to cancel the higher order poles in
℘ijk℘lmn for any curve.

This was achieved by considering arbitrary sums of
functions and determining the coefficients so that the
higher order poles vanish upon substitution for the
definition in σ(u).
Similar approaches can be applied to other combinations
of functions. We work systematically, considering terms
with increasing numbers of indices.
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New bases

This approach has led to the derivation of many other new
bases. For example:

The basis for Γ(4) in the (2,7)-case.
The basis for Γ(4) in the (3,4)-case.
The basis for Γ(3) in the (2,9)-case.
The basis for Γ(3) in the (3,5)-case.

In each case the bases were completed using functions from a
general class derived using the above approach.
.
This approach can be applied to higher genus cases, but will be
restricted by computational limits.
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Notes on computation

Computing the new classes of functions is (relatively) easy.
Testing which functions are actually needed can be difficult.

Use weight properties to simplify computations.

Only use basis entries at relevant weight.
Use cyclic σ-expansion.
Only use sufficient σ-expansion for weight.
When multiplying series, only perform
those products which will be under the
maximal weight considered.

.

Custom written programs used to expand the product of series.
• Can determine weight range for each basis. Minimal weight
function seems to be necessary.
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Two-term two-variable addition formula I

Theorem
Every (n, s)-curve has an associated addition formula

σ(u + v)σ(u − v)

σ(u)2σ(v)2 =
∑

i

ciAi(u)Bi(v)

where Ai ,Bi ∈ Γ(2) and the ci are constants.

Follows from linear algebra after checking the LHS is Abelian.

The RHS is symmetric or anti-symmetric in (u,v), when the
σ-function is odd or even respectively.
These generalise the classic Weierstrass formula,

σ(u + v)σ(u − v)

σ(u)2σ(v)2 = ℘(v)− ℘(u).
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Two-term two-variable addition formula II

Example: In the (3,4)-case

σ(u + v)σ(u − v)

σ(u)2σ(v)2 = −℘11(u) + ℘12(v)℘23(u) + ℘13(v)℘22(u)

+ ℘11(v)− ℘12(u)℘23(v)− ℘13(u)℘22(v)

+ 1
3Q1333(u)℘33(v)− 1

3Q1333(v)℘33(u).
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Automorphism addition formulae I

For the cyclic curves,

yn = xs + λs−1xs−1 + ...+ λ1x + λ0

there are a second class of addition formulae, associated with
the family of automorphisms

[ζ j ] : (x , y)→ (x , ζ jy), where ζn = 1.

In each case the following function should be Abelian:

n∏
j=1

σ
(∑n

i=1[ζ i+j ]u[i])
σ((u[j])n)

Hence it is expressible as a sum of terms, each a product of n
functions drawn from the basis Γ(n), but
each a function of a different variable, u[j].
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Automorphism addition formulae II

Example: In the cyclic (3,4)-case we have ζ3 = 1 and

σ(u + v + w)σ(u + [ζ]v + [ζ2]w)σ(u + [ζ2]v + [ζ]w)

σ(u)3σ(v)3σ(w)3

= f (u,v ,w) + f (u,w ,v) + f (v ,u,w)

+ f (v ,w ,u) + f (w ,u,v) + f (w ,v ,u),

where

f (u,v ,w) = 1
8℘

[22](u)℘[11](v)℘[22](w) + . . .

(Full formula available on arXiv.)
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Simplified automorphism addition formulae

Such formulae can be difficult to compute. A simplified version
may be found instead, where one of the variables is set to zero.
.

Example: For example, in the cyclic (3,5)-case we have

σ(u + v)σ(u + [ζ]v)σ(u + [ζ2]v)

σ(u)3σ(v)3 = f (u,v) + f (v ,u)

where

f (u,v) = −1
8T222222(v) + 1

4℘122(v)℘144(u) + . . .
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Automorphism addition formulae of reduced curves

We can consider reduced curves which have further
automorphisms and hence extra addition formulae.
.
Example: The restricted (3,4)-curve, y3 = x4 + λ0 has
automorphisms

[i j ] : (x , y) 7→ ((i)jx , y), where i is the complex variable.

The functions associated to this curve satisfy

σ(u + v)σ(u + [i]v)σ(u + [i2]v)σ(u + [i3]v)

σ(u)4σ(v)4 = f (u,v)− f (v ,u)

where f (u,v) = 1
6℘2222(v)λ0 − 1

6℘1111(u) + . . .

(Full formula available on arXiv.)
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Differential Equations I

The differential equations satisfied by ℘-functions are of great
interest. We consider several classes:

4-index Equations: We seek to express the 4-index
℘-functions as quadratic polynomials in 2-index
℘-functions, to generalise the elliptic equation

℘′′(u) = 6℘(u)2 − 1
2g2.

Consider Γ(2): Express those 4-index Q-functions not in
the basis as linear combination of entries.

Gives desired set for the hyperelliptic cases.
Best available set for non-hyperelliptic cases.
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Differential Equations II

Bilinear Equations: This is a set of equations bilinear in 2
and 3-index ℘-functions. For example, in (2,7)-case:

0 = ℘233℘33 + ℘223 − ℘333℘23 − ℘133

0 =
...

℘133℘33 + ℘123 − ℘333℘13

No analogue in elliptic case.
Due to parity properties terms are either ℘ijk or ℘ij℘klm.
Derive by cross-differentiating 4-index relations. E.g.

∂
∂u2

(
℘3333

)
− ∂

∂u3

(
℘2333

)
= 0.

Derive when finding odd entries of Γ(3): Use the class of
functions where higher order poles of ℘ij℘klm-terms cancel.
Useful for manipulating
and deriving equations.
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Differential Equations III

Quadratic 3-index Equations: We seek to express the
products of 3-index ℘-functions as cubic polynomials in
2-index ℘-functions, to generalise the elliptic equation

[℘′(u)]2 = 4℘(u)3 − g2℘(u)− g3,

Search for cubic relations in the entries of Γ(2). Higher
order poles can be canceled by comparing coefficients.
Complete sets recently derived for both genus 3 cases. For
example, in the (2,7)-case:

℘2
333 = 4

(
℘3

33 + λ4 + λ5℘33 + λ6℘
2
33 − ℘13 + ℘22 + ℘33℘23

)
℘233℘333 = 2

(
2℘23℘

2
33 + λ3 + λ5℘23 + 2λ6℘33℘23 + ℘12

+ 2℘33℘13 − ℘33℘22 + ℘2
23
)

...
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Differential Equations IV

In the (2,7)-case, the quadratic 3-index equations can be
represented using the following determinantal expression:

(
lT Ak

)(
l ′T Ak

)
= −1

4

∣∣∣∣∣∣
H l ′ k ′

lT 0 0
kT 0 0

∣∣∣∣∣∣ ,
where l ,k , l ′,k ′ are arbitrary vectors, A a 5× 5 matrix of ℘ijk
and H a 5× 5 matrix of ℘ij and curve constants.

A =


0 −℘333 · · ·

℘333 0 · · ·
−℘233 ℘133 · · ·

...
...

 , H =


4λ0 2λ1 · · ·
2λ1 4λ2 + 4℘11 · · ·
−2℘11 2λ3 + 2℘12 · · ·

...
...


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