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I —
Inversion of elliptic integral P, n < 4:

, v dx
t+ 2nw 4+ 2mw’ = ,
0o V423 — o — g3

where z = p(t) = p(t 4+ 2nw + 2mw’) is an elliptic function. Inversion possible!

es €4 = 00

ay L
Homology basis on the Riemann surface of the curve y? = ?:1 (x — e;) with real branch points
e1 < ez < ... < eq = oo (upper sheet). The cuts are drawn from ez;_1 to ez;, ¢ = 1,2. The
b—cycles are completed on the lower sheet (dotted lines).

T

g = OO

. Cant |Fero
Zo e < oot |,
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Elliptic function does not depend on the way of integration!
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I —
Inversion of hyperelliptic integral P,, n > 4:

does not work. Reason: infinitely small periods appear

2w12
*-—e *-— e
2w11
For hyperelliptic curve of genus 2 a combination of periods is possible such that 2wi1n+2wiam o 0.

Jacobi: 2g-periodic functions of one complex variable do not exist for g > 1.
Jacobi’s solution for g = 2, 4> = [[°_, (z — a;):

correct formulation of inversion problem for genus 2

/gcl dx +/x2 dx /gcl xdx _’_/9”2 zdx
— — =uy, — — =ug,
zo Y zo Y zo Y zo Y

with holomorphic diferentials

2w:( % dui) 2w’:( j{ dui)
a ik=1,....g by i k=1
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I —
Inversion of hyperelliptic integral P,, n > 4:

Only symmetric functions of upper bounds (z1, x2) make sence (exchange of x;
and z2 changes nothing)

1+ 29 = F(U1,UQ)
r172 = G(u1,u2) ,
with F(4@ 4 2n1@; + 2nads + 2ma | + 2medd)) = F(i) where F' is a 4-periodic

Abelian function (function of g complex variables with 2g periods being the
columns of the period matrix).

Von
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Applications in physics

The goal 1 is using the theory of Abelian functions and Jacobi inversion problem
to describe the multivalued functions which appear in the inversion of a
hyperelliptic integral. That will be achieved by restriction of the §-divisor in the
Jacobi variety.
Motion of neutral or charged test particles in
o spherically symmetric space-times:
2 Schwarzschild space-time: mass
> Schwarzschild-de Sitter: mass, cosmological constant
2 Reissner-Nordstrom space-time: mass, electric and magnetic charges
> Reissner-Nordstrom-de Sitter space-time: mass, electric and magnetic charges,
cosmological constant
9 axial symmetric space-times
> Taub-NUT space-time: mass (gravitoelectric charge), NUT parameter
(gravitomagnetic charge)
> Kerr space-time: mass, rotation (Kerr) parametter

> Myers-Perry space-times (higher dimensional Kerr space-times): mass,
rotation parameters

o Plebanski and Demianski space-time: mass, electric and magnetic charges,
rotation parameter, NUT parameter, cosmological constant
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I —
Physical applications in tables

o spherically symmetric space-times:

Space—time : . 5 6 7 8 9 10 11 >12
Dimension

cant|FeLn
Vo "
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I —
Physical applications in tables

o spherically symmetric space-times:

Space—time : . 6 7 8 9 10 11 > 12
Dimension

Schwarzschild + + + + * 4+ * 4+ *
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I —
Physical applications in tables

o spherically symmetric space-times:

Space—time : . 8 9 10 11 >12
Dimension

Schwarzschild
Schwarzschild—de Sitter

+|+| &
+i+| &
*+| o
+i+| ~

+
+

+|+
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I —
Physical applications in tables

o spherically symmetric space-times:

Space-time |4 5 6 7 8 9 10 11 >12
Dimension

Schwarzschild + + + + + +

Schwarzschild—de Sitter + + * + + +

Reissner—Nordstrom + + 4 * *

yyyyyyy
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I —
Physical applications in tables

o spherically symmetric space-times:

Space-time |4 5 6 7 8 9 10 11 >12
Dimension

Schwarzschild + + + + * + * 4 *

Schwarzschild—de Sitter + + * + * 4 x4 *

Reissner—Nordstrom r + * F * * * = *

Reissner—Nordstrom—de Sitter | + + * 4 * * *x % *

+ integration by elliptic functions
+ integration by hyperelliptic functions

o axial symmetric space-times
Space—time

] ; 6 7 8 9 10 11 >12
Dimension
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I —
Physical applications in tables

o spherically symmetric space-times:

S —ti
paceTTime . . 4 5 6 7 8 9 10 11 >12
Dimension
Schwarzschild + + + + * 4+ * 4+ *
Schwarzschild—de Sitter + + * + * 4 x4 *
Reissner—Nordstrom + 4+ 4 Kk x xk *
Reissner—Nordstrom—-de Sitter | + + *  * * * % *
+ integration by elliptic functions
+ integration by hyperelliptic functions
o axial symmetric space-times
S —ti
paceTTime . . 5 6 7 8 9 10 11 >12
Dimension
Myers-Perry ‘_;_ ¥ * L % * *
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I —
Necessary calculations

The goal 2 is to provide effective calculation of hyperelliptic functions using
maple routines (package alcurves).

o calculation of the matrix of periods of holomorphic differentials

o calculation of the matrix of periods of meromorphic differentials

o calculation of characteristics of abelian images of branch points in a given

basis
ek
Ap :/ du = wep +w'e), k=1,...,2g+2,

o0

o calculation of the vector of Riemann constant in a given basis
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Hyperelliptic functions

Hyperelliptic curve X, of genus g is given by the equation
2g+1 2g-+1

w? = Pyyi1(2) = Z Nzt =4 H (z —ex) .
i=0 k=1

Equip the curve with a canonical homology basis

(al,...,ag;bl,...,bg), aiobj:fbioaj:&,j, CliOClj:biObj:O

€2g42 = X

A homology basis on a Riemann surface of the hyperelliptic curve of genus g with real branch points
e1,...,€e2g+2 = oo (upper sheet). The cuts are drawn from ez;_1 to eg; fori = 1,...,9 + 1.
The b-cycles are completed on the lower sheet (the picture on lower sheet is just flipped horizontally).
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|
Canonical differentials

Choose canonical holomorphic differentials (first kind) du’ = (dus, ..., duy) and
associated meromorphic differentials (second kind) dr‘ = (dry,...,dr,) in such a
way that their periods

2w:( % dui) 2w’:( j{ dui)
ax i,k=1,...,9 b i,k=1,...,9

’ k

2n = (—% dri) 2n = (—% dm)
" ax i,k=1,...,9 ! b i,k=1,...,9

satisfy the generalized Legendre relation
w W 0 -1 w W\t 1 .0 -1
(5 %) )5 o) =5 )
non Iy 0 non 2" \1, 0

Such a basis of differentials can be realized as follows (see Baker (1897), p. 195):

du(z,w) = Ll(z)dz’ Us(z) = 271, i=1...,¢9,
w
2g+1—1
dr(z,w) = RZI)}dZ7 Ri(2) = Z (k+1—i)App14i2", i=1...,9.
k=i

ossierzky | APrReonie
univer: t|OLDENBURG

Cyar — Y ! Jae — Y
Jacobi variety Jac(X,) = C9/2w & 2w, Jac(X,) =C9/1, @ .
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|
f-functions

The hyperelliptic §—function, 6 : EE(Xg) x Hg — C9, with characteristics [¢] is
defined as the Fourier series

el(v|r) = Z expmi{(m+e&)r(m+e)+20v+e)(m+e)}
mezZI

In the following, the values ¢y, 5; will either be 0 or % The equation
Ole](—v|r) = e~ ble] (v] ),

implies that the function 0[¢](v|7) with characteristics [¢] of only half-integers is
even if 4e’e’ is an even integer, and odd otherwise. Correspondingly, [¢] is called
even or odd and among the 49 half-integer characteristics there are £ (49 + 29)
even and 1(49 — 29) odd characteristics.

Vo
universitat[oLENE URG
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|
Characteristics

Every abelian image of a branch point is given by its characteristic

ek
Qlk:/ du =wep +w'e), k=1,...,29+2,

oo

e /T roog
=[] = )= ]
o €; €i,1 €i2

The 2g + 2 characteristics [2l;] serve as a basis for the construction of all 49
possible half integer characteristics [¢]. There is a one-to-one correspondence
between these [¢] and partitions of the set G = {1,...,2g + 2} of indices of the
branch points (Fay (1973), p. 13, Baker (1897) p. 271).

or
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|
Characteristics

The partitions of interest are

m — {i17"‘7ig+172m}7 Jm = {j17~'~ajg+1+2m}a

where m is any integer between 0 and [ ] The corresponding characteristic
[€m] is defined by the vector

g+1-—2m
E,n=2w)" > A, +Ky=ey+7e),
=1
Characteristics with even m are even, and with odd m odd. There are %(2gj12)

different partitions with m = 0, (29+2) different with m = 1, and so on, down to

(2‘71‘*2) =2g+2if giseven and m = g/2, or (2‘13‘2) =1if g is odd and
m = (g + 1)/2. According to the Riemann theorem on the zeros of #-functions,
O(E,, + v) vanishes to order m at v = 0.
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I —
Sigma functions

The fundamental o-function of the curve X, is defined as
o(u) = C(T)0[K o)((2w) 'u; 7)exp {u” seu} .

Here 7 = w™lw’, » = n(2w)~! and C(7) is given by the formula

0= |, AL, e

That’s natural generalization of the Weierstrass o-function

—1/4

s €

u U2
0=\ o Yo e () exp{gw}, ot

yyyyyyy

oss
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I —
Properties of sigma functions

o it is an entire function on Jac(Xy),
o it satisfies the two sets of functional equations
o(u+ 2wk +20'k;M) = exp{2(nk + n'k')(u + wk + W'k ) }o(u; M)
o(u;yM) = o(u; M),y € Sp(29,Z)

the first of these equations displays the periodicity property, while the second
one the modular property.

Here 9i-modules, i.e. matrices of periods 2w, 2w’, 27, 27’

— A B — g
7_(0 D), det(y) =1, AB,C,DeZ

Action of v on period matrix is defined as

vyow = Aw + Bw'
vow' = Cw+ D’

yyyyyyy

oss
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I —
Jacobi inversion problem in general case

Jacobi's inversion problem in coordinate notation is
Prde Po da
[,
P Y P, Y

Progda Ps pdx
4+ =y,
P Y P, Y

/Pl 29~ dx /Pg 29~ dx
— .+ — =y,

Py y Py y
and solved in terms of Kleinian gp-functions as follows
29— pgg(w)ad™t — . = pgi(u) =0,
-1
Yk = —0g.9.9(WTE — ... — pgg1(u),

where Pk = (a:k,yk)
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I —
Relation between the matrices of holomorphic and

meromorphic differentials

Let P(K2) denote g X g- symmetric matrix whose elements are symmetric functions of

(eiu---veig)

€iq €,
PO = @is@) o, 0= [ Mdutt [T,
let (2w)~'Q + Ko be an arbitrary non-singular even half-period, and T(2) the g x g

matrix )

T(Q) = (f az?azj log 0] K ] ((2w) ™' Q2; T))

i,j=1,...,9
Then the s»-matrix is given by the formula

1 1T

1
= —P(R) - 5(2)

; (@) (2w) !

and the half-periods of the meromorphic differentials n and n’ are given as

N = 2w, n = 2’ — %(w_l)T .
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Relation between the matrices of holomorphic and

meromorphic differentials

To calculate missing ¢, ; use the following differential cubic relation

PggiPggk = 4@99@92’@91@ - 2(@9%’@9*1,1@ + pgkpgfl,i) + 4(@91@@971‘71 + pgip%kfl)

Aoy
+4pr—1,i-1 — 2(pri-2 + Pik—2) + NogPgrgi + %(%ng + Okggi)

1
+ Agi—20ik + 5()\22'7151@,”1 + Aop—10i kt1)

1 =i
with 5i,j = {0 ’L#j
7]

LLLLLL
ossierzky | APrReonie
univer: t|OLDENBURG
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Relation between the matrices of holomorphic and
meromorphic differentials

The Proposition represents the natural generalization of the Weierstrass formulae,
see e.g. the Weierstrass-Schwarz lectures, p. 44

192(0) 192(0) 19(0)
) —_9 2 —-Y2 —_9 2 ~-73 - _9 2 —-74
nw e1w 2 192(0) y nw (1% 9 193(0) s nw esw B 194(0)

Therefore the Proposition allows to reduce the variety of modules necessary for
calculations of ¢ and g-functions to the first period matrix.

chchchch

ossierzky | APrReonie
univer: t|OLDENBURG
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Strata of theta-divisor

The subset ék cCOk > 1 is called k-th stratum if each point v € O admits a
parametrization

P;
Oy : v:Z/ dv+ K., 0<k<g.

j=17°

Orders m(©y,) of vanishing of 6(0 + v) along stratum O, for small genera are
given in the Table

g | m(©o) | m(©1) | m(O2) | m(O3) | m(O4) | m(O5) | m(Os)
11 0 - - - - -
211 1 0 - - - -
312 1 1 0 - - -
412 2 1 1 0 - -
513 2 2 1 1 0 -
6 |3 3 2 2 1 1 0

Orders m(©y,) of zeros 0(O, + v) at v = 0 on strata O

chchchch

ossierzky | APrReonie
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I —
Solution for genus 2

The Jacobi inversion problem can be reduced to the quadratic equation
2 _
7 — 221 — P12 =0
with the solution

T+ T2 = P22

T1T2 = —(12

Now choose zo = 00: 21 = — lim,, 00 £22. We take away one point and this

22
. P .
allows us to use the Riemann theorem 6 (Zg_l Jpr 2=+ KOO> =0if

VP(z)
N < g. Ky is a Riemann constant.
With (@) = — 2ol 5y the final solution is
ij 9,01, )] yeen g
012
T =——-.
022

This is Grant-Jorgenson formula. universitat|oLoENBURG
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I —
Solution for genus 2

In the homology basis with e = +00 the characteristics are:

=3[} 8] w31 ] w2

=59 1] w0 ) =g

and the characteristic of the vector of Riemann constants K - is

O =
| I |

—
—
o O
o O
.

m@[%j%1lrly

b 1 T

ba
@ €5 €6 = 0
ap as
A homology basis on a Riemann surface of the hyperelliptic curve of genus 2 with real branch points
€1,...,eg = 0o (upper sheet). The cuts are drawn from eq;_1 to eaz; for ¢ = 1,...,3. The

b-cycles are completed on the lower sheet (the picture on lower sheet is just flipped horizontally).
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I —
Solution for genus 2

The expression for the matrix s is

1/ ejea(es+es+e5) +eseqes  —eren 1 1T -1
= _5 ( —€1€2 el + ez 5(2&)) Q(QI’Z)(ZM) ’

where ¥ is the 2 x 2-matrix and 10 half-periods for i # j = 1,...,5 that are
images of two branch points are

Qij=wlEei+¢e)+uw'(e;+¢e)), i=1,...,6.
and the characteristics of the 10 half-periods
eig) = [2w) ' Qi+ K], 1<i<j<5

are non-singular and even

Von
universitdt|OLDENBURG
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Examples 2D

0.5

N

(1) Schwarzschild-de Sitter, 9D (2) Reissner-Nordstrém, 7D

-10

o/

(3) Reissner-Nordstrom, 7D (4) Reissner-Nordstrom-de Sitter, 4D (5) Reissner-Nordstrom-de Sitter, 4D
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Examples 3D

NUT-de Sitte

-0,2 -2
NUT, escape orbit Reissner-Nordstrém, bound orbit  and many-world bound orbit
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Solution for genus 3

Solution in this case is (Onishi formula)

013
T =——
o
2| (@) =0,04 (1) =0
Characteristics for genus 3

Let 2, be the Abelian image of the k-th branch point, namely

€k

A :/ du = we +w'e),, k=1,...,8,
(o)

where €, and €, are column vectors whose entries ¢y, ;, €}, ;, are 1 or zero for all

k=1,...,837=1,23. _

The correspondence between branch points and characteristics in the fixed

homology basis is given as

mi=2[ 8 3 mani[d g
wi=2[0 3 8] wa=[8 0

[917}:%{(1) (1) (1)}, [2s]
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I —
Solution for genus 3

The vector of Riemann constant K ., with the base point at infinity is given by
the sum of even characteristics,

[Koo]=[212]+[2l4]+[2l6]=;“ ! H

From the above characteristics 64 half-periods can be build:

0 7 odd [(2w)71€2; + K], where Q; = 2,

0 21 odd [(2w) 71 ; + Koo], where Q; ; = A; + 2A;

0 36 even [(2w) 7' jx + Koo], where £, ;1 = 2A; + 2A; + A, and Ko
where 1 <i < j <k <7 and K is singular characteristic (§(K ) = 0).

LLLLLL
ossierzky | APrReonie
univer: t|OLDENBURG
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Analog of Thomae formula: all period systems

For the branch points e1, ..., eg the following formulae are valid

Q.
L ICL)
UZB(Qi)
For the branch points eq, ..., eg the following set of formulas is valid
_02(Qi )
o3(Qi;j)

o o(Sy)
T ()

.,8, whereQ; €01 :0(Q;) =0,03(Q;) =0

e +e; =
i#j=1,...,8

where ©; ; € ©5: 0(£2; ;) =0.
From the solution of the Jacobi inversion problem follows for any i #j=1...,3

eitejter = p33(Qijk), —eiej—eiep—ejer = ©23(Qijk), eiejer = P13(Qijk)

yyyyyyy

oss
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Solution for arbitrary genus

Solution is (Matsutani, Previato)

8M+1

puroay 7 (0) _2)(g—3
.| VI TIRE O
Bugau]gwg(u) TEO,
with w = (us,...,u,)T and
o7
©:: o(u)=0, —o(u)=0, j=1,...,9—2.
duy
Remark: the half-periods associated to branch points ey, ..., es441 are elements
of the first stratum,
(ei,0)
Q; = du € 01; e; # ezgqo

€2g+42
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I —
Solution for arbitrary genus

Let Q; be the half-period that is the Abelian image with the base point
Py = (00, ) of a branch point e;. Then

HM+1
6___81‘13%”“(9”) m=9=206-3
(2 OM+1 ) - 2
Buzauya.(ﬂi)

In the case of genus g = 2 such a representation of branch points, which is
equivalent to the Thomae formulas, was mentioned by Bolza

Similar formulas can be written on other strata ©.
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I —
Solution for arbitrary genus

Let X, be a hyperelliptic curve of genus g and consider a partition
iUJ = {i1, .. ig=1 U {j1,. .-, Jg+a}
of branch points such that the half-periods
(2w) 'z, + Koo €0, 1U0,

are non-singular odd half-periods. Denote by sy (Z;) the elementary symmetric

function of order k built by the branch points e;,,...,e;,_,. Then the following

formula are valid

_ 10'9716(9 1)
B =V )

univer:
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Possibility I: Tim Northover's routine

= Fiemann surtace ey<Ie painter - drawn. Genusd o2 pic

File Cutting methods

Delete path

la[1]
lat21
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b(2]
Sheet

=

L-Lcoord |-12-35%1
U-Rcoord |12+3.5%

e .
aim: calculate the transition matrix from the period matrix =~~~ 77T TTTToroooeo *
in Tretkoff basis to the period matrix in the basis of your choice
0={x Loy 1= [y peByoeay o2y (3 sy ipTyoee) |
Basepoinl{u 00000+0. EOOOOO*\‘S"E&E B&SE‘T 00000+1.00000" “ Apply Surface ‘
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Tim Northover's routine

> with(LinearAlgebra):

> march(’open’,"D:/My Maple/CyclePainter/extcurves.mla");

> with(extcurves);

>  f:=y"2-4%(mul( x-zeros[i], i=1..2%g+1 ))); curve := Record(’f’=f,
)

x’=x, ’y’=y):
hom:=all_extpaths_from_homology(curve) :
PI:=periodmatrix(curve,hom);
A:=PI[1..g,1..g]; B:=PI[1..g,g+1l..2xg]; tau:=A"(-1).B;

curve, homDrawn, names := read_pic("D:/My Maple/CyclePainter/drawn.pic"):
T1:=from_algcurves_homology(curve, homDrawn) ;

tau_basis:=PI.Transpose(T1);

vV V. V.V V V V

A_basis:=tau_basis[1..g,1..g]; B_basis:=tau_basis[1l..g,g+1l..2*g];

cant|FeLn
Vo ’6
0SSIETZKY THEORIE
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I —
Possibility Il: Correspondence between branch points and

half-periods in Tretkoff basis

Step 1. For the given curve compute first period of matrices (2w, 2w’) and
7 = w'w’ by means of Maple/algcurves code. Compute then winding vectors,
i.e. columns of the inverse matrix

(2w)~ ! = (Uy,...,Uy).

Step 2. There are two sets of non-singular odd characteristics:

eil Eig71
/ d’U—|—+/ dU+KOOC@g_1, il,...,ig_1#2g+2

o0 oo

and

/ 1dv+...+/ Ao+ Koo C O,

o0 oo
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I —
Correspondence between branch points and half-periods in

Tretkoff basis

Find the correspondence between sets of branch points

{ei17'°')eig_1}7 {eilﬁ"'vei_q—2}

and non-singular odd characteristics [;,,....i, ], [0s,,....i,_,] One can add
[51-1,_“7149_1] + [51417__,7%_2] and find correspondence,

€i,_
/ s ey, i=1,...,29+2
oo

Step 3. Among 2g + 2 characteristics should be precisely g odd and g + 2 even
characteristics. Sum of all odd characteristic gives the vector of Riemann
constants with base point at the infinity. Check that this characteristic is singular
of order [£+1]

Step 4. Calculate symmetric matrix s and then second period matrices 27, 2’

following to the Proposition 1.
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Outlook

o effective one body problem
o test particles with spin
O test particles with multipole moments

9 ...
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